TAMKANG JOURNAL OF MATHEMATICS
Volume 28, Number 3, Autumn 1997

SOME PROPERTIES OF THE FLAG MANIFOLDS

GR. F. TSAGAS AND A. J. LEDGER

Abstract. The aim of the present paper is to prove that the read, complex and quaternionic

flag manifolds are Z—space.

1. Introduction

Let M be a differentiable manifold and ) a Lie group which is not required to be
connected. If M and 3" have some properties, then M is called Y -space or ) -manifold.
One of the problems of 3 -manifolds is to determine, if a given manifold can carry ) -
structure. ([2]-[7])

The aim of the present paper is to prove that the flag manifolds: S0(n)/SO(K1) x
o x SO(Ky), SU(n)/SU(Ky) x --- x SU(K,) and Sp(n)/Sp(K;) x --- x Sp(K,) can
carry »_-structures.

The whole paper contains five paragraphs.

The second paragraph deals with the general theory of > -spaces. We also consider
special categories of ) -manifolds.

The affine and Riemannian 3 -spaces and their different categories are studied in the
third paragraph.

In the fourth paragraph we consider the real flag manifold M = S O(n)/SO(K1) %
.. x SO(K,), where K1 +---+ K, =, and prove that M is a reduced ) -space. This
manifold, with the Riemannian metric, which comes by the restriction on its tangent
space mn at the origin of the negative of Killing-Cartan form on the Lie algebra o(n), is
a reduced Riemannian )_-space.

Finally, in the last paragraph we study the complex and the quaternionic flag man-
ifolds M; = SU(n)/SU(K;) x --- x SU(K,) and My = Sp(n)/Sp(K1) X --- X Sp(K,),
where K + - - - + K, = n, and prove that they are reduced Y -spaces. The manifolds M,
and M, with the Riemannian metrics, which come by the restriction on m the negative of
the Killing-Cartan form on the Lie algebras u(n) and sp(n) respectively become reduced
Riemannian ) -spaces.
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2. Let M be a differentiable manifold, ) a Lie group and
piM x> xM =M, p:(2,0y) > 0e(y)

a mooth map. Then the triplet (M, Y, ) is called a Y -space or a y_-manifold, if the
following conditions are satisfied

plmqa,n) = (2.1)
iz, e,y) =y (2.2)
w(z, o, w(z,7,9)) = 1(z,07,9) (2.3)
w(z, o, uly, 7, 2)) = wlp(z,0,y), oT0 ™", p(E,0,2)) (2.4)

where z,y,z € M, o, € ¥, and e is the identity element in ).
From the above we conclude that for each z € M and 0 € >~ a diffeomorphism o5
on M is defined.
0. M= M, o5:y—0z(y)=p,0,9)

and another smooth map o on M is also defined as follow
oMM, o°:y—0°(y)=o0y(T)

The map o, satisfies the following conditions

oz(z) =1 (2.5)

e, = idyr, where e is the identity element of 5 and Vx € M (2.6)
et = (o) (2.7)

By = (o10™ Vo2 (y) (2.8)

For each = we write Y. for the image of }_ under the map: Yo Y, O = O,
then from (2.6) and (2.7) we conclude that >_, is a subgroup of Diff(M) and this map
is a homomorphism.

For cach o € ¥ we define a tensor field S” of type (1.1) on the Y -space M as follows

S9(X,) = (o) * (Xg) forallz € M and X, € .M
Then we have the following properties
S? is smooth (2.9)
(1z) * (S7X) = STUT-I((T,,;) x X), Vo, T € Z, X € DI(M), TEM (2.10)

S%is Aut(M)-invariant (2.11)
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(0%) % Xo = (1 — (02)%)Xo = 1 = 5%) X, (2.12)

A > -space M is called a reduced S _-space, if for each z € M, then T, M is generated
by the set of all (¢%) * (X;), that is

T. M = gen{(0%) * (Xo) : Xs € .M and 0 € ) _}

=gen{(t —S9)X,: X €T;M and 0 € Z} (2.13)
If X, € T,M and (6%) % (X;) =0 for all 0 € }, then X, = 0 and thus no non-zero
vector in T, M is fixed by all (S%), Vo € 3 ([3], [4]) (2.14)

3. Now, we consider special structures on > -spaces.

An affine 3 -space is a ) -space M together with an affine connection V with the
following property. ([3])

V is ), -invariant, that means, each o, is an affine transformation.

V is called canonical, if it also has the property

VS"=0foralla€Z

A reduced affine Y -space is a reduced ) -space having such connection.

A Riemannian Y -space is a y_-space M together with a > y-invariant Riemannian
metric g, that means this metric g has the property that each o, is an isometry with
rescret to the metric g.

A reduced Riemannian Y -space is a reduced ) _-space which admits such metric. We
shall study only Riemannian reduced _-spaces. ([3], [4])

4. Now, we consider the real flag manifold ([1])
M = SO(n)/SO(Ki) x -+ x SO(Ky), Ki+---+Ky,=n
where v > 3. If v = 2, then the real flag menifold becomes
M = SO(n)/SO(K1) x SO(K>), Ki+Ky=n

which is called real Grassmann manifold. This is a symmetric space which is a special
case of reduced ) -space.
This flag manifold can be written
M=G/H
where G = SO(n) = {A € GL(nR)/AtA = I,} and H = SO(Ky) x - -+ X SO(K,) which
consists of matrices of the form

A

Az

H:{AESO(H)/A: , A; € SO(K;), i:1,2,...,v}.

.'Av
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Let g and h be the Lie algebras of G and H respectively. Then we have
g=o(n) ={ac€gl(nR)/a 4+ & =0}

and h consists of matrices of the form.

By} 0] 0 [-- 0
0lag|0}--10

h:{a: OOasg [ € o(K3), i=1,...,v}.
0[{0]0|--|ay

Let m be the tangent space of the flag manifold at its origin 0. Then we have
g=h+m.
Then m can be represented by matrices as follows

0 |—tX1o|—tXas| - |t X1v—1[~"X10

X1a| 0 |—*Xaz| = Xov—1]—"Xa20
m{ﬁ= X13| Xog 0 |- |-"X3v-1|—"X30

/Xij € A([(KJ X Ki, R)
the set of matrices
KJ‘ X Ki
1€ j=0

X1v| Xow | X3o |'7| Xv—10 0
The vector space m can be decomposed as follows
m = ©m;;j
1£i<i<n

i —column j — column

Xy
mi; =

1 — TOW Xij

j — row

\ o]/

Each vector 3 € m can be written

B=Pi2a+ - +Piw+Paz+...+02w+...+PBu-10, wheref;; €mi

}

(4.2)
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We consider the matrices

(eili| 0 | 0 |- \
0 leadea| 0 |- ,
0 0 631}(3 alieis:

)‘5152...6,,

511-—111(',,_1 0
\ 0 EvIKu /

.,v —1,v. When we have &; = 1 we write €; = ¢ and when

whereg; = +,i=1,2,..
., v is the K; unit matrix. For example:

g; = —1, then we write &; =jand Ik, i=1,2,..
( = \
Ik,
'\123...1) == IK3 y
T

\ Ik, ),

'_IKl \
o =y
Ai334..0 = —Iky ,
IKv—l
Ik, ¥
— ]
—Tw
ATQ?. o —IK3 P
—T5 .
\ IKJ
(I,
T
s
)\Ti. §= ¢
\ —IKU—I
"‘IK,,}
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The number of such matrices can be found as follows. We consider the following sets
7=11,28,....1} J={1523 .7}

We form the matrices by taking K elements from J and v — K elements from J, where
K =0,1,...,v. The number of such matrices is

G+ +E)+-+(Ga) +G)=2"

From each of these matrices we obtain an automorphism on g as follows.
We consider the matrix

Ai33.. v

and the associated automorphism 6y33._,, which is constructed as follows

=t Wi =1 :
0133..0 = Ai33..0 - A]‘Qg___.u g —g

—1

O133..0 = A33..0 " A ca = B33 (@) = Aiz3.0 " QA[33 -

123..v

Proposition 4.1. For every matriz A, ...e, we can correspond another matriz )‘E’,--f’v
such that they give the same automorphism on g.

Proof. Each matrix A¢,. ., has the property
Azl...eu = In (43)
which implies
)‘E1~-6u = )‘5—115‘, (44)
There exists another matrix )‘5’1 g.l, with the property
611 =3 ('—1)511 E12 = (_1)625 s 1611 = (_1)60 (45)
and simultaneously satisfies the relation
Aslsz...s,, = _/\5’15’2..5;- (46)

The associated automorphisms 6, .., and ¢ . to Aey..e, a0d At et respectively
have the form

051 Ev — )‘51...5‘, A;lev (47)

051.-.6 = 95'1...5’1, (49)
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For example
0133..0 = 0123..5 01230 = 01230 (4.10)
We denote by T the set of all these automorphisms, that is

T={, o fts =El Vvesly = 1} (4.11)

Proposition 4.2. There is an operation on T which makes it a group.

Proof. We denote by - this operation defined by

4 TxT =T (4.12)
s QO o it ) 0y iy, * o, =0 (4.13)

where 657.,,53 defined by
gl =gy wehyen. By 7= By ~Ey, (4.14)

This operation - turns out the set T onto a finite group with 2Y7! elements. The
identity element of this group is the automorphism 615, . Each element 0¢,¢,. e, of this
group has the property

2 -
951‘..5,, - 91...1}

which implies

951...6 :0_1

v o6 WO o6

which means each element of the group 7' has its inverse the same element.
This group has the following generators

9123...1}—1,1}1 9153...v~—1 ISR )9123‘_.’1,_1,1,7 0123...1)——1,17

Proposition 4.3. Each elemeni of the group T' acts on the Lie algebra g = h+m as
follows. It leaves h as fized pointwise and reverses some of the vectors on m and leaves
other fized. This depends on the form of the automorphism.

Proof. We take for example the automorphism 6193, - Therefore we have

O123..v = A23..v " AL h—h

123...v

" _ K al . 9 - o
0123..0 = AM23..v " A{g3 o - X B123..v (@) = A2s.. v@¥A0s
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where

—1
"\IZS.HUOLAIQ&HU

—~IK1 (4] -—IK]

- . IK3 |as lka

IK Ay IKv

IK]_(XlIKl . (11
Ij{zaz.[]{z (03]
= IK3CM3IK3

g =&

IKuavIK,, Xy

Hence the automorphism 1,3, preserves pointwise the subalgebra h of g. The same
is true for every other automorphism of T'.
We also have

IR T o R L
9123...1} = AT23~-v ’ A'1'—213...11 : ﬁ =¥ 0123...1}(/8) == ’\123...vﬁ)‘i‘23...v (415)

where

)‘1‘23...0 ) B = Ai23...u

—Ik, 0 |-tXy2|-tX1sl| - |- X1\ [ I,
Iy X12| 0 [—FXos| - |—"Xa Ik,
b Ik, Xi3| Xos 0 |- |-"Xs Ik,
IK,, Xl'v X2v X3‘U 0 IKu
( 0 |Ik, *Xia| Ik, *X13 | -] Iky *Xio \ ('—IKl
IK2X12 0 _IK2 tX23 e —IKz tXZ‘U IKz
— | IxsX13| Ik, Xo3 0 =TIk P X | . I,
\IKUXM I, Xoy | I, Xsw |- 0 ) \ Ik,
/ 0 IK1 tX12IK2 IK2 tX13IK3 i IKl tXl'UIKv
_IK2X12IK1 0 _IKz tX23IK3 e _IKz th'UIKv
_ | —Ix,Xislk, | Ik, Xos3lk, | 0 =TIk, * X301k,

e Tt [T Kales | Xl |- 0
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0 [tXia] tXus |-+ | * X1
~X12 —tXosl | X2y
= | —X13{Xos| 0 —" X2 | = 013...(0) (4.17)
‘le X‘Zu X3v

From (4.1), (4.2) and (4.17) we obtain

0123, »(Brz) = —Pi2,0123..0(B13) = — P13, - ,0123...v(B1v) = —P1vs (4.18)
0193 »(B23) = P23, 0123, v (B24) = P24, ,0523..v(B2v) = B2v -+
9123...v([3v—1,v) = ﬂv—l,v

Each automorphism 6;,¢,..., maps the vector Bij,1<i<j<vas follows. The
automorphism ¢, c,..., can be written

0123...,u—l,ﬁ,p+l,...,v—1,ﬂ

wherel< p<wv. fi=12,...,p0—1 and j = g, p+1,...,u-Lvor the other way,
then we have

Oc,cs...c, (Bij) = —Bij i<d

fi=12..,u—1andj=23,...,p0-1 i< jgori=pgmpt+l.u=10 and
j=p+1,...,v—1,v, then we obtain

05152...su (ﬁij) = /Bij i< .7

Theorem 4.4. The action of the group T on the tangent space m of the flag manifold
M = SO(n)/SO(K1) x --- x SO(Ky) leaves no vector fized.
Proof. Each vector 8 € m by virtue of (4.2) can be written
B = Pra + Brs + -+ + Bro + Pas + Paa + 1+ + P2 + Baa 4ot Pooie (419)
The automorphism 615 _,/m on m reverses all the vectors

ﬂ12,ﬁ23, e '1[’"21}

The automorphism Bi2,.. y—-1,5/1 O M ON IEVErses the vectors
. ﬂlmﬂ?ﬁm---;ﬁv—lv
From the above we conclude that the automorphisms
T! = {0135, /M, 0133....0/ ™ 0123, 0—1,5/ T}

on m do not leave vector fixed.
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Let T, be the set which is defined by Ty = T/m - T; is a group with 2v~! clements
which have the same properties as the clements of T. Ty is obtained by the restriction
of T on m. Obviously T;CTx.

Theorem 4.5. Let M = SO(n)/SO(K1) %X - -+ X SO(K,) be the real flag manifold.
Then M admits a reduced S -structure, that s, it is a reduced ) -space.

Proof. We have proved that there is the group Ty whose each element is a linear
transformation on the tangent space m of the homogencous space M at its origin 0.
These linear transformations leave no vector fixed on m.

It is known that every linear transformation

051...5,,, : g =¥ g
gives another automorphism on the Lic group G, that is
B o 1P -2 5

which leaves the subgroup H fixed pointwise. This automorphism 0, ., gives a diffeo-
morphism f., .., on the manifold M = G/H, which is defined by

vt i M =Gl H~— M = G/H
s S EH ~8 Jo oy (cH) = 0c, ..., (cy-H, ce€G

From the contruction of f, ., we obtain that
fE1...Eu : O — -I:I '_) fEl...Ev(-FI) = H = 0
that means it fixes 0 and has the property

((fﬂ...s,,)*)() == 951...6,,

The set of automorphisms Yo = {f s, _vs fls. y»---}» Which is obtained by the group
Ty, forms a finite group of 9v—1 elements which have the same properties as the elements
of T] .

It is known that the Lie group G acts transitively on the manifold M. This ac-
tion determines, to every point £ € M, a finite group of diffeomorphism on M, ), =
{f&%. 0 5 -} with 9v-1 olements which have the same properties as the elements
of T. Each clement of 3 is determined as follows. Firstly, we consider the follows
mapping:

fio.0t M — M, 15,0200

It is known that each clement of G can be considered as a diffeomorphism on the
manifold M. There is one element A € G with the property

MMM, A:0-—=z (4.20)
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The element ff, , of the group S, which is a diffeormorphism on M, is defined by
B =20ffy 001 M M
This diffeomorphism f§,  has the property
flo. o T2

that means f§, , leavesz fixed. Therefore the group S; has the form
o x |
Z = {f1$2v = Aof{)l..vOA 1’f{2...v = AOfTO‘Z...vOA e }
T

Hence to each point z € M we can associate a finite group of diffeomorphisms -
Each diffeomorphism f € > leaves z fixed and (fz)+ for all f € >_, donot leave vector
fixed on Tx(M). q.e.d.

On the tangent space m of M = G/H at its origin 0 we consider an inner product
< > defined by

<> mxm—R, <3 (8,0) < BB = —%Tr(ﬁ',@') (4.21).

If K is the Killing-Cartan form on o(n), then we have
K:gxg—RK:(aa)— K(a,a') = —(n — 1)Tr(ad) (4.22)

Since o(n) is a simple Lie algebra, it is known that K (a,a') is negative definite.
Frown (4.21) and (4.22) we concluded that

1
< B,p>= —mf{(:@aﬂ) (4.23)
From (4.23) and the above we conclude that the inner product <> on m is positive
definite which gives a Riemannian metric don M.

Theorem 4.6. Let M = SO(n)/SO(K1) X -+ %X SO(K,) be the real flag manifold,
where Ky + - -+ K, = n. Then the inner product (4.23) on the tangent space m of M at
its origin, which comes by the restriction on m of the negative of the Killing-Cartan form
on o(n) induces a Riemannian metric d on M. Then (M,d) is a reduced Riemannian

> -space.

Proof. We assume that the vectors 4 and A" have the form

, i t t
0 |-tXw|-tXs| |~ X1ea] —Xiw
t t K3
X12 0 - ng € g0 nfien X?_,,:U...] = ng
2 iy
X1z | Xos 0 |- |-tX30-1] =" Xs0

1

Xl v—1 X'z,v—-l X3,_v—~-1 ks 0 —tX'u— 1lv
le sz X3v s X’u»—lv 0




222 GR. F. TSAGAS AND A. J. LEDGER

i %1 ty! trl tyv!
0 - X12 = X13 —tle—l ‘tle
! tv! 1 !
X12 0 il XZS o —tXZ’v—l _tXQ’U
7 7 7 7
ﬁ’ — X13 X23 0 U X3‘U—1 e X3v (4 24)
[ [ [ tyv!
le—l X‘Zv—l X3v-<1 e 0 - Xv—-~1'u
7 T 7 7
le X2v X3v Xv—]v 0
then we obtain
BB =
tX12 X, — - —"X10 X1,
—X12—‘X12—'X23X£3—---—‘XQ,,XQU
—X{3X{3~X;3X;3——‘X34X;4—~'-—‘XsXé

(4.25)

t I t !
............ Xt X s s R B = D

_le’—cX;v_' ' '—Xtt;—lnx"_l" /

The relation (4.21) by means of (4.25) implies

1
<B,f'>= ETT[(tXHXb oo X X0 ) 4 (X2t X +F Xas Xig + -+ - +F X0 X3,)

+(X13 X5+ Xas X+ Xaa Xgg+- -+ X0 X))+ (X1om1 Kipor +
+XU—2,U—1 tX:;—?,v—l +t Xv—1v tthz—lv) + (Xl‘v tXiv + -+ Xy—10 tth)—l'u)]
(4.26)

If 4., ., is one automorphism of the group 71, then by the properties of 6, .., we

v
have

< 051...6., (ﬂ))gfl---Ev (ﬂ’) >
1 ;
- §TT[951...EU (tX12)0€1...€u (Xiz) + -+ 951...5., (tle)gé‘l---_Eu (X{v)]

+[951...e., (X12)651...s,, (tXig) + 951...5,, (tX23)961...E1, (Xéj) A eni
+951 ‘..s,,'(tXZv)Osl - (Xé-u)] oo [951 s (X12)951 - (X{3)
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+951 By (t‘X2'U)9€1---Eu (st)] + [661 -..Ev (X12)951 iy (X13)

+951...s1, (X23)6€1...5v(tXéB) + 951...51, (tX34)651...s,, (X:IM) o 485

+0ec,...e, (" X30)0e1..c0 (X3 )]+ -+ [Oe.e0 . R o I L Ll
FE NN & TR B o AP b Bey..en ( Kum10)0e1 .00 (K100

e es (X10)er e (Xh) + -+ brey (Kom10)0ern (Koo (4.27)
We also have

Oc,..e, ( Xij) =* Xij and B, e (Xf) =Kip, LEAKIEY (4.28)

or
Be,..c. ((Xij) = —tXij and bc,.., (Xij) = XL, 1Zi<jzv (4.29)

and

Oe,..c. CXL) =t XijOere,(Kig) = Xijy 1S i<j<w (4.30)

or
Oe,..0 CXL) = =1 X1 0er 0, (Kig) = — Xy 152 < = (4.31)

From (4.26), (4.27), (4.28), (4.29), (4.30), and (4.31) we obtain
< B,B >=<0c..c.(B),0cr.c,(B) > VOer.e, €Th (4.32)

This relation (4.32) completes the proof.

5. We consider the complex flag manifold
M; = SU(n)/SU (K1) x -+ X SU{(K,);
where Ky + -+ Ky =n,v>3. fv=2, then the complex flag manifold becomes
M; = SU(n)/SU(K1) x SU(K3), Ki+ Ky =mn

which is called complex Grassmann manifold. This is a symmetric space, which is a
special case of a reduced ) -space.
This flag manifold can be written

M, =G/H
where G = SU(n) = {A € GL(n,C)/A*x A =In} and H = SU(Ky) x -+ x SU(Ky),

which consists of matrices of the form

Aj

Az

H:{AESU(n)/Az _A; € SU(K), 7::1,...,v}.

Ay
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We consider the Lie algebras g and h of G and H respectively, which are defined by

g = u(n) = {a € gl(n,C)/a + *a = 0}

631

a
b= cq= : fog EulKy), f=lien,¥

Uy

Let m be the tangent space of the complex flag manifold M; = SU(n)/SU (K1) x
.- x SU(K,),K1 + -+ K, = n, at its origin 0. Then we have

g=h+m.

Then m can be represented by the matrices as follows

0 —tX12 _tXIS _txl,v——l —tle
{ X12 0 *—tX23 _tXZ,v—l —thv /Xij € M(KJ P ¢ K,;, C) }
m = ,8 —

Xi3| Xos 0 |--|-*X3,-1|— X3, | the set of matrices

K;xKi/1<i<j<w

le X2v X3‘I) X1r~~1u 0

We can construct a group Y., which has the same properties as ), defined in §4.
Now, we can state the theorem.

Theorem 5.1. Let M; = SU(n)/SU(K;) x --- x SU(Ky), K1+ -+ Ky, =n be
the complez flag manifold. Then M, admits a reduced y -structure, hence it is a reduced

> -space.
On the tangent space m of M; = SU(n)/SU (K1) % --- x SU(K,) at its origin 0 we

define the following inner product
<, >mxm—=R,<,>:(8,8)2<p,8 >= %Tr([ﬂﬁ') (8.1)
If K is the Killing-Cartan form on u(n), then we obtain
<,>:gxg—-R K:(a,a) = K(a,o') = -2nTr(86"),8 = a/m, f/ =o' /m (5.2)

rom (5:1) and (5.2) we conclude that

i — 1 ! (o
< ﬂ,ﬂ b 4nK(ﬁ,ﬂ ) (‘)3)

It is known that K(8,3') = K(a/m,a'/m). Since K(a, ') is negative definite on
the simple Lie algebra u(n), we conclude from (5.3) that the inner product <,>, de-
fined by (5.1), is positive definite. This inner product defines a metric d; on M; =
SU(n)/SU(K;) x --- x SU(Ky), where K; +---+ K, =n.
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Therefore we can state the theorem.

Theorem 5.2. Let My = SU(n)/SU(K1) X --- x SU(K,) be the complex flag man-
ifold, where K1 + -+ + K, = n. Then the inner product (5.1) on the tangent space m
of My at its origin, which comes by the restriction on m of the negative of the Killing-
Cartan form on u(n) induces a Riemannian metric d; on My. Then (M,d1) is a reduced
Riemannian ) -space.

Now, we consider the quaternionic flag manifold

M, = Sp(n)/Sp(K1) x -+ x Sp(Ky)
where K; + -+ + K, = n v > 3. If v = 2, then quaternionic flag manifold takes the form
M, = Sp(n)/Sp(K1) x Sp(K2),  Ki+Ks=n

which is called a quaternionic Grassmann manifold. This is also a symmetric space,
which is a special case of a reduced ) -space.
This flag manifold can be written

M,=G/H

where G = Sp(n) = {A € GL(n,H)/A* A =I,} and H = Sp(K;) X --- x Sp(K,).
It contains matrices of the following form

A

Az

H= {AESp(n)/Az ,A; € Sp(K)), i=1,...v}.

Ay
Let g and h be the Lie algebras of G and H respectively, which are defined by

g=sp(n) = {a € gl(n,H)/a'J + Ja = 0}, where

B owun D
L N ——— ,Jt=(_01‘é) 7::1,...71
| PP,
ay
(83))
hi= £ = ] Ja; € sp(K;), i=1,...,v
Qy

We consider the tangent space m of the quaternionic flag manifold
My = Sp(n)/Sp(K;) x --- x Sp(Ky), K; +---+ K, = n, at its origin 0. Then we have

g=h+m
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The vector space m can be written by form of matrices as follows

[0 *X1o X HX1e—1 —txw\

- == - X.ie M(K; x K;, H

Xiz| 0 |HXps| [HXs0 —X20 {hc”soet of Exiixjtrices !

m = {ﬂ: X13| Xos 0 ""‘tX3,v—] —tX;}U Kiji/1§i<j§v }
and H is the field of
quaternionic numbers.

\X71'u IY'Zv X3’U Xv—l,v 0 /

We also can construct a group »_, which has the same properties as >, defined in
§4. Now, we have the theorem.

Theorem 5.3. Let My = Sp(n)/Sp(K:1) x --- x Sp(Ky), K1 +---+ Ky =n, be the
quaternionic flag manifold. Then Ma admits a reduced Y -structure, hence it ts a reduced

> -space.
On the tangent space m of My = Sp(n)/Sp(K1) X --- X Sp(K,) at its origin 0 we
define the following inner product

1
<,>mxm—=R,<,>(3,0)=<6,8 >= ETr(ﬁﬂ') (5.4)
Let K be the Killing-Cartan form on Sp(n), then we have
K:gxg—=R K:(aa) = K@a)=-2n+1)Tr(B8),A=a/m,  =d /m (5.5)

The relations (5.4) and (5.5) imply

£ B P == K(B,08") (5.6)

1
D)
where K (8, 8') = K(a/m,a'/m). Since K(a,qa') is negative definite on the simple Lie
algebra Sp(n), we obtain from (5.6) that the inner product < >, defined by (5.4), is
positive definite. This inner product defines a metric dy on Mz = Sp(n)/Sp(Ky) X -+ X
Sp(K,), where K1 +---+ Ky = n.

From the above we have the theorem.

Theorem 5.4. Let Mo = Sp(n)/Sp(K1) x --- x Sp(Ky) be the quaternionic flag
manifold, where K; + -+ + K, = n. Then the inner product (5.4) on the tangent space
m of My at its origin, which comes by the restriction onm of the negative of the Killing-
Cartan form on Sp(n) induces a Riemannian metric dz on Ms. Then (M2,d2) is a
Riemannian ) -space.
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