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ON REFINEMENTS OF HADAMARD’S INEQUALITIES

GOU-SHENG YANG AND CHUNG-SHIN WANG

Abstract. Some refinements of Hadamard’s inequalities are established.

1. Introduction

The inequalities

. a
(5 < 52 [ sy < LATI0 1)

which holds for all convex functions f : [a,b] — R are known in the literature as
Hadamard’s inequalities. In [2] and [3], S. S. Dragomir established some refinements
of the first inequality of (1.1). In [4], G. S. Yang and M. C. Hong established a refine-
ment of the second inequality of (1.1).

The main purpose of this note is to establish further generalization of the results in
[2], [3] and [4].

As in [1] and [2], let E be a nonempty set and let L be a linear class of real-valued
functions from E to R having the properties:

Li:f,g € L= (af +bg) € Lforall a,b € R;
Lo :1 € L, that is, if f(t) = 1(t € E), then f € L.

A linear functional A : L — R is isotonic if

A : A(af + bg) = aA(f) + bA(g) for f,g € L and a,b € E;
Ay:feL, f(t)>0onE= A(f)>0 (Ais isotonic).

We need the following Jensen’s inequality (see [1] or [2]).

Jensen’s inequality. Let L satisfy the above properties on E, and suppose @ is a
convex function on an interval I C R. If A is any isotonic linear functional with A(1) =1,
then, for all g € L such that ®(g) € L, we have A(g) € I and (A(g)) < A(2(g))-
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2. Preliminary Lemmas
In order to establish the main theorems, we start with the following lemmas.

Lemma 1. Let C be a convex subset of a real linear space X, and f : C — R, the

real numbers, be a convex function. Let a; > 0 (i = 1,2,...,n) with Y o a; =1 and
a = minj<i<n{ai}. Given a sequence z = = {&, 39, -ons Bnf G, ol By [0,na] = R be
defined by

o= S (- s W)

i=1 "

where g is a linear function on [0,na] such that 0 < g(t) < na and Tni1 = 1. Then

(1) ®, is convez on [0,nal,

2) f(z aimi) < ®,(t) <Y aif(zi) for all t € [0,na). (2.1)
=1 =1

Proof. Let t;,t5 € [0,na] and a,B > 0 with a + 3 = 1. Since f is convex on C' and
g is linear in [0, na], we have

n

@, (aty + Bt2) = Zazf [ glots + ﬂtz)].’t .y MIM+1)

X na;
=1 C

(
= Z a,f(a Q(tl xi + g(tl)xiﬂ]

3

e na; na;
+3 (1 gTEZ ) ; + -Q-T%z—):z:iﬂ])
(R

g(t2) g(t2)
=+ i 1-— ] 4 i
ﬂ;a f([ na; s na; el
= a@z(tl) + /B‘I’J;(tz)
This completes the proof of (1).

Next, using the convexity of f and note that z,41 = 1, we have

<§: (- 22 1600 + S s i)

7

= Zaif(il?i) + % Z [f(@ir1) — flzi)] = Zaif(mi)
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and

for all t € [0,na]. This proves (2).

Remark 1. Lemma 2.1 in [2] is the special case of our lemma 1 when n = 2, g(t) = ¢
and a1 = a = 3.

In [4], G. S. Yang and M. C. Hong proved:

Lemma 2. If f : [a,b] = R is a convez function and F : [0,1] = R is defined by

b0 = i [ (e B5e) + 1 (] + [ ]e) e

then F is convez, increasing on [0,1] and

/ f(z F(0) < Ft) < F(1) = ==,

b—a

They used the differentiability of f on (0,1) to prove F' is increasing on [0, 1]. Here,
we give a proof without using the differentiability of f on (0,1) as follows:

Proof. That F' is convex on [0, 1] is easy to verify. Now, if 0 < ¢ < 1, then

F(t) = 1 /ab{f([l—l—t]a+[1—t]$)+f([1+t]b—l2—[1—~t]:n)}dm

2(b—a) 2
1 ot —g(232) b
= anmat . HHE [T
Since f is convex, we have
1 afh g5 b
F' (1) = a Wa_){/a f(z)dz + ./I;I‘b+t(_:.‘_‘) f(m)d:z:}

e I
(5 D)

1 {/“3”—t(%“-) .
= z)dx +/
(1-t)20b-a)l /s agh yboa)

b

a)ds
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= eea LSl ER et S

—2(]_t{ (B e+ 1) + (5 o+ B0
——1_—{ ([1”] « (500 + (5 e+ 510}
s = b s DR (P e )
2(1_t>{f([1§t]a+[%—f]b)-f([?’It]“[th]b)}

This shows that F is increasing on [0, 1]. Hence

e,

’i_a /bf(m)drﬂ = F(0) < F(t) < FQ1) = M

This completes the proof.

3. Main Results
Now, we give our main results as the following theorems.

Theorem 1. Under the conditions of Lemma 1, let L, A satisfy the conditions Ly,
Ly, Ay and Az, and let h: E — [0,na] be a function such that h € L and

f([l—'g'(—l}l]xi'{’_g(h)xi_*_])e_[l fors= L8

a; i

If A(1) = 1, then

(Zal () < @2 (AR)) < A(Ba()) < 3 asf (a2). (3.1)

Proof. Using Jensen’s inequality, we have

&, (A(h)) < A(®4(R)).

This is the second inequality in (3.1).
Since f is convex on C and A is an istonic linear functional on L, we have

&, (A(R)) = Zn:aif([l B g(A(h))]xi " g(A(h))wm)

na; na;
=l x :

& i (j &i{(l — gj—%)xi + g(:gl))mu-lD =f (En: ai$i> :

1
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This is the first mequdhty of (3.1).
Finally,

009 =3 ous (1= L]+ 820,

na; 7

a1 )+ ] - e

Using A1, A2 and A(1) = 1, we have A(®,(h)) < A(X 1, aif(zi)) = X, aif(z:).
This proves the last inequality of (3.1).

Remark 2. We note that Theorem 2.3 in [2] is the special case of Theorem 1 as
n=2a =ay =%, g(t) =t and h(t) =

Theorem 2. Under the conditions of Lemma 1, if z = {z1,2Z2,...,Z,} is a sequence
in U such that ¢ # Tiya, 1= 1,2,.. .9, and Lu41 = Ty, then

f(g;aimi) Zazf([] = Z]ll . Q—C;—iwiﬂ)

a2 zit g (Tip1—2i)
SZ~—LfM; f ()t

a(Tit1 —

i=1
<3 aif (). (3.2)
=1
Proof. Let A= L Ona, E =[0,na], g(t) =t and h(t) = t. Then
) =3 [ E- s
0 i1 na; na;

na
i it (Tip1—xi)

= —_— t)dt,
e a(zH-l - vUz) / f( )

and

n na tdt 1 [na tdt
&, (A(h)) = Z a; f ( [1 o BB }a:i 400 _—(—:1:1-_{_1>

e na; na;
n a
- St~ e o)
;azf({ 2a; $z+2 Tit-1
Using (3.1), we obtain
n 7

f(Z(limi) < Zaif([l - 2—(;;]:1:1- + éz-;fﬂl)
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:/\

n T +-i(.c.|1—a:,)
S / F(B)at
$z+1 5 xz)

Z ai f(:).
=1

Remark 3. We note that the Hadamard’s inequalities (1.1) is the special case of

Theorem 2 whenn =2, 21 =a, 2o = b, and a; = az = &
) 2

Tehorem 3. Under the conditions of Theorem 2, let H : [0,1] — R be a function
defined by

n " zit 3= (Tig1—Ti) n
H(t):ZJ—-—’———/ f t:c-i—(l—t)Zajmj dx.

iy L = ;) j=1

Then (1) H is convez on [0, 1],

2) (g m) = H(0) = min H(t) < H()

n a? wi'i‘;';.'(mi+1_mt)
< max H(t)=H(1) =) _ ————/ f(z)dx

te[0.1) — a(Tit1—%i) /o,
<> aif(zi), (3-3)
=1
for all ¢ € [0, 1],
(3) H is increasing on [0, 1].

Proof. Let t1,t2 € [0,1] and a,8 > 0 with a + 8 = 1. Since f is convex on C, we
have

H(at: + Bt2)

g a2 zit 2 (Tig1—Ti) n \
5= e at; + Btz + (1 — aty — Bt a;x;)|dr
;a‘(xi-l—l—xi)—/wi f(( Sl shs l ﬁz); i

n
Zz;a-zzﬁl_zz
ar (@it1—7:)
x/ f( [t1x+ 1—t1)2a3x3]+[3[tzx+ 1—t2)ZaJ:cJ])d:z:
J=1

n

a? Tqi- a-i (zl+1—mt)

=1 Jj=1
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T {-i(z..H—:z: )
e e t (I—4 a
+ﬁ2 a.z“_m)/ f(zm+ 2) Z ij)
= aH(tl) + ,BH(tg)
This completes the proof of (1).

2
Now, observe that H(0) = f(z,?___l aixi) and H(1) =31, a(hjm
f;_ﬁ“%‘(z"“”xi) f(z)dz. Using the convexity of f and the inequality (3.2), we have

n a2 :z:i+a%.(-'ti+1—-’l=i) .
®=2 S =9 J. lras (=0 2
n 2 zit+ 2 (Tip1—Ti)
as a3
<ty —mF—— f(z)dz
- ; a(Tit1 — Ti) /zi :
n 9 zi+ ($1+1 —zi) [is
a’
+(1—1) __——-—/ (S esws)ds
; a(Tiv1 — Zi) Ja ; -

— 2 zi+ 2 (Tip1—Ti) n
- .——EL-_ N = P
_tZ a(m,;_H ——mi /i f(T)d.’.C—'—(l t)f(;a]l-])

zit S (Tip1—Ei) \d z": £ @)
z)dr < a7 T,
E a 3z+1 - T;) / SiPBE = (

=1
for all £ € [0,1].
On the other hand, let y; = tz; + (1 — 1) Z" a;zj, 1 <i<n,and yni1 = y1, then
L a2 yit o (Yit1—v:)

Hit) =) ——— fy)dy

— a(yit1 — Wt Jus
Z f(zldiyi) = f(};aimi)’
5= i=

for all ¢ € [0, 1].
This completes the proof of (2).
Finally, let 0 < ¢ < u < 1. Since H is convex on [0,1] and H(¢ (t) > H(0), we have

H(u) - H(t)  H®) - HO) _
y s

u=—t
that is H(t) < H(u).
This completes the proof of (3).

Remark 4. We note that Theorem 1 in [3] is the special case of Theorem 3 when
n=2a =ay=3.
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Theorem 4. Under the conditions of Theorem 2, let K : [0,1] — R be a function
defined by

zit 2 (Tig1— i) .
K(t) "‘Zm ,+1;J~1)/ - {f([l_z”t”]"’*[ljt]q")
{5 e+ [ e -]

Then K is convex, increasing on [0,1] and

s et K(t) < K(1
. — e <K(@)< < :
;MHI_%)/ f(@)dz = K(0) (1) < Za

for all ¢ € [0,1].

Proof. Using Lemma, 2, it is easy to see that K is convex and increasing on [0,1].
Now,

i 2 cit o (Tig1-2i)
KO0 =" (—“—/ f(z)ds
T

a\T; —
o 1+1 1.)

T

2
as
K(l) = E _—t
(1) a(ziy1 — T;)

=1

a:i-i-;“T(:ri+1—z,-) 1 &
/; 5 [f(sz) s f(l'z + a—(.'L'z'+1 = T;))]dﬂ‘

q 1

. [f(am + £ (ot &~ "’0)]

i=1
= 2> aif(e) + 5 3 asf (mi+ (@i —22))
=1 =1 d
<> aif (i)
=1

This completes the proof.

Remark 5. Let a; = 1(i =1,2,...,n) and £p4) = 21 <23 <--- < z. Then, from
Theorem 3 and Theorem 4, we have

= 1 Tit1 | . .
H(t) = ;  ——" /xi flt=+ —= j};:cj)dx,

and
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B = Z—; Zn(z,q_ll — Z;) '/:Hl {f([l ; t]m * [1 ;— t]xz)
+1([7g e+ [F5 o) o

such that H and K are convex increasing on [0, 1] and

f(l ia") — H(0) < H()

n “
=1

n 1 “Tit1l
= zZ:; BBt ) /z oo =80
<K@{)<K(Q)= —1— En: f(zi)
=1
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