ON HUA'S INEQUALITY $\mathbb{F O R}$ COMPLEX NUMBERS

C. E. M. PEARCE AND J. PEČARIĆ

Abstract. A generalization is given of Hua's inequality for complex numbers that involves convex functions. An improvement is derived for Hua's inequality and for two recent extensions of it to the complex domain.

1. Introduction

Suppose δ, α are positive numbers, $x_{i} \in \mathbb{R}(i=1, \ldots, n)$ and $K_{n}=\alpha(n+\alpha)^{-1}$. Hua [4] has shown that

$$
\left(\delta-\sum_{i=1}^{n} x_{i}\right)^{2}+\alpha \sum_{i=1}^{n} x_{i}^{2} \geq K_{n} \delta^{2}
$$

with equality if and only if $x_{i}=h_{n} \delta$, where $h_{n}=(n+\alpha)^{-1}$. This inequality is important in number theory.

Wang [7] has given the following generalization. Let α, δ be as above and $p>1$. Then

$$
\begin{equation*}
\left(\delta-\sum_{i=1}^{n} x_{i}\right)^{p}+\alpha^{p-1} \sum_{i=1}^{n} x_{i}^{p} \geq K_{n}^{p-1} \delta^{p} \tag{1.1}
\end{equation*}
$$

holds for all nonnegative $x_{i} \in \mathbb{R}(i=1, \ldots, n)$ with $\sum_{i=1}^{n} x_{i}<\delta$. The inequality is reversed for $0<p<1$. In either case, equality holds if and only if $x_{i}=h_{n} \delta(i=1, \ldots, n)$.

Moreover, Pearce and Pečarić [6] have proved that if $\sum_{i=1}^{n} x_{i} \leq \delta$ and $x_{i}>0(i=$ $1, \ldots, n$), then (1.1) is also valid for $p<0$. This follows as a special case of a more general result.
Let f be a real-valued, convex function on an interval $F \subseteq \mathbb{R}$ and let $\alpha, \delta, x_{1}, \ldots, x_{n}$ be real numbers such that $\alpha>0$ and $\delta-x_{1}-\cdots-x_{n}, \alpha x_{1}, \ldots, \alpha x_{n} \in F$. Then

$$
\begin{equation*}
f\left(\delta-\sum_{i=1}^{n} x_{i}\right)+\sum_{i=1}^{n} \alpha^{-1} f\left(\alpha x_{i}\right) \geq \frac{\alpha+n}{\alpha} f\left(\frac{\alpha \delta}{\alpha+n}\right) \tag{1.2}
\end{equation*}
$$

Received September 2, 1996, revised May 1, 1997.
1991 Mathematics Subject Classification. 26D15.
Key words and phrases. Hua's inequality, complex numbers, convex functions.

If f is strictly convex, equality applies if $x_{1}=\cdots=x_{n}=\cdots=h_{n} \delta$, where h_{n} is defined as above.

Hua's inequality has been transported to the complex domain by Dragomir [2].
Theorem A. Suppose $\alpha>0$ and $\delta, z_{1}, \ldots, z_{n} \in C$. Then

$$
\begin{equation*}
\left|\delta-\sum_{i=1}^{n} z_{i}\right|^{2}+\alpha \sum_{i=1}^{n}\left|z_{i}\right|^{2} \geq \frac{\alpha|\delta|^{2}}{n+\alpha} \tag{1.3}
\end{equation*}
$$

Equality applies if and only if $z_{i}=\delta /(n+\alpha)(i=1, \ldots, n)$.
Dragomir also supplied an interesting extension.
Theorem B. Suppose $\alpha>0$ and $\delta, z_{i}, w_{i} \in C(i=1, \ldots, n)$. Then

$$
\left|\delta-\sum_{i=1}^{n} z_{i} w_{i}\right|^{2}+\alpha \sum_{i=1}^{n}\left|z_{i}\right|^{2} \geq \frac{\alpha|\delta|^{2}}{\alpha+\sum_{i=1}^{n}\left|w_{i}\right|^{2}}
$$

Equality applies if and only if

$$
z_{i}=\frac{\delta \bar{w}_{i}}{\alpha+\sum_{i=1}^{n}\left|w_{i}\right|^{2}}
$$

for all $i \in\{1, \ldots, n\}$.
Recently Yang and Han [8] melded Theorem A with Wang's result.
Theorem C. Suppose $\alpha>0$ with $\delta, z_{1}, \ldots, z_{n} \in C$ and $p>1$. Then

$$
\left|\delta-\sum_{i=1}^{n} z_{i}\right|^{p}+\alpha^{p-1} \sum_{i=1}^{n}\left|z_{i}\right|^{p} \geq\left(\frac{\alpha}{n+\alpha}\right)^{p-1}|\delta|^{p}
$$

with equality if and only if $z_{i}=\delta /(n+\alpha)(i=1, \ldots, n)$.
In this paper we present a general result which subsumes Theorems A, B and C as special cases. As particular instances we derive improvements of Theorems A and B.

2. Results

Theorem 2.1. Suppose $\alpha>0$ and $\delta, z_{i}, w_{i} \in C$ with $w_{i} \neq 0(i=1, \ldots, n)$. If f is a convex nondecreasing function on $[0, \infty)$, then

$$
\begin{equation*}
f\left(\left|\delta-\sum_{i=1}^{n} z_{i} w_{i}\right|\right)+\alpha^{-1} \sum_{i=1}^{n}\left|w_{i}\right| f\left(\alpha\left|z_{i}\right|\right) \geq \frac{\alpha+\sum_{i=1}^{n}\left|w_{i}\right|}{\alpha} f\left(\frac{\alpha|\delta|}{\alpha+\sum_{i=1}^{n}\left|w_{i}\right|}\right) \tag{2.1}
\end{equation*}
$$

If f is strictly convex, equality holds if and only if

$$
\begin{equation*}
z_{i}=\frac{\delta \bar{w}_{i}}{\left(\alpha+\sum_{i=1}^{n}\left|w_{i}\right|\right)\left|w_{i}\right|} \quad(i=1, \ldots, n) . \tag{2.2}
\end{equation*}
$$

Proof. By the triangle inequality, we have

$$
\begin{equation*}
\left|\delta-\sum_{i=1}^{n} z_{i} w_{i}\right| \geq\left||\delta|-\left|\sum_{i=1}^{n} w_{i} z_{i}\right|\right| \tag{2.3}
\end{equation*}
$$

Hence since f is nondecreasing on $[0, \infty)$,

$$
\begin{equation*}
f\left(\left|\delta-\sum_{i=1}^{n} z_{i} w_{i}\right|\right) \geq f\left(|\delta|-\left|\sum_{i=1}^{n} w_{i} z_{i}\right| \mid\right) \tag{2.4}
\end{equation*}
$$

Also Jensen's inequality for convex functions gives

$$
\begin{align*}
\alpha^{-1} \sum_{i=1}^{n}\left|w_{i}\right| f\left(\alpha\left|z_{i}\right|\right) & =\frac{\sum_{i=1}^{n}\left|w_{i}\right|}{\alpha} \cdot \frac{\sum_{i=1}^{n}\left|w_{i}\right| f\left(\alpha\left|z_{i}\right|\right)}{\sum_{i=1}^{n}\left|w_{i}\right|} \\
& \geq \frac{\sum_{i=1}^{n}\left|w_{i}\right|}{\alpha} f\left(\frac{\alpha}{\sum_{i=1}^{n}\left|w_{i}\right|} \sum_{i=1}^{n}\left|w_{i}\right|\left|z_{i}\right|\right) \\
& \geq \frac{\sum_{i=1}^{n}\left|w_{i}\right|}{\alpha} f\left(\frac{\alpha}{\sum_{i=1}^{n}\left|w_{i}\right|}\left|\sum_{i=1}^{n} w_{i} z_{i}\right|\right) \tag{2.5}
\end{align*}
$$

The last inequality follows from the triangle inequality, since f is nondecreasing on $[0, \infty)$.
Note that $f(|x|)$ is also a convex function.
So by (2.4) and (2.5) we have

$$
\begin{align*}
f(\mid \delta & \left.-\sum_{i=1}^{n} z_{i} w_{i} \mid\right)+\alpha^{-1} \sum_{i=1}^{n}\left|w_{i}\right| f\left(\alpha\left|z_{i}\right|\right) \\
& \geq f\left(| | \delta\left|-\left|\sum_{i=1}^{n} z_{i} w_{i}\right|\right|\right)+\frac{\sum_{i=1}^{n}\left|w_{i}\right|}{\alpha} f\left(\frac{\alpha}{\sum_{i=1}^{n}\left|w_{i}\right|}\left|\sum_{i=1}^{n} w_{i} z_{i}\right|\right) \\
& \geq \frac{\alpha+\sum_{i=1}^{n}\left|w_{i}\right|}{\alpha} f\left(\left|\frac{\alpha|\delta|}{\alpha+\sum_{i=1}^{n}\left|w_{i}\right|}\right|\right) \\
& =\frac{\alpha+\sum_{i=1}^{n}\left|w_{i}\right|}{\alpha} f\left(\frac{\alpha|\delta|}{\alpha+\sum_{i=1}^{n}\left|w_{i}\right|}\right) \tag{2.6}
\end{align*}
$$

where we have used (1.2) for $n=1$ and $x_{1}=\left|\sum_{i=1}^{n} z_{i} w_{i}\right|$ with the replacements $\delta \rightarrow|\delta|$, $\alpha \rightarrow \alpha / \sum_{i=1}^{n}\left|w_{i}\right|$ and $f(x) \rightarrow f(|x|)$.

We now address the condition for equality in the event that f is strictly conves. Since it is nondecreasing it must be strictly increasing on $[0, \infty)$. The first inequality in (2.5) holds with equality if and only if

$$
\begin{equation*}
\left|z_{1}\right|=\cdots=\left|z_{n}\right| \tag{2.7}
\end{equation*}
$$

while in the second inequality in (2.6), equality applies if

$$
\begin{equation*}
\left|\sum_{i=1}^{n} z_{i} w_{i}\right|=\frac{|\delta| \sum_{i=1}^{n}\left|w_{i}\right|}{\alpha+\sum_{i=1}^{n}\left|w_{i}\right|} \tag{2.8}
\end{equation*}
$$

The second inequality in (2.5) becomes an equality if

$$
\begin{equation*}
\left|\sum_{i=1}^{n} w_{i} z_{i}\right|=\sum_{i=1}^{n}\left|w_{i}\right|\left|z_{i}\right| \tag{2.9}
\end{equation*}
$$

that is, by (2.7),

$$
\begin{equation*}
\left|\sum_{i=1}^{n} w_{i} z_{i}\right|=\left|z_{1}\right| \sum_{i=1}^{n}\left|w_{i}\right| . \tag{2.10}
\end{equation*}
$$

Conditions (2.8) and (2.10) yield

$$
\begin{equation*}
\left|z_{1}\right|=\cdots=\left|z_{n}\right|=\frac{|\delta|}{\alpha+\sum_{i=1}^{n}\left|w_{i}\right|} \tag{2.11}
\end{equation*}
$$

If $\delta=0$, then $z_{i}=0$ for each i, and so (2.2) must hold. So suppose $\delta \neq 0$. Now (2.9) holds with equality if and only if

$$
\begin{equation*}
z_{i} w_{i}=\lambda_{i} r \quad(i=1, \ldots, n) \tag{2.12}
\end{equation*}
$$

for some complex number r with

$$
\lambda_{i} \geq 0 \quad(i=1, \ldots, n)
$$

In fact (2.11) and the assumption that $w_{i} \neq 0$ requires that each λ_{i} be strictly positive. Equality obtains in (2.3) and so also (2.4) and the first part of (2.6) if and only if $\sum_{i=1}^{n} z_{i} w_{i}$ is a nonnegative multiple of δ, so that without loss of generality we may take $r=\delta$ in (2.12) to give

$$
z_{i} w_{i}=\lambda_{i} \delta \quad(i=1, \ldots, n)
$$

By (2.11)

$$
\lambda_{i}\left|\frac{\delta}{w_{i}}\right|=\frac{|\delta|}{\alpha+\sum_{i=1}^{n}\left|w_{i}\right|}
$$

and so

$$
\lambda_{i}=\frac{\left|w_{i}\right|}{\alpha+\sum_{i=1}^{n}\left|w_{i}\right|} \quad(i=1, \ldots, n)
$$

Thus it is necessary that

$$
w_{i} z_{i}=\frac{\left|w_{i}\right| \delta}{\alpha+\sum_{i=1}^{n}\left|w_{i}\right|} \quad(i=1, \ldots, n)
$$

that is, that (2.2) holds.

It is trivial that this condition is also sufficient.
Remark. For $f(x)=x^{2}$ and w_{i} and z_{i} replaced by w_{i}^{2} and z_{i} / w_{i} respectively, we get Theorem B from Theorem 2.1.

Corollary 2.1. Suppose $\alpha>0$ and $\delta, z_{i}, w_{i} \in C(i=1, \ldots, n)$. If $p>1$ and $1 / p+1 / q=1$, then

$$
\begin{equation*}
\left|\delta-\sum_{i=1}^{n} z_{i} w_{i}\right|^{p}+\alpha^{p-1} \sum_{i=1}^{n}\left|z_{i}\right|^{p} \geq\left(\frac{\alpha}{\alpha+\sum_{i=1}^{n}\left|w_{i}\right|^{q}}\right)^{p-1}|\delta|^{p} \tag{2.13}
\end{equation*}
$$

Equality obtains if and only if $z_{i}=\frac{\delta \bar{w}_{i}\left|w_{i}\right|^{q-2}}{\alpha+\sum_{i=1}^{n}\left|w_{i}\right|^{q}}$.
Proof. Set $f(x)=x^{p}$ in Theorem 2.1 and replace w_{i} by w_{i}^{q} and z_{i} by $z_{i} w_{i}^{-q / p}$. Then (2.1) becomes (2.13) and the condition for equality becomes

$$
z_{i} w_{i}^{-q / p}=\frac{\delta \bar{w}_{i}^{q}}{\left|w_{i}\right|^{q}\left(\alpha+\sum_{k=1}^{n}\left|w_{k}\right|^{q}\right)},
$$

that is,

$$
\begin{aligned}
z_{i} & =\frac{\delta \bar{w}_{i}^{q} w_{i}^{q / p}}{\left|w_{i}\right|^{q}\left(\alpha+\sum_{k=1}^{n}\left|w_{k}\right|^{q}\right)} \\
& =\frac{\delta\left|w_{i}\right|^{2 q} w_{i}^{-1}}{\left|w_{i}\right|^{q}\left(\alpha+\sum_{k=1}^{n}\left|w_{k}\right|^{q}\right)} \\
& =\frac{\delta\left|w_{i}\right|^{q} w_{i}^{-1}}{\alpha+\sum_{k=1}^{n}\left|w_{k}\right|^{q}} .
\end{aligned}
$$

Remark. For $w_{i}=1(i=1, \ldots, n)$, Corollary 2.1 gives Theorem C.
Theorem B possesses an improvement, Theorem 2.2 below. To establish this, we shall make use of an improvement of Cauchy's inequality is due to de Bruijn [1] (see also [5, pp. 89-90]).

Proposition 2.1. If a_{1}, \ldots, a_{n} are real and z_{1}, \ldots, z_{n} complex numbers, then

$$
\left|\sum_{k=1}^{n} a_{k} z_{k}\right|^{2} \leq \frac{1}{2}\left(\sum_{k=1}^{n}\left|z_{k}\right|^{2}+\left|\sum_{k=1}^{n} z_{k}^{2}\right|\right)\left(\sum_{k=1}^{n} a_{k}^{2}\right)
$$

Equality holds if and only if $a_{k}=\operatorname{Re}\left(\lambda z_{k}\right)$ for $k=1, \ldots, n$, where λ is a complex number and $\sum_{k=1}^{n} \lambda^{2} z_{k}^{2}$ is real and nonnegative.

Theorem 2.2. Suppose $\alpha>0$ and $a_{i} \in \mathbb{R}$ with $\delta, z_{i} \in C(i=1, \ldots, n)$. Then

$$
\left|\delta-\sum_{i=1}^{n} a_{i} z_{i}\right|^{2}+\frac{\alpha}{2}\left(\sum_{i=1}^{n}\left|z_{i}\right|^{2}+\left|\sum_{i=1}^{n} z_{i}^{2}\right|\right) \geq \frac{\alpha|\delta|^{2}}{\alpha+\sum_{i=1}^{n} a_{i}^{2}}
$$

Equality holds if and only if $a_{k}=\operatorname{Re}\left(\lambda z_{k}\right)$ for $k=1, \ldots, n$, where λ is a complex number, $\sum_{k=1}^{n} \lambda^{2} z_{k}^{2}$ is real and nonnegative and

$$
\sum_{i=1}^{n} a_{i} z_{i}=\frac{\sum_{i=1}^{n} a_{i}^{2} \delta}{\alpha+\sum_{i=1}^{n} a_{i 2}}
$$

Proof. If $\sum_{i=1}^{n} a_{i}^{2}=0$, then $a_{i}=0$ for all $i \in\{1, \ldots, n\}$ and the inequality is obvious, so suppose that $\sum_{i=1}^{n} a_{i}^{2}>0$. By Proposition 2.1 we have

$$
\begin{aligned}
\left|\delta-\sum_{k=1}^{n} a_{k} z_{k}\right|^{2} & +\frac{\alpha}{2}\left(\sum_{k=1}^{n}\left|z_{k}\right|^{2}+\left|\sum_{i=1}^{n} z_{i}^{2}\right|\right) \\
& \geq\left|\delta-\sum_{k=1}^{n} a_{k} z_{k}\right|^{2}+\frac{\alpha}{\sum_{k=1}^{n} a_{k}^{2}}\left|\sum_{k=1}^{n} a_{k} z_{k}\right|^{2} \\
& \geq \frac{\alpha|\delta|^{2}}{\alpha+\sum_{k=1}^{n} a_{k}^{2}} .
\end{aligned}
$$

In the last step we have used (1.3) for $n=1$ and with z_{1}, α replaced respectively by $\sum_{k=1}^{n} \alpha_{n} z_{n}$ and $\alpha / \sum_{k=1}^{n} \alpha_{k}^{2}$. The condition for equality is inherited from the corresponding conditions in Proposition 2.1 and Theorem A.

Remark. For $a_{1}=\cdots=a_{n}=1$, we have

$$
\left|\delta-\sum_{k=1}^{n} z_{k}\right|^{2}+\frac{\alpha}{2}\left(\sum_{k=1}^{n}\left|z_{k}\right|^{2}+\left|\sum_{k=1}^{n} z_{k}^{2}\right|\right) \geq \frac{\alpha|\delta|^{2}}{\alpha+n}
$$

which is an improvement of (1.3).
Remark. Drnovšek [3] has given an operator generalization of the Lo-Keng Hua inequality.

References

[1] N. G. de Bruijn, "Problem R," Wisk. Opgaven, 21 (1960), 12-14.
[2] S. S. Dragomir, "Hua's inequality for complex numbers," Tamkang J. Math., 26 (1995), 257-260.
[3] R. Drnovšek, "An operator generalization of the Lo-Keng Hua inequality," J. Math. Anal. Appl., 196 (1995), 1135-1138.
[4] L.-K. Hua, "Additive theory of prime numbers," Translat. of Math. Monographs, 13, Amer. Math. Soc., Providence, RI, 1965.
[5] D. S. Mitrinović, J. E. Pečarić and A. M. Fink, "Classical and new inequalities in analysis," Kluwer Acad. Publ., Dordrecht-Boston-London, 1993.
[6] C. E. M. Pearce and J. E. Pečarić, "A remark on the Lo-Keng Hua inequality," J. Math. Anal. Appl., 188 (1994), 700-702.
[7] C.-L. Wang, "Lo-Keng Hua inequality and dynamic programming," J. Math. Anal. Appl., 166 (1992), 345-350:
[8] G.-S. Yang and B.-K. Han, "A note on Hua's inequality for complex numbers," Tamkang J. Math., 27 (1996), 99-102.

Department of Applied Mathematics, Adelaide University, Adelaide SA 5005, Australia
Faculty of Textile Technology, University of Zagreb, Pierottijeva 6, 11000 Zagreb, Croatia

