SOME $\mathbb{P R O P E R T I E S ~ O F ~ T H E ~} \mathbb{F} \mathbb{L} G$ MANIFOLDS

GR. F. TSAGAS AND A. J. LEDGER

Abstract

The aim of the present paper is to prove that the read, complex and quaternionic flag manifolds are \sum-space.

1. Introduction

Let M be a differentiable manifold and \sum a Lie group which is not required to be connected. If M and \sum have some properties, then M is called \sum-space or \sum-manifold. One of the problems of \sum-manifolds is to determine, if a given manifold can carry \sum structure. ([2]-[7])

The aim of the present paper is to prove that the flag manifolds: $S O(n) / S O\left(K_{1}\right) \times$ $\cdots \times S O\left(K_{v}\right), S U(n) / S U\left(K_{1}\right) \times \cdots \times S U\left(K_{v}\right)$ and $S p(n) / S p\left(K_{1}\right) \times \cdots \times S p\left(K_{v}\right)$ can carry \sum-structures.

The whole paper contains five paragraphs.
The second paragraph deals with the general theory of \sum-spaces. We also consider special categories of \sum-manifolds.

The affine and Riemannian \sum-spaces and their different categories are studied in the third paragraph.

In the fourth paragraph we consider the real flag manifold $M=S O(n) / S O\left(K_{1}\right) \times$ $\cdots \times S O\left(K_{v}\right)$, where $K_{1}+\cdots+K_{v}=n$, and prove that M is a reduced \sum-space. This manifold, with the Riemannian metric, which comes by the restriction on its tangent space m at the origin of the negative of Killing-Cartan form on the Lie algebra $o(n)$, is a reduced Riemannian \sum-space.

Finally, in the last paragraph we study the complex and the quaternionic flag manifolds $M_{1}=S U(n) / S U\left(K_{1}\right) \times \cdots \times S U\left(K_{v}\right)$ and $M_{2}=S p(n) / S p\left(K_{1}\right) \times \cdots \times S p\left(K_{v}\right)$, where $K_{1}+\cdots+K_{v}=n$, and prove that they are reduced \sum-spaces. The manifolds M_{1} and M_{2} with the Riemannian metrics, which come by the restriction on m the negative of the Killing-Cartan form on the Lie algebras $u(n)$ and $s p(n)$ respectively become reduced Riemannian \sum-spaces.

[^0]2. Let M be a differentiable manifold, \sum a Lie group and
$$
\mu: M \times \sum \times M \rightarrow M, \quad \mu:(x, \sigma, y) \rightarrow \sigma_{x}(y)
$$
a mooth map. Then the triplet $\left(M, \sum, \mu\right)$ is called a \sum-space or a \sum-manifold, if the following conditions are satisfied
\[

$$
\begin{align*}
& \mu(x, \sigma, x)=x \tag{2.1}\\
& \mu(x, e, y)=y \tag{2.2}\\
& \mu(x, \sigma, \mu(x, \tau, y))=\mu(x, \sigma \tau, y) \tag{2.3}\\
& \mu(x, \sigma, \mu(y, \tau, z))=\mu\left(\mu(x, \sigma, y), \sigma \tau \sigma^{-1}, \mu(x, \sigma, z)\right) \tag{2.4}
\end{align*}
$$
\]

where $x, y, z \in M, \sigma, \tau \in \sum$ and e is the identity element in \sum.
From the above we conclude that for each $x \in M$ and $\sigma \in \sum$ a diffeomorphism σ_{x} on M is defined.

$$
\sigma_{x}: M \rightarrow M, \quad \sigma_{x}: y \rightarrow \sigma_{x}(y)=\mu(x, \sigma, y)
$$

and another smooth map σ^{x} on M is also defined as follow

$$
\sigma^{x}: M \rightarrow M, \quad \sigma^{x}: y \rightarrow \sigma^{x}(y)=\sigma_{y}(x)
$$

The map σ_{x} satisfies the following conditions

$$
\begin{equation*}
\sigma_{x}(x)=x \tag{2.5}
\end{equation*}
$$

$e_{x}=i d_{M}$, where e is the identity element of \sum and $\forall \times \in M$

$$
\begin{gather*}
\sigma_{x} \tau_{x}=(\sigma \tau)_{x} \tag{2.7}\\
\sigma_{x} \tau_{y} \sigma_{x}^{-1}=\left(\sigma \tau \sigma^{-1}\right) \sigma_{x}(y) \tag{2.8}
\end{gather*}
$$

For each x we write \sum_{x} for the image of \sum under the map: $\sum_{\rightarrow \sum_{x}},: \sigma \rightarrow \sigma_{x}$, then from (2.6) and (2.7) we conclude that \sum_{x} is a subgroup of $\operatorname{Diff}(M)$ and this map is a homomorphism.

For each $\sigma \in \sum$ we define a tensor field S^{σ} of type (1.1) on the \sum-space M as follows

$$
S_{x}^{\sigma}\left(X_{x}\right)=\left(\sigma_{x}\right) *\left(X_{x}\right) \quad \text { for all } x \in M \text { and } X_{x} \in T_{x} M
$$

Then we have the following properties

$$
\begin{gather*}
S^{\sigma} \text { is smooth } \tag{2.9}\\
\left(\tau_{x}\right) *\left(S^{\sigma} X\right)=S^{\tau \sigma \tau^{-1}}\left(\left(\tau_{x}\right) * X\right), \forall \sigma, \tau \in \sum, X \in D^{1}(M), x \in M \tag{2.10}\\
S^{\sigma} \text { is Aut(M)-invariant } \tag{2.11}
\end{gather*}
$$

$$
\begin{equation*}
\left(\sigma^{x}\right) * X_{x}=\left(1-\left(\sigma_{x}\right) *\right) X_{x}=\left(1-S^{\sigma}\right) X_{x} \tag{2.12}
\end{equation*}
$$

A \sum-space M is called a reduced \sum-space, if for each $x \in M$, then $T_{x} M$ is generated by the set of all $\left(\sigma^{x}\right) *\left(X_{x}\right)$, that is

$$
\begin{align*}
T_{x} M & =\operatorname{gen}\left\{\left(\sigma^{x}\right) *\left(X_{x}\right): X_{x} \in T_{x} M \text { and } \sigma \in \sum\right\} \\
& =\operatorname{gen}\left\{\left(\tau-S^{\sigma}\right) X_{x}: X \in T_{x} M \text { and } \sigma \in \sum\right\} \tag{2.13}
\end{align*}
$$

If $X_{x} \in T_{x} M$ and $\left(\sigma^{x}\right) *\left(X_{x}\right)=0$ for all $\sigma \in \sum$, then $X_{x}=0$ and thus no non-zero vector in $T_{x} M$ is fixed by all $\left(S^{\sigma}\right)_{x} \forall \sigma \in \sum([3],[4])$
3. Now, we consider special structures on \sum-spaces.

An affine \sum-space is a \sum-space M together with an affine connection ∇ with the following property. ([3])
∇ is \sum_{M}-invariant, that means, each σ_{x} is an affine transformation.
∇ is called canonical, if it also has the property

$$
\nabla S^{\sigma}=0 \text { for all } \sigma \in \sum
$$

A reduced affine \sum-space is a reduced \sum-space having such connection.
A Riemannian \sum-space is a \sum-space M together with a \sum_{M}-invariant Riemannian metric g, that means this metric g has the property that each σ_{x} is an isometry with rescret to the metric g.

A reduced Riemannian \sum-space is a reduced \sum-space which admits such metric. We shall study only Riemannian reduced \sum-spaces. ([3], [4])
4. Now, we consider the real flag manifold ([1])

$$
M=S O(n) / S O\left(K_{1}\right) \times \cdots \times S O\left(K_{v}\right), \quad K_{1}+\cdots+K_{v}=n
$$

where $v \geq 3$. If $v=2$, then the real flag menifold becomes

$$
M=S O(n) / S O\left(K_{1}\right) \times S O\left(K_{2}\right), \quad K_{1}+K_{2}=n
$$

which is called real Grassmann manifold. This is a symmetric space which is a special case of reduced \sum-space.

This flag manifold can be written

$$
M=G / H
$$

where $G=S O(n)=\left\{A \in G L(n \mathbb{R}) / A^{t} A=I_{n}\right\}$ and $H=S O\left(K_{1}\right) \times \cdots \times S O\left(K_{v}\right)$ which consists of matrices of the form

$$
H=\left\{A \in S O(n) / A=\left(\begin{array}{l|l|l|l|l}
A_{1} & & & & \\
\hline & A_{2} & & & \\
\hline & & \ddots & & \\
\hline & & & \ddots & A_{v}
\end{array}\right), \quad A_{i} \in S O\left(K_{i}\right), \quad i=1,2, \ldots, v\right\}
$$

Let g and h be the Lie algebras of G and H respectively. Then we have

$$
g=o(n)=\left\{\alpha \in g l(n, \mathbb{R}) / \alpha+^{t} \alpha=0\right\}
$$

and h consists of matrices of the form.

$$
h=\left\{\alpha=\left(\begin{array}{c|c|c|c|c}
\alpha_{1} & 0 & 0 & \cdots & 0 \\
\hline 0 & \alpha_{2} & 0 & \cdots & 0 \\
\hline 0 & 0 & \alpha_{3} & \cdots & 0 \\
\hline \cdots & \cdots & \cdots & \cdots & 0 \\
\hline 0 & 0 & 0 & \cdots & \alpha_{v} \\
\hline & & & &
\end{array}\right) / \alpha_{i} \in o\left(K_{i}\right), \quad i=1, \ldots, v\right\} .
$$

Let m be the tangent space of the flag manifold at its origin 0 . Then we have

$$
g=h+m
$$

Then m can be represented by matrices as follows

$$
m\left\{\beta=\left(\begin{array}{c|c|c|c|c|c}
0 & -{ }^{t} X_{12} & -{ }^{t} X_{13} & \cdots & -{ }^{t} X_{1 v-1} & -{ }^{t} X_{1 v} \\
\hline X_{12} & 0 & -{ }^{t} X_{23} & \cdots & --^{t} X_{2 v-1} & -{ }^{t} X_{2 v} \\
\hline X_{13} & X_{23} & 0 & \cdots & -{ }^{t} X_{3 v-1} & -{ }^{t} X_{3 v} \\
\hline \cdots & \cdots & \cdots & \cdots & \cdots & \\
\hline X_{1 v} & X_{2 v} & X_{3 v} & \cdots & X_{v-1 v} & 0
\end{array}\right) \begin{array}{c}
X_{i j} \in M\left(K_{j} \times K_{i}, \mathbb{R}\right) \\
\text { the set of matrices } \\
K_{j} \times K_{i} \\
1 \leq i<j \leq v
\end{array}\right\}
$$

The vector space m can be decomposed as follows

$$
\begin{gathered}
m=\oplus m_{i j} \\
1 \leq i<j \leq n \\
i-\text { column } \quad j-\text { column }
\end{gathered}
$$

Each vector $\beta \in m$ can be written

$$
\begin{equation*}
\beta=\beta_{12}+\cdots+\beta_{1 v}+\beta_{23}+\ldots+\beta_{2 v}+\ldots+\beta_{v-1 v}, \quad \text { where } \beta_{i j} \in m_{i j} \tag{4.2}
\end{equation*}
$$

We consider the matrices

$$
\lambda_{\varepsilon_{1} \varepsilon_{2} \ldots \varepsilon_{v}}=\left(\begin{array}{c|c|c|c|c|c}
\varepsilon_{1} I_{K_{1}} & 0 & 0 & \cdots & & \\
\hline 0 & \varepsilon_{2} I_{K_{2}} & 0 & \cdots & & \\
\hline 0 & 0 & \varepsilon_{3} I_{K_{3}} & \cdots & & \\
\hline \cdots & \cdots & \cdots & \ddots & \cdots & \cdots \\
\hline & & & & \varepsilon_{v-1} I_{K_{v-1}} & 0 \\
\hline & & & & 0 & \varepsilon_{v} I_{K_{v}}
\end{array}\right)
$$

where $\varepsilon_{i}= \pm, i=1,2, \ldots, v-1, v$. When we have $\varepsilon_{i}=1$ we write $\varepsilon_{i}=i$ and when $\varepsilon_{j}=-1$, then we write $\varepsilon_{j}=\bar{j}$ and $I_{K_{i}} i=1,2, \ldots, v$ is the K_{i} unit matrix. For example:

The number of such matrices can be found as follows. We consider the following sets

$$
J=\{1,2,3, \ldots, v\}, \quad \bar{J}=\{\overline{1}, \overline{2}, \overline{3}, \ldots, \bar{v}\}
$$

We form the matrices by taking K elements from J and $v-K$ elements from \bar{J}, where $K=0,1, \ldots, v$. The number of such matrices is

$$
\binom{v}{0}+\binom{v}{1}+\binom{v}{2}+\cdots+\binom{v}{v-1}+\binom{v}{v}=2^{v} .
$$

From each of these matrices we obtain an automorphism on g as follows.
We consider the matrix

$$
\lambda_{\overline{1} 2 \overline{3} \ldots v}
$$

and the associated automorphism $\theta_{\overline{1} \overline{2} 3 \ldots v}$, which is constructed as follows

$$
\begin{gathered}
\theta_{\overline{1} \overline{2} 3 \ldots v}=\lambda_{\overline{1} \overline{2} 3 \ldots v} \cdot \lambda_{\overline{1} \overline{2} 3 \ldots v}^{-1}: g \rightarrow g \\
\theta_{\overline{1} \overline{2} 3 \ldots v}=\lambda_{\overline{1} \overline{2} 3 \ldots v} \cdot \lambda_{\overline{1} \overline{2} 3 \ldots v}^{-1}: \alpha \rightarrow \theta_{\overline{1} \overline{2} 3 \ldots v}(\alpha)=\lambda_{\overline{1} \overline{2} 3 \ldots v} \cdot \alpha \lambda_{\overline{1} \overline{2} 3 \ldots v}^{-1} .
\end{gathered}
$$

Proposition 4.1. For every matrix $\lambda_{\varepsilon_{n} \ldots \varepsilon_{v}}$ we can correspond another matrix $\lambda_{\varepsilon_{1}^{\prime} \ldots \varepsilon_{v}^{\prime}}$ such that they give the same automorphism on g.

Proof. Each matrix $\lambda_{\varepsilon_{1} \ldots \varepsilon_{v}}$ has the property

$$
\begin{equation*}
\lambda_{\varepsilon_{1} \ldots \varepsilon_{v}}^{2}=I_{n} \tag{4.3}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\lambda_{\varepsilon_{1} \ldots \varepsilon_{v}}=\lambda_{\varepsilon_{1} \ldots \varepsilon_{v}}^{-1} \tag{4.4}
\end{equation*}
$$

There exists another matrix $\lambda_{\varepsilon_{1}^{\prime} \varepsilon_{2}^{\prime} \ldots \varepsilon_{v}^{\prime}}$ with the property

$$
\begin{equation*}
\varepsilon_{1}^{\prime}=(-1) \varepsilon_{1}, \quad \varepsilon_{2}^{\prime}=(-1) \varepsilon_{2}, \cdots, \varepsilon_{v}^{\prime}=(-1) \varepsilon_{v} \tag{4.5}
\end{equation*}
$$

and simultaneously satisfies the relation

$$
\begin{equation*}
\lambda_{\varepsilon_{1} \varepsilon_{2} \ldots \varepsilon_{v}}=-\lambda_{\varepsilon_{1}^{\prime} \varepsilon_{2}^{\prime} \ldots \varepsilon_{n}^{\prime}} \tag{4.6}
\end{equation*}
$$

The associated automorphisms $\theta_{\varepsilon_{1} \ldots \varepsilon_{v}}$ and $\theta_{\varepsilon_{1}^{\prime} \ldots \varepsilon_{v}^{\prime}}$ to $\lambda_{\varepsilon_{1} \ldots \varepsilon_{v}}$ and $\lambda_{\varepsilon_{1}^{\prime} \ldots \varepsilon_{v}^{\prime}}$ respectively have the form

$$
\begin{align*}
& \theta_{\varepsilon_{1} \ldots \varepsilon_{v}}=\lambda_{\varepsilon_{1} \ldots \varepsilon_{v}} \cdot \lambda_{\varepsilon_{1} \ldots \varepsilon_{v}}^{-1} \tag{4.7}\\
& \theta_{\varepsilon_{1}^{\prime} \ldots \varepsilon_{v}^{\prime}}=\lambda_{\varepsilon_{1}^{\prime} \ldots \varepsilon_{v}^{\prime}} \cdot \lambda_{\varepsilon_{1}^{\prime} \ldots \varepsilon_{v}^{\prime}}^{-1} \tag{4.8}
\end{align*}
$$

From (4.7) and (4.8) we obtain

$$
\begin{equation*}
\theta_{\varepsilon_{1} \ldots \varepsilon_{v}}=\theta_{\varepsilon_{1}^{\prime} \ldots \varepsilon_{v}^{\prime}} \tag{4.9}
\end{equation*}
$$

For example

$$
\begin{equation*}
\theta_{\overline{1} \overline{2} 3 \ldots v}=\theta_{12 \overline{3} \ldots \bar{v}}, \quad \theta_{\overline{1} \overline{2} \overline{3} \ldots \bar{v}}=\theta_{123 \ldots v} \tag{4.10}
\end{equation*}
$$

We denote by T the set of all these automorphisms, that is

$$
\begin{equation*}
T=\left\{\theta_{\varepsilon_{1} \ldots \varepsilon_{v}} / \varepsilon_{1}= \pm 1, \ldots, \varepsilon_{v}= \pm 1\right\} \tag{4.11}
\end{equation*}
$$

Proposition 4.2. There is an operation on T which makes it a group.
Proof. We denote by \cdot this operation defined by

$$
\begin{gather*}
\cdot: T \times T \rightarrow T \tag{4.12}\\
:\left(\theta_{\varepsilon_{1} \ldots \varepsilon_{v}}, \theta_{\varepsilon_{1}^{\prime} \ldots \varepsilon_{v}^{\prime}}\right) \rightarrow \theta_{\varepsilon_{1} \ldots \varepsilon_{v}} \cdot \theta_{\varepsilon_{1}^{\prime} \ldots \varepsilon_{v}^{\prime}}=\theta_{\varepsilon_{1}^{\prime \prime} \ldots \varepsilon_{v}^{\prime \prime}} \tag{4.13}
\end{gather*}
$$

where $\theta_{\varepsilon_{1}^{\prime \prime} \ldots \varepsilon_{v}^{\prime \prime}}$ defined by

$$
\begin{equation*}
\varepsilon_{1}^{\prime \prime}=\varepsilon_{1} \cdot \varepsilon_{1}^{\prime}, \ldots, \varepsilon_{v}^{\prime \prime}=\varepsilon_{v} \cdot \varepsilon_{v}^{\prime} \tag{4.14}
\end{equation*}
$$

This operation - turns out the set T onto a finite group with 2^{v-1} elements. The identity element of this group is the automorphism $\theta_{12 \ldots v}$. Each element $\theta_{\varepsilon_{1} \varepsilon_{2} \ldots \varepsilon_{v}}$ of this group has the property

$$
\theta_{\varepsilon_{1} \ldots \varepsilon_{v}}^{2}=\theta_{1 \ldots v}
$$

which implies

$$
\theta_{\varepsilon_{1} \ldots \varepsilon_{v}}=\theta_{\varepsilon_{1} \ldots \varepsilon_{v}}^{-1}
$$

which means each element of the group T has its inverse the same element.
This group has the following generators

$$
\theta_{\overline{1} 23 \ldots v-1, v}, \theta_{1 \overline{2} 3 \ldots v-1}, \ldots, \theta_{123 \ldots, \overline{v-1}, v}, \theta_{123 \ldots v-1, \bar{v}}
$$

Proposition 4.3. Each element of the group T acts on the Lie algebra $g=h+m$ as follows. It leaves h as fixed pointwise and reverses some of the vectors on m and leaves other fixed. This depends on the form of the automorphism.

Proof. We take for example the automorphism $\theta_{\overline{1} 23 \ldots v}$. Therefore we have

$$
\begin{gathered}
\theta_{\overline{1} 23 \ldots v}=\lambda_{\overline{1} 23 \ldots v} \cdot \lambda_{\overline{1} 23 \ldots v}^{-1}: h \rightarrow h \\
\theta_{\overline{1} 23 \ldots v}=\lambda_{\overline{1} 23 \ldots v} \cdot \lambda_{\overline{1} 23 \ldots v}^{-1}: \alpha \rightarrow \theta_{\overline{1} 23 \ldots v}(\alpha)=\lambda_{\overline{1} 23 \ldots v} \alpha \lambda_{\overline{1} 23 \ldots v}^{-1}
\end{gathered}
$$

where

Hence the automorphism $\theta_{\overline{1} 23 \ldots v}$ preserves pointwise the subalgebra h of g. The same is true for every other automorphism of T.

We also have

$$
\begin{align*}
& \theta_{\overline{1} 23 \ldots v}=\lambda_{\overline{1} 23 \ldots v} \cdot \lambda_{\overline{1} 23 \ldots v}^{-1}: m \rightarrow m \\
& \theta_{\overline{1} 23 \ldots v}=\lambda_{\overline{1} 23 \ldots v} \cdot \lambda_{\overline{1} 23 \ldots v}^{-1}: \beta \rightarrow \theta_{\overline{1} 23 \ldots v}(\beta)=\lambda_{\overline{1} 23 \ldots v} \beta \lambda_{\overline{1} 23 \ldots v} \tag{4.15}
\end{align*}
$$

where

$$
\begin{aligned}
& \lambda_{\overline{1} 23 \ldots v}: \beta \cdot \lambda_{\overline{1} 23 \ldots v} \\
& =\left(\begin{array}{c|c|c|c|c}
-I_{K_{1}} & & & & \\
\hline & I_{K_{2}} & & & \\
\hline & & I_{K_{3}} & & \\
\hline \cdots & \ldots & \ldots & \ddots & \cdots \\
\hline & & & & I_{K_{v}}
\end{array}\right)\left(\begin{array}{c|c|c|c|c}
0 & -{ }^{t} X_{12} & -{ }^{t} X_{13} & \cdots & -{ }^{t} X_{1 v} \\
\hline X_{12} & 0 & -^{t} X_{23} & \cdots & -^{t} X_{2 v} \\
\hline X_{13} & X_{23} & 0 & \cdots & -{ }^{t} X_{3 v} \\
\hline \cdots & \cdots & \ddots & \cdots & \cdots \\
\hline X_{1 v} & X_{2 v} & X_{3 v} & \cdots & 0
\end{array}\right)\left(\begin{array}{c|c|c|c|c}
-I_{K_{1}} & & & & \\
\hline & I_{K_{2}} & & & \\
\hline & & I_{K_{3}} & & \\
\hline \cdots & \cdots & \cdots & \ddots & \cdots \\
\hline & & & & I_{K_{v}}
\end{array}\right) \\
& =\left(\begin{array}{c|c|c|c|c}
0 & I_{K_{1}}{ }^{t} X_{12} & I_{K_{1}}{ }^{t} X_{13} & \cdots & I_{K_{1}}{ }^{t} X_{1 v} \\
\hline I_{K_{2}} X_{12} & 0 & -I_{K_{2}}{ }^{t} X_{23} & \cdots & -I_{K_{2}}{ }^{t} X_{2 v} \\
\hline I_{K_{3}} X_{13} & I_{K_{3}} X_{23} & 0 & \cdots & -I_{K_{3}}{ }^{t} X_{3 v} \\
\hline \ldots & \ldots & \ddots & \cdots & \cdots \\
\hline I_{K_{v}} X_{1 v} & I_{K_{v}} X_{2 v} & I_{K_{v}} X_{3 v} & \cdots & 0
\end{array}\right) \cdot\left(\begin{array}{c|c|c|c|c}
-I_{K_{1}} & & & & \\
\hline & I_{K_{2}} & & & \\
\hline & & I_{K_{3}} & & \\
\hline \ldots & \cdots & \cdots & \ddots & \cdots \\
\hline & & & & I_{K_{v}}
\end{array}\right) \\
& =\left(\begin{array}{c|c|c|c|c}
0 . & I_{K_{1}}{ }^{t} X_{12} I_{K_{2}} & I_{K_{2}}{ }^{t} X_{13} I_{K_{3}} & \cdots & I_{K_{1}}{ }^{t} X_{1 v} I_{K_{v}} \\
\hline-I_{K_{2}} X_{12} I_{K_{1}} & 0 & -I_{K_{2}}{ }^{t} X_{23} I_{K_{3}} & \cdots & -I_{K_{2}}{ }^{t} X_{2 v} I_{K_{v}} \\
\hline-I_{K_{3}} X_{13} I_{K_{1}} & I_{K_{3}} X_{23} I_{K_{2}} & 0 & \cdots & -I_{K_{3}}{ }^{t} X_{3 v} I_{K_{v}} \\
\hline \ldots & \ldots & \ddots & \cdots & \cdots \\
\hline-I_{K_{v}} X_{1 v} I_{K_{1 v}} & I_{K_{v}} X_{2 v} I_{K_{2}} & I_{K_{v} X_{3 v} I_{K_{3}}} & \cdots & 0
\end{array}\right)
\end{aligned}
$$

$$
=\left(\begin{array}{c|c|c|c|c}
0 & { }^{t} X_{12} & { }^{t} X_{13} & \cdots & { }^{t} X_{1 v} \tag{4.17}\\
\hline-X_{12} & & -X_{23} X_{23} & \cdots & -{ }^{t} X_{2 v} \\
\hline-X_{13} & X_{23} & 0 & & -^{t} X_{2 v} \\
\hline \cdots & \cdots & \ddots & \cdots & \cdots \\
\hline-X_{1 v} & X_{2 v} & X_{3 v} & \cdots &
\end{array}\right)=\theta_{123 \ldots v}(\beta)
$$

From (4.1), (4.2) and (4.17) we obtain

$$
\begin{aligned}
& \theta_{\overline{1} 23 \ldots v}\left(\beta_{12}\right)=-\beta_{12}, \theta_{\overline{1} 23 \ldots v}\left(\beta_{13}\right)=-\beta_{13}, \cdots, \theta_{\overline{1} 23 \ldots v}\left(\beta_{1 v}\right)=-\beta_{1 v}, \\
& \theta_{\overline{1} 23 \ldots v}\left(\beta_{23}\right)=\beta_{23}, \theta_{\overline{1} 23 \ldots v}\left(\beta_{24}\right)=\beta_{24}, \cdots, \theta_{\overline{1} 23 \ldots v}\left(\beta_{2 v}\right)=\beta_{2 v} \ldots \\
& \theta_{\overline{1} 23 \ldots v}\left(\beta_{v-1, v}\right)=\beta_{v-1, v}
\end{aligned}
$$

Each automorphism $\theta_{\varepsilon_{1} \varepsilon_{2} \ldots \varepsilon_{v}}$ maps the vector $\beta_{i j}, 1 \leq i<j \leq v$ as follows. The automorphism $\theta_{\varepsilon_{1} \varepsilon_{2} \ldots \varepsilon_{v}}$ can be written

$$
\theta_{123 \ldots, \mu-1, \bar{\mu}, \overline{\mu+1}, \ldots, \overline{v-1}, \bar{v}}
$$

where $1 \leq \mu \leq v$. If $i=1,2, \ldots, \mu-1$ and $j=\mu, \mu+1, \ldots, v-1, v$ or the other way, then we have

$$
\theta_{\varepsilon_{1} \varepsilon_{2} \ldots \varepsilon_{v}}\left(\beta_{i j}\right)=-\beta_{i j} \quad i<j
$$

If $i=1,2, \ldots, \mu-1$ and $j=2,3, \ldots, \mu-1 i<j$ or $i=\mu, \mu+1 \ldots v-1, v$ and $j=\mu+1, \ldots, v-1, v$, then we obtain

$$
\theta_{\varepsilon_{1} \varepsilon_{2} \ldots \varepsilon_{v}}\left(\beta_{i j}\right)=\beta_{i j} \quad i<j
$$

Theorem 4.4. The action of the group T on the tangent space m of the flag manifold $M=S O(n) / S O\left(K_{1}\right) \times \cdots \times S O\left(K_{v}\right)$ leaves no vector fixed.
$\mathbb{P r o o f}$. Each vector $\beta \in m$ by virtue of (4.2) can be written

$$
\begin{equation*}
\beta=\beta_{12}+\beta_{13}+\cdots+\beta_{1 v}+\beta_{23}+\beta_{24}+\cdots+\beta_{2 v}+\beta_{34}+\cdots+\beta_{v-1 v} \tag{4.19}
\end{equation*}
$$

The automorphism $\theta_{\overline{1} 2 \ldots v} / m$ on m reverses all the vectors

$$
\beta_{12}, \beta_{23}, \ldots, \beta_{2 v}
$$

The automorphism $\beta_{12, \ldots, v-1, \bar{v}} / m$ on m on reverses the vectors

$$
\beta_{1 v}, \beta_{2 v}, \ldots, \beta_{v-1 v}
$$

From the above we conclude that the automorphisms

$$
T_{1}^{\prime}=\left\{\theta_{1 \overline{2} 3 \ldots, v} / m, \theta_{1 \overline{2} 3 \ldots, v} / m, \theta_{123 \ldots, v-1, \bar{v}} / m\right\}
$$

on m do not leave vector fixed.

Let T_{1} be the set which is defined by $T_{1}=T / m \cdot T_{1}$ is a group with 2^{v-1} elements which have the same properties as the elements of $T . T_{1}$ is obtained by the restriction of T on m. Obviously $T_{1}^{\prime} C T_{1}$.

Theorem 4.5. Let $M=S O(n) / S O\left(K_{1}\right) \times \cdots \times S O\left(K_{v}\right)$ be the real flag manifold. Then M admits a reduced \sum-structure, that is, it is a reduced \sum-space.

Proof. We have proved that there is the group T_{1} whose each element is a linear transformation on the tangent space m of the homogeneous space M at its origin 0 . These linear transformations leave no vector fixed on m.

It is known that every linear transformation

$$
\theta_{\varepsilon_{1} \ldots \varepsilon_{v}}: g \rightarrow g
$$

gives another automorphism on the Lie group G, that is

$$
\theta_{\varepsilon_{1} \ldots \varepsilon_{v}}: G \rightarrow G
$$

which leaves the subgroup H fixed pointwise. This automorphism $\theta_{\varepsilon_{1} \ldots \varepsilon_{v}}$ gives a diffeomorphism $f_{\varepsilon_{1} \ldots \varepsilon_{v}}$ on the manifold $M=G / H$, which is defined by

$$
\begin{aligned}
& f_{\varepsilon_{1} \ldots \varepsilon_{v}}: M=G / H \rightarrow M=G / H \\
& f_{\varepsilon_{1} \ldots \varepsilon_{v}}: c H \rightarrow f_{\varepsilon_{1} \ldots \varepsilon_{v}}(c H)=\theta_{\varepsilon_{1} \ldots \varepsilon_{v}}(c) \cdot H, \quad c \in G
\end{aligned}
$$

From the contruction of $f_{\varepsilon_{1} \ldots \varepsilon_{v}}$ we obtain that

$$
f_{\varepsilon_{1} \ldots \varepsilon_{v}}: 0=H \rightarrow f_{\varepsilon_{1} \ldots \varepsilon_{v}}(H)=H=0
$$

that means it fixes 0 and has the property

$$
\left(\left(f_{\varepsilon_{1} \ldots \varepsilon_{v}}\right) *\right)_{0}=\theta_{\varepsilon_{1} \ldots \varepsilon_{v}}
$$

The set of automorphisms $\sum_{0}=\left\{f_{12, \ldots v}^{0}, f_{12 \ldots v}^{0}, \ldots\right\}$, which is obtained by the group T_{1}, forms a finite group of 2^{v-1} elements which have the same properties as the elements of T_{1}.

It is known that the Lie group G acts transitively on the manifold M. This action determines, to every point $x \in M$, a finite group of diffeomorphism on $M, \sum_{x}=$ $\left\{f_{12 \ldots v}^{x}, f_{12 \ldots v}^{x} \ldots\right\}$ with 2^{v-1} elements which have the same properties as the elements of T. Each element of \sum_{x} is determined as follows. Firstly, we consider the follows mapping:

$$
f_{\overline{1} 2 \ldots v}^{0}: M \rightarrow M, \quad f_{\overline{1} 2 \ldots v}^{0}: 0 \rightarrow 0
$$

It is known that each element of G can be considered as a diffeomorphism on the manifold M. There is one element $\lambda \in G$ with the property

$$
\begin{equation*}
\lambda: M \rightarrow M, \quad \lambda: 0 \rightarrow x \tag{4.20}
\end{equation*}
$$

The element $f_{12 \ldots v}^{x}$ of the group S_{x} which is a diffeormorphism on M, is defined by

$$
f_{\overline{1} 2 \ldots v}^{x}=\lambda o f_{\overline{1} 2 \ldots v}^{o} o \lambda_{-1}: M \rightarrow M
$$

This diffeomorphism $f_{\overline{1} 2 \ldots v}^{x}$ has the property

$$
f_{\overline{1} 2 \ldots v}^{x}: x \rightarrow x
$$

that means $f_{\frac{1}{12 \ldots v}}^{x}$ leaves x fixed. Therefore the group S_{x} has the form

$$
\sum_{x}=\left\{f_{12 \ldots v}^{x}=\lambda o f_{12 \ldots v}^{o} o \lambda^{-1}, f_{\overline{1} 2 \ldots v}^{x}=\lambda o f_{\overline{1} 2 \ldots v}^{o} o \lambda^{-1}, \ldots\right\}
$$

Hence to each point $x \in M$ we can associate a finite group of diffeomorphisms \sum_{x}. Each diffeomorphism $f \in \sum_{x}$ leaves x fixed and $\left(f_{x}\right) *$ for all $f \in \sum_{x}$ do not leave vector fixed on $T_{*}(M)$. q.e.d.

On the tangent space m of $M=G / H$ at its origin 0 we consider an inner product $<>$ defined by

$$
\begin{equation*}
<>: m \times m \rightarrow \mathbb{R},<>:\left(\beta, \beta^{\prime}\right) \rightarrow<\beta, \beta^{\prime}>=-\frac{1}{2} \operatorname{Tr}\left(\beta^{\prime} \beta^{\prime}\right) \tag{4.21}
\end{equation*}
$$

If K is the Killing-Cartan form on $o(n)$, then we have

$$
\begin{equation*}
K: g \times g \rightarrow \mathbb{R}, K:\left(\alpha, \alpha^{\prime}\right) \rightarrow K\left(\alpha, \alpha^{\prime}\right)=-(n-1) \operatorname{Tr}\left(\alpha \alpha^{\prime}\right) \tag{4.22}
\end{equation*}
$$

Since $o(n)$ is a simple Lie algebra, it is known that $K\left(\alpha, \alpha^{\prime}\right)$ is negative definite.
Froin (4.21) and (4.22) we concluded that

$$
\begin{equation*}
<\beta, \beta>=-\frac{1}{2(n-1)} K(\beta, \beta) \tag{4.23}
\end{equation*}
$$

From (4.23) and the above we conclude that the inner product $<>$ on m is positive definite which gives a Riemannian metric d on M.

Theorem 4.6. Let $M=S O(n) / S O\left(K_{1}\right) \times \cdots \times S O\left(K_{v}\right)$ be the real flag manifold, where $K_{1}+\cdots+K_{v}=n$. Then the inner product (4.23) on the tangent space m of M at its origin, which comes by the restriction on m of the negative of the Killing-Cartan form on $o(n)$ induces a Riemannian metric d on M. Then (M, d) is a reduced Riemannian \sum-space.
$\mathbb{P r o o f}$. We assume that the vectors β and β^{\prime} have the form

$$
\beta=\left(\begin{array}{c|c|c|c|c|c}
0 & -{ }^{t} X_{12} & --^{t} X_{13} & \cdots & -{ }^{t} X_{1, v-1} & -^{t} X_{1 v} \\
\hline X_{12} & 0 & -\bar{X}_{23} & \cdots & -^{t} X_{2, v-1} & -{ }^{t} \bar{X}_{2 v} \\
\hline X_{13} & X_{23} & 0 & \cdots & -^{t} X_{3, v-1} & -{ }^{t} X_{3 v} \\
\hline \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
\hline X_{1, v-1} & X_{2, v-1} & X_{3, v-1} & \cdots & 0 & -{ }^{t} X_{v-1 v} \\
\hline X_{1 v} & X_{2 v} & X_{3 v} & \cdots & X_{v-1 v} & 0
\end{array}\right),
$$

$$
\beta^{\prime}=\left(\begin{array}{c|c|c|c|c|c}
0 & -{ }^{t} X_{12}^{\prime} & -{ }^{t} X_{13}^{\prime} & \cdots & -{ }^{t} X_{1 v-1}^{\prime} & -{ }^{t} X_{1 v}^{\prime} \tag{4.24}\\
\hline X_{12}^{\prime} & 0 & -{ }^{t} X_{23}^{\prime} & \cdots & -{ }^{t} X_{2 v-1}^{\prime} & -{ }^{t} X_{2 v}^{\prime} \\
\hline X_{13}^{\prime} & X_{23}^{\prime} & 0 & \cdots & -{ }^{t} X_{3 v-1}^{\prime} & -{ }^{t} X_{3 v}^{\prime} \\
\hline \cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
\hline X_{1 v-1}^{\prime} & X_{2 v-1}^{\prime} & X_{3 v-1}^{\prime} & \cdots & 0 & -{ }^{t} X_{v-1 v}^{\prime} \\
\hline X_{1 v}^{\prime} & X_{2 v}^{\prime} & X_{3 v}^{\prime} & \cdots & X_{v-1 v}^{\prime} & 0
\end{array}\right)
$$

then we obtain
$\beta \beta^{\prime}=$

The relation (4.21) by means of (4.25) implies

$$
\begin{align*}
<\beta, \beta^{\prime}>= & \frac{1}{2} \operatorname{Tr}\left[{ }^{t} X_{12} X_{12}^{\prime}+\cdots+{ }^{t} X_{1 v} X_{1 v}^{\prime}\right)+\left(X_{12}{ }^{t} X_{12}^{\prime}+{ }^{t} X_{23} X_{23}^{\prime}+\cdots+{ }^{t} X_{2 v} X_{2 v}^{\prime}\right) \\
& +\left(X_{13}{ }^{t} X_{13}^{\prime}+X_{23}{ }^{t} X_{23}^{\prime}+{ }^{t} X_{34} X_{34}^{\prime}+\cdots+{ }^{t} X_{3 v} X_{3 v}^{\prime}\right)+\cdots+\left(X_{1 v-1}{ }^{t} X_{1 v-1}^{\prime}+\cdots\right. \\
& \left.\left.+X_{v-2, v-1}{ }^{t} X_{v-2, v-1}^{\prime}+{ }^{t} X_{v-1 v}{ }^{t} X_{v-1 v}^{\prime}\right)+\left(X_{1 v}{ }^{t} X_{1 v}^{\prime}+\cdots+X_{v-1 v}{ }^{t} X_{v-1 v}^{\prime}\right)\right] \tag{4.26}
\end{align*}
$$

If $\theta_{\varepsilon_{1} \ldots \varepsilon_{v}}$ is one automorphism of the group T_{1}, then by the properties of $\theta_{\varepsilon_{1} \ldots \varepsilon_{v}}$ we have

$$
\begin{aligned}
< & \theta_{\varepsilon_{1} \ldots \varepsilon_{v}}(\beta), \theta_{\varepsilon_{1} \ldots \varepsilon_{v}}\left(\beta^{\prime}\right)> \\
= & \frac{1}{2} \operatorname{Tr}\left[\theta_{\varepsilon_{1} \ldots \varepsilon_{v}}\left({ }^{t} X_{12}\right) \theta_{\varepsilon_{1} \ldots \varepsilon_{v}}\left(X_{12}^{\prime}\right)+\cdots+\theta_{\varepsilon_{1} \ldots \varepsilon_{v}}\left({ }^{t} X_{1 v}\right) \theta_{\varepsilon_{1} \ldots \varepsilon_{v}}\left(X_{1 v}^{\prime}\right)\right] \\
& +\left[\theta_{\varepsilon_{1} \ldots \varepsilon_{v}}\left(X_{12}\right) \theta_{\varepsilon_{1} \ldots \varepsilon_{v}}\left({ }^{t} X_{12}^{\prime}\right)+\theta_{\varepsilon_{1} \ldots \varepsilon_{v}}\left({ }^{t} X_{23}\right) \theta_{\varepsilon_{1} \ldots \varepsilon_{v}}\left(X_{23}^{\prime}\right)+\cdots\right. \\
& \left.+\theta_{\varepsilon_{1} \ldots \varepsilon_{v}}\left({ }^{t} X_{2 v}\right) \theta_{\varepsilon_{1} \ldots \varepsilon_{v}}\left(X_{2 v}^{\prime}\right)\right]+\left[\theta_{\varepsilon_{1} \ldots \varepsilon_{v}}\left(X_{12}\right) \theta_{\varepsilon_{1} \ldots \varepsilon_{v}}\left(X_{13}^{\prime}\right)\right.
\end{aligned}
$$

$$
\begin{align*}
& \left.+\theta_{\varepsilon_{1} \ldots \varepsilon_{v}}\left({ }^{t} X_{2 v}\right) \theta_{\varepsilon_{1} \ldots \varepsilon_{v}}\left(X_{2 v}^{\prime}\right)\right]+\left[\theta_{\varepsilon_{1} \ldots \varepsilon_{v}}\left(X_{12}\right) \theta_{\varepsilon_{1} \ldots \varepsilon_{v}}\left(X_{13}^{\prime}\right)\right. \\
& +\theta_{\varepsilon_{1} \ldots \varepsilon_{v}}\left(X_{23}\right) \theta_{\varepsilon_{1} \ldots \varepsilon_{v}}\left({ }^{t} X_{23}^{\prime}\right)+\theta_{\varepsilon_{1} \ldots \varepsilon_{v}}\left({ }^{t} X_{34}\right) \theta_{\varepsilon_{1} \ldots \varepsilon_{v}}\left(X_{34}^{\prime}\right)+\cdots \\
& \left.+\theta_{\varepsilon_{1} \ldots \varepsilon_{v}}\left({ }^{t} X_{3 v}\right) \theta_{\varepsilon_{1} \ldots \varepsilon_{v}}\left(X_{3 v}^{\prime}\right)\right]+\cdots+\left[\theta_{\varepsilon_{1} \ldots \varepsilon_{v}}\left(X_{1, v-1}\right) \theta_{\varepsilon_{1} \ldots \varepsilon_{v}}\left({ }^{t} X_{1, v-1}^{\prime}\right)+\cdots\right. \\
& \left.\left.+\theta_{\varepsilon_{1} \ldots \varepsilon_{v}}\left(X_{v-2, v-1}\right) \theta_{\varepsilon_{1} \ldots \varepsilon_{v}}{ }^{t} X_{v-2, v-1}^{\prime}\right)+\theta_{\varepsilon_{1} \ldots \varepsilon_{v}}\left({ }^{t} X_{v-1 v}\right) \theta_{\varepsilon_{1} \ldots \varepsilon_{v}}\left(X_{v-1 v}^{\prime}\right)\right] \\
& +\left[\theta_{\varepsilon_{1} \ldots \varepsilon_{v}}\left(X_{1 v}\right) \theta_{\varepsilon_{1} \ldots \varepsilon_{v}}\left({ }^{t} X_{1 v}^{\prime}\right)+\cdots+\theta_{\varepsilon_{1} \ldots \varepsilon_{v}}\left({ }^{t} X_{v-1 v}\right) \theta_{\varepsilon_{1} \ldots \varepsilon_{v}}\left(X_{v-1 v}^{\prime}\right)\right] \tag{4.27}
\end{align*}
$$

We also have

$$
\begin{equation*}
\theta_{\varepsilon_{1} \ldots \varepsilon_{v}}\left({ }^{t} X_{i j}\right)={ }^{t} X_{i j} \text { and } \theta_{\varepsilon_{1} \ldots \varepsilon_{v}}\left(X_{i j}^{\prime}\right)=X_{i j}^{\prime}, \quad 1 \leq i<j \leq v \tag{4.28}
\end{equation*}
$$

or

$$
\begin{equation*}
\theta_{\varepsilon_{1} \ldots \varepsilon_{v}}\left({ }^{t} X_{i j}\right)=-{ }^{t} X_{i j} \text { and } \theta_{\varepsilon_{1} \ldots \varepsilon_{v}}\left(X_{i j}^{\prime}\right)=-X_{i j}^{\prime}, \quad 1 \leq i<j \leq v \tag{4.29}
\end{equation*}
$$

and

$$
\begin{equation*}
\theta_{\varepsilon_{1} \ldots \varepsilon_{v}}\left({ }^{t} X_{i j}^{\prime}\right)=^{t} X_{i j}^{\prime}, \theta_{\varepsilon_{1} \ldots \varepsilon_{v}}\left(X_{i j}\right)=X_{i j}, \quad 1 \leq i<j \leq v \tag{4.30}
\end{equation*}
$$

or

$$
\begin{equation*}
\theta_{\varepsilon_{1} \ldots \varepsilon_{v}}\left({ }^{t} X_{i j}^{\prime}\right)=-{ }^{t} X_{i j}^{\prime}, \theta_{\varepsilon_{1} \ldots \varepsilon_{v}}\left(X_{i j}\right)=-X_{i j}, \quad 1 \leq i<j \leq v \tag{4.31}
\end{equation*}
$$

From (4.26), (4.27), (4.28), (4.29), (4.30), and (4.31) we obtain

$$
\begin{equation*}
<\beta, \beta^{\prime}>=<\theta_{\varepsilon_{1} \ldots \varepsilon_{v}}(\beta), \theta_{\varepsilon_{1} \ldots \varepsilon_{v}}\left(\beta^{\prime}\right)>, \quad \forall \theta_{\varepsilon_{1} \ldots \varepsilon_{v}} \in T_{1} \tag{4.32}
\end{equation*}
$$

This relation (4.32) completes the proof.
5. We consider the complex flag manifold

$$
M_{1}=S U(n) / S U\left(K_{1}\right) \times \cdots \times S U\left(K_{v}\right)
$$

where $K_{1}+\cdots+K_{v}=n, v \geq 3$. If $v=2$, then the complex flag manifold becomes

$$
M_{1}=S U(n) / S U\left(K_{1}\right) \times S U\left(K_{2}\right), \quad K_{1}+K_{2}=n
$$

which is called complex Grassmann manifold. This is a symmetric space, which is a special case of a reduced \sum-space.

This flag manifold can be written

$$
M_{1}=G / H
$$

where $G=S U(n)=\left\{A \in G L(n, C) / A * A=I_{n}\right\}$ and $H=S U\left(K_{1}\right) \times \cdots \times S U\left(\overline{K_{v}}\right)$, which consists of matrices of the form

$$
H=\left\{A \in S U(n) / A=\left(\begin{array}{l|l|l|l}
A_{1} & & & \\
\hline & A_{2} & & \\
\hline & & \ddots & \\
\hline & & & A_{v}
\end{array}\right), A_{i} \in S U\left(K_{i}\right), \quad i=1, \ldots, v\right\}
$$

We consider the Lie algebras g and h of G and H respectively, which are defined by

$$
\begin{gathered}
g=u(n)=\left\{\alpha \in g l(n, C) / \alpha+{ }^{*} \alpha=0\right\} \\
h=\left\{\alpha=\left(\begin{array}{l|l|l|l}
\alpha_{1} & & & \\
\hline & \alpha_{2} & & \\
\hline & & \ddots & \\
\hline & & & \alpha_{v}
\end{array}\right) / \alpha_{i} \in u\left(K_{i}\right), \quad i=1, \ldots, v\right\}
\end{gathered}
$$

Let m be the tangent space of the complex flag manifold $M_{1}=S U(n) / S U\left(K_{1}\right) \times$ $\cdots \times S U\left(K_{v}\right), K_{1}+\cdots+K_{v}=n$, at its origin 0 . Then we have

$$
g=h+m
$$

Then m can be represented by the matrices as follows

$$
m=\left\{\beta=\left(\begin{array}{c|c|c|c|c|c}
0 & -{ }^{t} \bar{X}_{12} & -{ }^{t} \bar{X}_{13} & & -{ }^{t} \bar{X}_{1, v-1} & -{ }^{t} \bar{X}_{1 v} \\
\hline X_{12} & 0 & -{ }^{t} \bar{X}_{23} & & --^{t} \bar{X}_{2, v-1} & -^{t} \bar{X}_{2 v} \\
\hline X_{13} & X_{23} & 0 & \cdots & -{ }^{t} \bar{X}_{3, v-1} & -{ }^{t} \bar{X}_{3 v} \\
\hline \cdots & \cdots & \cdots & \cdots & \cdots & \\
\hline X_{1 v} & X_{2 v} & X_{3 v} & \cdots & X_{v-1 v} & 0
\end{array}\right) \begin{array}{l}
X_{i j} \in M\left(K_{j} \times K_{i}, \mathbb{C}\right) \\
\text { the set of matrices } \\
K_{j} \times K_{i} / 1 \leq i<j \leq v
\end{array}\right\}
$$

We can construct a group \sum_{1} which has the same properties as \sum, defined in $\S 4$. Now, we can state the theorem.

Theorem 5.1. Let $M_{1}=S U(n) / S U\left(K_{1}\right) \times \cdots \times S U\left(K_{v}\right), K_{1}+\cdots+K_{v}=n$ be the complex flag manifold. Then M_{1} admits a reduced \sum-structure, hence it is a reduced \sum-space.

On the tangent space m of $M_{1}=S U(n) / S U\left(K_{1}\right) \times \cdots \times S U\left(K_{v}\right)$ at its origin 0 we define the following inner product

$$
\begin{equation*}
<,>: m \times m \rightarrow \mathbb{R},<,>:\left(\beta, \beta^{\prime}\right) \rightarrow<\beta, \beta^{\prime}>=\frac{1}{2} \operatorname{Tr}\left(\beta \beta^{\prime}\right) \tag{5.1}
\end{equation*}
$$

If K is the Killing-Cartan form on $u(n)$, then we obtain

$$
\begin{equation*}
<,>: g \times g \rightarrow \mathbb{R}, K:\left(\alpha, \alpha^{\prime}\right) \rightarrow K\left(\alpha, \alpha^{\prime}\right)=-2 n \operatorname{Tr}\left(\beta \beta^{\prime}\right), \beta=\alpha / m, \beta^{\prime}=\alpha^{\prime} / m \tag{5.2}
\end{equation*}
$$

From (5:1) and (5.2) we conclude that

$$
\begin{equation*}
<\beta, \beta^{\prime}>=-\frac{1}{4 n} K\left(\beta, \beta^{\prime}\right) \tag{5.3}
\end{equation*}
$$

It is known that $K\left(\beta, \beta^{\prime}\right)=K\left(\alpha / m, \alpha^{\prime} / m\right)$. Since $K\left(\alpha, \alpha^{\prime}\right)$ is negative definite on the simple Lie algebra $u(n)$, we conclude from (5.3) that the inner product $<,>$, defined by (5.1), is positive definite. This inner product defines a metric d_{1} on $M_{1}=$ $S U(n) / S U\left(K_{1}\right) \times \cdots \times S U\left(K_{v}\right)$, where $K_{1}+\cdots+K_{v}=n$.

Therefore we can state the theorem.
Theorem 5.2. Let $M_{1}=S U(n) / S U\left(K_{1}\right) \times \cdots \times S U\left(K_{v}\right)$ be the complex flag manifold, where $K_{1}+\cdots+K_{v}=n$. Then the inner product (5.1) on the tangent space m of M_{1} at its origin, which comes by the restriction on m of the negative of the KillingCartan form on $u(n)$ induces a Riemannian metric d_{1} on M_{1}. Then $\left(M_{1}, d_{1}\right)$ is a reduced Riemannian \sum-space.

Now, we consider the quaternionic flag manifold

$$
M_{2}=S p(n) / S p\left(K_{1}\right) \times \cdots \times S p\left(K_{v}\right)
$$

where $K_{1}+\cdots+K_{v}=n v \geq 3$. If $v=2$, then quaternionic flag manifold takes the form

$$
M_{2}=S p(n) / S p\left(K_{1}\right) \times S p\left(K_{2}\right), \quad K_{1}+K_{2}=n
$$

which is called a quaternionic Grassmann manifold. This is also a symmetric space, which is a special case of a reduced \sum-space.

This flag manifold can be written

$$
M_{2}=G / H
$$

where $G=S p(n)=\left\{A \in G L(n, \mathbb{H}) / A * A=I_{n}\right\}$ and $H=\operatorname{Sp}\left(K_{1}\right) \times \cdots \times S p\left(K_{v}\right)$.
It contains matrices of the following form

$$
H=\left\{A \in S p(n) / A=\left(\begin{array}{c|c|c|c}
A_{1} & & & \\
\hline & A_{2} & & \\
\hline & & \ddots & \\
\hline & & & A_{v}
\end{array}\right), A_{i} \in \operatorname{Sp}\left(K_{i}\right), \quad i=1, \ldots v\right\}
$$

Let g and h be the Lie algebras of G and H respectively, which are defined by

$$
\begin{aligned}
& g=\operatorname{sp}(n)=\left\{\alpha \in g l(n, H) / \alpha^{t} J+J \alpha=0\right\} \text {, where } \\
& J=\left(\begin{array}{ccc}
J_{1} & \ldots & 0 \\
\ldots & \ldots & \ldots \\
0 & \ldots & J_{n}
\end{array}\right), J_{i}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \quad i=1, \ldots n \\
& h=\left\{\alpha=\left(\begin{array}{l|l|l|l}
\alpha_{1} & & & \\
\hline & \alpha_{2} & & \\
\hline & & \ddots & \\
\hline & & & \alpha_{v}
\end{array}\right) / \alpha_{i} \in \operatorname{sp}\left(K_{i}\right), \quad i=1, \ldots, v\right\}
\end{aligned}
$$

We consider the tangent space m of the quaternionic flag manifold $M_{2}=S p(n) / S p\left(K_{1}\right) \times \cdots \times S p\left(K_{v}\right), K_{1}+\cdots+K_{v}=n$, at its origin 0 . Then we have

$$
g=h+m
$$

The vector space m can be written by form of matrices as follows

We also can construct a group \sum_{2} which has the same properties as \sum, defined in §4. Now, we have the theorem.

Theorem 5.3. Let $M_{2}=S p(n) / S p\left(K_{1}\right) \times \cdots \times S p\left(K_{v}\right), K_{1}+\cdots+K_{v}=n$, be the quaternionic flag manifold. Then M_{2} admits a reduced \sum-structure, hence it is a reduced \sum-space.

On the tangent space m of $M_{2}=S p(n) / S p\left(K_{1}\right) \times \cdots \times S p\left(K_{v}\right)$ at its origin 0 we define the following inner product

$$
\begin{equation*}
<,>: m \times m \rightarrow \mathbb{R},<,>:\left(\beta, \beta^{\prime}\right) \rightarrow<\beta, \beta^{\prime}>=\frac{1}{2} \operatorname{Tr}\left(\beta \beta^{\prime}\right) \tag{5.4}
\end{equation*}
$$

Let K be the Killing-Cartan form on $S p(n)$, then we have

$$
K: g \times g \rightarrow \mathbb{R}, K:\left(\alpha, \alpha^{\prime}\right) \rightarrow K(\alpha, \alpha)=-2(n+1) \operatorname{Tr}\left(\beta \beta^{\prime}\right), \beta=\alpha / m, \beta^{\prime}=\alpha^{\prime} / m \text { (5.5) }
$$

The relations (5.4) and (5.5) imply

$$
\begin{equation*}
<\beta, \beta^{\prime}>=-\frac{1}{4(n+1)} K\left(\beta, \beta^{\prime}\right) \tag{5.6}
\end{equation*}
$$

where $K\left(\beta, \beta^{\prime}\right)=K\left(\alpha / m, \alpha^{\prime} / m\right)$. Since $K\left(\alpha, \alpha^{\prime}\right)$ is negative definite on the simple Lie algebra $S p(n)$, we obtain from (5.6) that the inner product $<>$, defined by (5.4), is positive definite. This inner product defines a metric d_{2} on $M_{2}=S p(n) / S p\left(K_{1}\right) \times \cdots \times$ $S p\left(K_{v}\right)$, where $K_{1}+\cdots+K_{v}=n$.

From the above we have the theorem.
Theorem 5.4. Let $M_{2}=S p(n) / S p\left(K_{1}\right) \times \cdots \times S p\left(K_{v}\right)$ be the quaternionic flag manifold, where $K_{1}+\cdots+K_{v}=n$. Then the inner product (5.4) on the tangent space m of M_{2} at its origin, which comes by the restriction on m of the negative of the KillingCartan form on $S p(n)$ induces a Riemannian metric d_{2} on M_{2}. Then $\left(M_{2}, d_{2}\right)$ is a Riemannian \sum-space.

References

[1] F. Hirzbruch, Topological methods in algebraic geometry, Springer-Verlag, New York, 1966.
[2] P. J. Graham and A. J. Ledger, "s-Regular manifolds, Differential Geometry in honour of K. Yano," Kinokuniya, Tokyo, (1972), 133-144.
[3] A. J. Ledger and A. R. Razani, "Reduced \sum-space," Illinois Jour. Math. 26(1982), 272299.
[4] A. J. Ledger, Affine and Riemannian \sum-spaces, Seminar on Mathematical Science, No 5, Keio University, 1982.
[5] O. Loos, "Spiegelungräume and homogene symmetrische," Räume Math. Z., 99 (1967), 67-72.
[6] O. Loos, "Reflexion spaces of minimal and maximal torsion," Math. Z., 106 (1968), 67-72.
[7] O. Loos, "An intrinsic characterisation of fibre bundles associated with homogeneous spaces defined by Lie group automorphisms," Abhandl. Math. Sem. Univ. Hamburg, 37 (1972), 160-179.
[8] Gr. Tsagas, "Special connections on the real flag manifolds," Proc. of the $2 r d$ Congress of Geometry. Thessloniki, 1987, 221-221.

Division of Mathematics, Department of Mathematical and Physics, School of Technology, University of Thessaloniki Thessaloniki, 54006- GREECE.
Department of Pure Mathematics, University of Liverpool, P. O. Box 147, Liverpool LG9 3BX, United Kingdom.

[^0]: Received September 17, 1996.
 1991 Mathematics Subject Classification. 53C30.
 Key words and phrases. Lie algebral, Lie group, Killing-cartan form, \sum-space and flag monifold.

 * This Research is supported by UGC grant No. F:8-13/87(SR-III).

