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WAVE POLYNORMIALS

A. FRYANT AND M. K. VEMURI

Abstract. A generating function for homogeneous polynomial solutions of the wave equation
in n-dimensions is obtained. Application is made to developing an integral operator for analytic
solutions of the wave equation.

1. Introduction

A homogeneous polynomial of degree k satisfying the wave equation

Pu Py Pu_ou_ .
o Dx dz2 @12 '

is called a homogeneous wave polynomial of degree k in R”. We present here a generating
function for the homogeneous wave polynomials in R®, n = 2,3, . ... Our result is similar
to that given in [2] for the spherical harmonics.

Theorem 1. The number of linearly independent homogeneous wave polynomials of
degree k in R™ is
dpy1 = (n+2k - 1)——————k!(n T

Proof. Let P* +1 denote the vector space of homogeneous polynomials of degree k in
R™+! and note that
(n+ k)!

nlk!

Let WP +1 denote the subspace of those polynomials which satisfy the wave equation, and
let dy, ;= dim(Wk,,). Introduce the following inner product on P* ry !

dz'm(P,’fH) —

(5,9) = 1(2)7. f.g€Ph.

Az
Let M : Py — Pk | be given by
(Mf)(xl""axn)t) = (l’% ++.’L‘i —t2)f(.7,'1,...,.’1,'”,t).
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It is easily seen that M is the adjoint of []: P* G P,’f;f with respect to the inner
product (-,-), where [1is the wave operator. It follows that

PE | =ker(U)) ® Im(M) = Wy

Since M is injective, dim(M Prf;f) =2 dim(P,’f;f )- Therefore,

dim(W), ) = dim(Pf, ;) - dim(Pff;]Z)
_(n+E)! (n+k-2)

nlk! nl(k — 2)!

= (n+2k - 1)———(2!&'“:1?!) 3

which completes the proof.
Note that an elementary argument by induction on k yields

k
dha=Y &, n=133...

=0

We now show how the homogeneous wave polynomials of degree less than or equal
to k in R™*~! can be used to generate the homogeneous wave polynomials of degree k in
R™. This inductive construction is obtained using a simple generating function:

Theorem 2. If
Qj(xl,mQa---yxn—lat)a .7: 1)21--')df1+1

are linearly independent homogeneous wave polynomials of degree less than or equal to k
in R, and 52 + S2 4. + 52 =1, then

dp 4
(.’1?131 + T8y + -+ + ZTnsn +t)k = Z V]CJ("EI,:EZ’- s e ;xnvt)Qj(slssZr e ,Sn_]_,isn)
=1

where V,f(xl,xz,...,mn,t), F = 1,2,...,dﬁ+1, are linearly independent homogeneous
wave polynomials of degree k in R™.

Procf.

!
(z181 + Tasa + - + T8, +1)F = chﬁav gPeppe, (2)
v=1

v \ A%
(63 (e (¢4 . .
Here ay = (of,0y,...,a)), and 2°v = z{1 232 ... 3% and similarly for t%v and s®v.

Since any polynomial of degree j, when restricted to the unit sphere, is a linear combina-
“tion of spherical harmonics of degree not exceeding j [4], we can express each monomial



WAVE POLYNORMIALS 207

sPv as a linear combination of the harmonic polynomials Q;(s1,...,5n-1,%85,). Thus a
rearrangement yields

n..l

(Z151 + T2s2 + -+ + Tpsy +1)F E Vel (g, oy cio5 B B K00 80 & 55080 788
i=1

The V; are clearly homogeneous polynomials of degree k. And since s + 83 +--- +
o o=k tho linear independence of the Q:lsi, - ..,8n_1,18,) ensures that each of the

polynonnals V! (z1,%2,...,2Zn,t) is a solution of the wave equation (1).
k

k
Now we will show that {V’ j ““ are linearly independent. Since {QJ} 21 are Imearly

independent, there exist linearly independent homogeneous wave polynomials {R;},”] It
such that

Qj(sl, caey Sn._l,’isn) .R[(Sl, s e sn_l,isn) ds = 5ﬂ.

2

Arguing as before, we have

dn+1
(z1w1 + T2uz + - -+ + Tpu, + t)F Z WE(z1, ..oy Tn, ) Ri(Ua, - - -y Une1, TUn).

Thus

(151 + T2s2 + - - + TnSn + )F, (T1U1 + T2uz + - - + Tpu, + £)%)
dﬁ+1 n41

— Z Z V’Wk)Q] (Bugss 5 Br1 88n) B (15505 5 Ba—15 100)

g=1 =1

On the other hand, in [5] it was shown that
XE(FE) = KX f)Y,
where X is any first order differential operator for which X2f = 0. Thus
((x151+Z282+ - -+ Tpsn+1)k, (T1uy +x2us+- - A Zptn+1)*) = El(syu 4+ -+snun+1)k.

Further, appealing to the fact that any polynomial of degree 7, when restricted to
the unit sphere, is a linear combination of spherical harmonics of degree not exceeding
j, and using the Funk-Hecke theorem [1, p. 247, it follows that

k
dn 41

(s1u1 + -+ + Sy + 1)F = Z AjQ(81,. vy 8n—1,880)Ri(Ur,. .., Un_1,%U5)

where the A; are non-zero constants.
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Thus we have

k k
d71.+1 dn+1

Z Z (ij, Wlf;)Qj(Sl: sy 8n—1, 7:571,)-[?'!('“'1; sy Un_, iun)

=1 =1

&
dn+1

—F Z Aphdi (9%, « + 5 Sn—1,%8n)Ry(uy,. .. s Ui Ty

n=1

from which it follows that V2, Wi) = djik!A;. Thus, the homogeneous wave polynomials

{V,f };iz_}” are linearly independent, and this completes the proof.

The generating function given in Theorem 2 can be used to quickly and easily con-
struct all homogeneous wave polynomials up to any given degree in any number of di-
mensions. The computation is entirely algebraic, and proceeds inductively. In the multi-
nomial expansion (2), one merely expressess the monomials s%v as linear combinations
of the wave polynomial ®;j- On regrouping, the wave polynomials ij in the next higher
dimension appear as coefficients of the wave polynomials @; in the lower dimension.

The result of Theorem 2 can also be used to develop an integral operator for analytic
solutions of the wave equation (1). First note that the wave polynomials Q;(z1,...,z,_1,
t) used in the generating function (2) can be chosen so that Qji(s1,..-,8n-1,18,) are
ortho-normal on the unit sphere Din-1:88+ 53+ 452 =1. Assume this has been
done, and suppose

[e’s) d:+1 )
U(.’Kl, e .,lEn,t) == Z Z a/ljl/;f(ml: 5 -)xﬂnt)

h=0 j=1

is a solution of the wave equation, where the series of wave polynomials converges uni-
formly in a neighborhood of the origin. Appealing to the result of Theorem 2, we then
have

o) d;’:+1
ue ) =3 ay [ (st Qs
h=0 j=1 Zn—x

1

> 0k Qi(5) (@ - s+ )*ds

B /z i :

= flz-s+t,s)ds.
/Z s g

n-—1

d*

We call f the associate of the wave fucntion u, and write u = Dy (f). The linear operator
Dy, is similar to the integral operator 7Tr obtained for harmonic functions in (3], and was
first found by Whittaker [6] in the special case n = 3.
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