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WAVE POLYNORMIAI,S

A. FRYANT AND M. K. VEMURI

Abstract. A generating function for homogeneous polynomial solutions of the wave equation
in n-dimensions is obtained. Application is made to developing an integral operator for analytic
solutions of the wave equation.

1. 『ntroduction

A homogeneous polynomial of degree k satisfying the wave equation

8伍 护u 护U 82u
阿 十祠 十 十声三茄- = 0

is called a homogeneous wave polynomial of degree k in町 We present here a generating
function for the homogeneous wave polynomials in 町 ，n = 2, 3, .... Our result is similar
to that given in [2] for the spherical harmonics.

(l)

Theorem 1. The number of linearly independent homogeneous wave polynomials of
degree k£n 蔚 玲

d~+1 = (n + 2k - 1) (n + k - 2)!
1-!(n - l)! ·

Proof. Let P~+1 denote the vector space of homogeneous polynomials of degree kin
艮n+i, and note that

dirn(Pk (n + k)!
n+l) = n!k! ·

Let W/;+1 denote the subspace of those polynomials which satisfy the wave equation, and
let d~+I = dirn(W;;十1). Introduce the following inner product on 崆五

(J,g) = 1( f)
沅忭 f,g EI'~十-1·

Let M: P訌t~~辶 be given by

(M J)(x1, ... , Xn, t) =囯t···+吐－汩 (x1, ... ,Xn, t)
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It is e函ly seen that M is the adjoint of 口 ：P~+I -----t P~+『with respect to the inner
product (·, ·), where 口 is the wave operator. It follows that

P1~+l = kcr(口）©Im(M) = W~+1 喦MPr~+f

Since M is injective, dim(MP~式）= dim(P1~式）. Therefore,

dirn(W~+1) = dim(P~+1) - dirn(P1~計）
(n + k)! (n + k - 2)!

＝ n!k! - n!(k — 2)!

= (n + 2k - 1) (n + k - 2)!
,-!(n - 1)!'

which completes the proof.
Note that an elementary argument by induction on k yields

k

d辶 ＝芝吡 n = 1, 2, 3, ....
j=O

We now show how the homogeneous wave polynomials of degree less than or equal
to kin 民n-l can be used to generate the homogeneous wave polynomials of degree k in
蔚. Th..1s mductive construction is obtained using a simple generating function:

Theorem 2. If

Qj(X1,X2, ... ,X正 1't)'j = 1, 2'...'d~+1

are linearly independent homogeneous wave polynomials of degree less than or equal to k
m 艮九一1, and sf+ S§+· · ·+ s; = l, then

dk
n+l

(x1s1 + X2S2 +· · ·+ XnSn + t汁＝芷 府 (x1,互··. ,Xn, t)Qj 伍 ，S2, ... ,Sn-1,isn)
j=l

where 府 (x1, X2, · ·., Xn, t), j = l, 2, ... , d~+1, are linearly independent homogeneous
wave polynomials of degree k in町

Proof.
l

(X1S1 + XzSz +· · ·+ XnSn + t/ = L CvXO!v s0vtf3v.
v=l

(2)

V V

Here av = (a{, 蚜 ，．．．，必 ），and x°'v = x°'i a2 記1·X2 ... Xnn , and Similarly for tf3v and S°'v.
Since any polynomial of degree j, when restricted to the unit sphere, ·r·1s a mear combma-
tion of spherical harmonics of degree not exceeding j [4J, we can express each monomial
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s/Jv as a linear combination of the harmonic polynomials Qj (s1, ... , sn-1, is訌 Thus a
rearrangement yields

dkn+l

(X1S1 +叨S2 十 . . . +xn飭 十 忙 = ~ 囿 (x1,互. . . ,Xn, t)Qj (s1, 82, ... , Sn-I, isn)-
j=l

The Vj arc clearly homogeneous polynomials of degree k. And since s + s2 21 2 十 ．．．十

s;i = 1, the linear independence of the Qj (s1, ... , s正 1, isn) ensures that each of the
polynomials Vf (x1, x2, ... , Xn, t) is a solution of the wave equation (1).

Now we will show that {囿}:~t1 are linearly independent. Since {Qi};白1 are linearly

independent, there exist linearly independent homogeneous wave polynomials {Rz}合
such that J Qj(s1, ... ,sn-1,isn)Rz(S1,···,s正 1, isn) ds =妞

Ln-1
Arguing as before, we have

i1:.+1
(X1 U1 + XzUz 十 . . . 十 X諶n + t)k = I:四(x1, ... , Xn, t)Rt (U1, ... , Un-l, iu吐

l=l

Thus

((X1S1 + X2S2 +· · · 十 XnSn + t)k, (x1 U1 + X2'll,2 十 . . . 十 X諶n + t)勺
d~+l d~+l

= L L (V/Wl)Qj(S1, ·.. , S正 1 , i Sn) R1 (U1 , ... , Un-1 , i四）
j=l l=I

On the other hand, in [5] it was shown that

X勺尸）= k!(X!)k,

where X is any first order differential operator for which X勺= 0. Thus

((x1S1 +x2s2+· · ·+xnsn+t)k, (x1u1 +x2'lt2+· · ·+xnun+tt) = k!(s1U1 +· · ·+snun+It.

Further, appealing to the fact that any polynomial of degree j, when restricted to
the unit sphere, is a linear combination of sphericai harmonics of degree not exceeding
j, and using the Funk-Hecke theorem [1, p. 247], it follows that

d~+l

(s1u1+··· 十 S註n+ It= 芷嵓汩S1, ... , Sn-I, isn)凡 (u1, ... ,un-1,i四）
j=l

where the Aj are non-zero constants.



208 A . FRYANT AND M . K . VEMURI

Thus we have

dk d"'"+I n+I

芝 L (Vf, Wl)Qj(S1, ·,,, 8正 1,isn)Rt(u1, ... ,u正 1, iu』
j=I t~I

r1kn+l

= k! 芷 馭 ？，伍 ，···, Sn-1, isn)R1 (ui, ... , Un-1, i四）
n=l

from which it follows that (Vj
d1c k, Wk)=硏囚 Thus, the homogeneous wave polynomials

{Vj} 丑 1k j=I arc lmearly independent, and this completes the proof.
The generating function given in Th

struct all l
eorem 2 can be used to quickly and easily con-

10mogeneous wave polynomials up t
mcnsions. Th o any given degree in any number of di-

e computation 1s entirely algebraic, and proceeds inductively. In the multi-
nomial expansion (2), one merely expressess the monomials 8f3v

of the wave polynomial Q as l_inear combinations
1. On regroupmg, the wave polynomials V1

dimension appear as coefficients of th k in the next higher
e wave polynomials Q

The result of Th i in the lower dimens10n.
eorem 2 can also be used to <level

solutions of th op an integral operator for analytic
e wave equation (1). First note that the wave pol

t) used in th ynormals·
, e generatmg function (2). QJ(x1, · ·. ,Xn-1,

can be chosen so that
ortho-normal on the unit sphere I: 2 Q1(s1, ... , Sn一 1,isn) are

n-1 : S1 + S~+· · ·+ s2 = 1 A
done, and suppose n . ssume this has been

00 d~+l

u(xi, ... ,xn,t) =芷芝 ahj府 (x1, ... ,xn,t)
h=O j=l

is a solution of th, e wave equation, where the series of
formly in a neighborhood of th

wave polynomials converges uni-
C origin. A r

have ppea mg to the result of Theorem 2, we then

。rl~+l

u(x, t) =芷 ＼ 咋jJL,__ , (x .• + t)國 了ds

dk00 n+l

＝丨 芷芝 —L akJQ1(s)(x·s + t)kds
n--1 k=O J==l

＝丨~J(x - s + t,s)ds.
n-1

We call f the associate of the wave fucntion u, and write u =
瓦 is similar to th· Dn (f). The linear operator

e mtegral operator 冗 obtained for h
first found by Whittaker (6] in the special case n = 3.

armonic furictions in (3], and was
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