TAMKANG JOURNAL OF MATHEMATICS

Volume 28, Number 3, Autumn 1997

SOME CLASSES OF ANALYTIC FUNCTIONS RELATED WITH BAZILEVIČ FUNCTIONS

KHALIDA INAYAT NOOR

Abstract. A certain class $M_k(\alpha, \beta)$ of analytic functions is introduced and it is shown that $M_2(\alpha, \beta)$ is contained in the class of Bazilevič functions. Some other properties of $M_k(\alpha, \beta)$ are also derived.

1. Introduction

Let A denote the class of functions $f : f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ which are analytic in the unit disc $E = \{z : |z| < 1\}$. By S, K, S* and C, we denote the subclasses of A which are respectively univalent, close-to-convex, starlike (with respect to the origin) and convex in E.

Let P_k be the class of analytic function p defined in E and with representation

$$p(z) = \frac{1}{2} \int_{-\pi}^{\pi} \frac{1 + ze^{-it}}{1 - ze^{-it}} d\mu(t), \qquad (1.1)$$

where $\mu(t)$ is a function with bounded variation on $[-\pi,\pi]$ and it satisfies the conditions

$$\int_{-\pi}^{\pi} d\mu(t) = 2, \qquad \int_{-\pi}^{\pi} |d\mu(t)| \le k.$$
(1.2)

We note that $k \ge 2$ and $P_2 = P$ is the class of analytic functions with positive real part in E with p(0) = 1. The class P_k was introduced in [3]. From the integral representation (1.1) it is immediately clear that $p \in P_k$ if and only if there are analytic function $p_1, p_2 \in P$ such that

$$p(z) = \left(\frac{k}{4} + \frac{1}{2}\right)p_1(z) - \left(\frac{k}{4} - \frac{1}{2}\right)p_2(z).$$
(1.3)

We defined the Hadamard product or Convolution of two analytic functions $f(z) = \sum_{n=0}^{\infty} a_n z^{n+1}$ and $g(z) = \sum_{n=0}^{\infty} b_n z^{n+1}$ as

$$(f * g)(z) = \sum_{n=0}^{\infty} a_n b_n z^{n+1}, \quad z \in E.$$

Received September 2, 1996.

¹⁹⁹¹ Mathematics Subject Classification. Primary 30C45.

Key words and phrases. Bazilevič functions, bounded boundary rotation, Hadamard product, radius of convexity.

KHALIDA INAYAT NOOR

We now define the following.

Definition 1.1. A function $f \in A$ is said to be belong to the class $M_k(\alpha, \beta)$ if and only if it satisfies the property

$$J(\alpha,\beta;f(z),g(z)) = \left\{ \frac{zf'(z)}{f^{1-\beta}(z)g^{\beta}(z)} + \alpha \left(1 + \frac{zf''(z)}{f'(z)}\right) - \alpha (1-\beta)\frac{zf'(z)}{f(z)} - \alpha \beta \frac{zg'(z)}{g(z)} \right\} \in P_k,$$

for some real $\alpha, \beta (\beta \ge 0), g \in A$ and $z \in E$.

Special Cases

- (i) For k = 2, $\alpha = 0$ and $g \in S^*$, we obtain the sell-known class $B(\beta) \subset S$ of Bazilevič functions of type β .
- (ii) When β = 0, the class M_k(α, 0) consists of functions with bounded Mocanu variation, see [1] and M₂(α, 0) is the class of α-starlike functions which are known to be starlike univalent in E.
- (iii) $M_k(1,0) = V_k$ is the class of functions with bounded boundary rotation and $M_2(1,0) = C$.
- (iv) $M_k(0,0)$ is the class R_k of functions with bounded radius rotation and $M_2(0,0) = S^*$.
- (v) For $\alpha = 0$, $\beta = 1$ and $g \in R_k$, we have $M_2(0, 1) = T_k$ which has been introduced and studied in [2]. Also for $g \in S^*$, we note that $M_2(0, 1) = K$.

2. Preliminary Results

Lemma 2.1. Let p be analytic in E and p(0) = 1. Then, for $\alpha \ge 0$, $z \in E$, $(p + \alpha \frac{zp'}{p}) \in P_k$ implies $p \in P_k$ in E.

The proof follows directly from the result, proved in [1], that functions with bounded Mocanu variation are in R_k .

From the Herglotz representation (1.1) for k = 2, we have the following result.

Lemma 2.2. If p is analytic in E, p(0) = 1 and $Rep(z) > \frac{1}{2}$, $z \in E$, then for any function F, analytic in E, the function p * F takes values in the convex hull of the image of E under F.

3. Main Results

Theorem 3.1. For $\alpha \geq 0$, $M_k(\alpha, \beta) \subset M_k(0, \beta)$.

Proof. Let $f \in M_k(\alpha, \beta)$. We define

$$\frac{zf'(z)}{f^{1-\beta}(z)g^{\beta}(z)} = H(z).$$
(3.1)

202

We see that H(0) = 1 and H is analytic in E. Logarithmic differentiation of (3.1) gives us

$$\alpha\Big(1+\frac{zf''(z)}{f'(z)}\Big)-\alpha(1-\beta)\frac{zf'(z)}{f(z)}-\alpha\beta\frac{zg'(z)}{g(z)}=\alpha z\frac{H'(z)}{H(z)},$$

and so

$$J(\alpha,\beta;f,g) = H(z) + \alpha \frac{zH'(z)}{H(z)}$$

Since $f \in M_k(\alpha, \beta)$, it follows that $(H + \alpha \frac{zH'}{H}) \in P_k$ and using Lemma 2.1, we conclude that $H \in P_k$. Consequently $f \in M_k(0, \beta)$.

Corollary 3.1. Let $g \in S^*$ and k = 2. Then, for $\alpha \ge 0$,

$$M_2(\alpha,\beta) \subset S$$

since in this case $\frac{zf'(z)}{f^{1-\beta}(z)g^{\beta}(z)} \in P$, $g \in S^*$ implies f is Bazilevič and hence univalent.

Corollary 3.2. For $\alpha \geq 0$, $M_k(\alpha, 0) \subset M_k(0, 0)$. That is a function with bounded Mocanu variation is of bounded radius rotation. With k = 2 we also deduce that α -starlike functions are starlike.

Corollary 3.3. Let $g \in S^*$ and k = 2, $\beta = 1$. Then $M_2(\alpha, 1) \subset M_2(0, 1) = K \subset S$. That is $f \in M_2(\alpha, 1)$ is a close-to-convex univalent function.

In the opposite direction we prove the following.

Theorem 3.2. Let $f \in M_k(0,\beta)$. Then $f \in M_k(\alpha,\beta)$ for $|z| < r_{\alpha}$ where

$$r_{\alpha} = \frac{1}{2\alpha + \sqrt{4\alpha^2 - 2\alpha + 1}}.$$
(3.2)

Proof. With $\frac{zf'(z)}{f^{1-\beta}(z)g^{\beta}(z)} = H(z) \in P_k$, we have

$$J(\alpha,\beta;f,g) = H(z) + \alpha \frac{zH'(z)}{H(z)}.$$
(3.3)

Since $H \in P_k$, we use (1.3) to write

$$H(z) = \left(\frac{k}{4} + \frac{1}{2}\right)h_1(z) - \left(\frac{k}{4} - \frac{1}{2}\right)h_2(z), \quad h_1, h_2 \in P.$$

Let $\phi_{\alpha}(z) = (1-\alpha)\frac{z}{1-z} + \alpha\frac{z}{(1-z)^2} = z + \sum_{n=2}^{\infty} [1+(n-1)\alpha z^n].$

 ϕ_{α} is convex for $|z| < r_{\alpha}$ and this is sharp and so, for $|z| < r_{\alpha}$, $\operatorname{Re} \frac{\phi_{\alpha}(z)}{z} > \frac{1}{2}$. Thus

$$\left(H*\frac{\phi_{\alpha}}{z}\right) = H + \alpha \frac{zH'}{H} = \left(\frac{k}{4} + \frac{1}{2}\right)\left(h_1*\frac{\phi_{\alpha}}{z}\right) - \left(\frac{k}{4} - \frac{1}{2}\right)\left(h_2*\frac{\phi_{\alpha}}{z}\right).$$

KHALIDA INAYAT NOOR

Using Lemma 2.2, we see that $(h_i * \frac{\phi_\alpha}{z}) \in P$ for $|z| < r_\alpha$, i = 1, 2 and hence $(H + \alpha \frac{zH'}{H}) \in P$ for $|z| < r_\alpha$. Consequently, from (3.3), it follows that $f \in M_k(\alpha, \beta)$ for $|z| < r_\alpha$ where r_α is given by (3.2).

Corollary 3.4. Let $f \in M_k(0,0)$. Then $f \in M_k(\alpha,0)$ for $|z| < r_\alpha$, where r_α is given by (3.2). That is $f \in R_k$ implies f is of bounded Mocanu variation for $|z| < r_\alpha$.

Corollary 3.5. In Corollary 3.4 we take $\alpha = 1$. Then it follows that $f \in R_k$ implies $f \in V_k$ for $|z| < \frac{1}{2+\sqrt{3}} = 2 - \sqrt{3}$ and k = 2 gives us the radius of convexity for starlike functions.

References

- H. B. Coonce and M. R. Ziegler, "Functions with bounded Mocanu variation," Rev. Roum. Math. Pures et Appl., 19 (1974), 1093-1104.
- [2] K. I. Noor, "On a generalization of close-to-convexity," Int. J. Math. and Math. Sci., 6 (1983), 327-334.
- [3] B. Pinchuk, "Functions with bounded boundary rotation," I. J. Math., 10 (1971), 7-16.

Mathematics Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.

E-mail: F40M040@KSU.EDU.SA