TAMKANG JOURNAL OF MATHEMATICS Volume 28, Number 3, Autumn 1997

SOME PROPERTIES OF THE FLAG MANIFOLDS

GR. F. TSAGAS AND A. J. LEDGER

Abstract. The aim of the present paper is to prove that the read, complex and quaternionic flag manifolds are \sum -space.

1. Introduction

Let M be a differentiable manifold and \sum a Lie group which is not required to be connected. If M and \sum have some properties, then M is called \sum -space or \sum -manifold. One of the problems of \sum -manifolds is to determine, if a given manifold can carry \sum structure. ([2]-[7])

The aim of the present paper is to prove that the flag manifolds: $SO(n)/SO(K_1) \times \cdots \times SO(K_v)$, $SU(n)/SU(K_1) \times \cdots \times SU(K_v)$ and $Sp(n)/Sp(K_1) \times \cdots \times Sp(K_v)$ can carry \sum -structures.

The whole paper contains five paragraphs.

The second paragraph deals with the general theory of \sum -spaces. We also consider special categories of \sum -manifolds.

The affine and Riemannian \sum -spaces and their different categories are studied in the third paragraph.

In the fourth paragraph we consider the real flag manifold $M = SO(n)/SO(K_1) \times \cdots \times SO(K_v)$, where $K_1 + \cdots + K_v = n$, and prove that M is a reduced \sum -space. This manifold, with the Riemannian metric, which comes by the restriction on its tangent space m at the origin of the negative of Killing-Cartan form on the Lie algebra o(n), is a reduced Riemannian \sum -space.

Finally, in the last paragraph we study the complex and the quaternionic flag manifolds $M_1 = SU(n)/SU(K_1) \times \cdots \times SU(K_v)$ and $M_2 = Sp(n)/Sp(K_1) \times \cdots \times Sp(K_v)$, where $K_1 + \cdots + K_v = n$, and prove that they are reduced Σ -spaces. The manifolds M_1 and M_2 with the Riemannian metrics, which come by the restriction on m the negative of the Killing-Cartan form on the Lie algebras u(n) and sp(n) respectively become reduced Riemannian Σ -spaces.

Received September 17, 1996.

¹⁹⁹¹ Mathematics Subject Classification. 53C30.

Key words and phrases. Lie algebral, Lie group, Killing-cartan form, \sum -space and flag monifold.

^{*} This Research is supported by UGC grant No. F:8-13/87(SR-III).

2. Let M be a differentiable manifold, \sum a Lie group and

$$\mu: M \times \sum \times M \to M, \quad \mu: (x, \sigma, y) \to \sigma_x(y)$$

a mooth map. Then the triplet (M, \sum, μ) is called a \sum -space or a \sum -manifold, if the following conditions are satisfied

$$\mu(x,\sigma,x) = x \tag{2.1}$$

$$\mu(x, e, y) = y \tag{2.2}$$

$$\mu(x,\sigma,\mu(x,\tau,y)) = \mu(x,\sigma\tau,y) \tag{2.3}$$

$$\mu(x,\sigma,\mu(y,\tau,z)) = \mu(\mu(x,\sigma,y),\,\sigma\tau\,\sigma^{-1},\,\mu(x,\sigma,z)) \tag{2.4}$$

where $x, y, z \in M, \sigma, \tau \in \sum$ and e is the identity element in \sum .

From the above we conclude that for each $x \in M$ and $\sigma \in \sum$ a diffeomorphism σ_x on M is defined.

$$\sigma_x: M \to M, \quad \sigma_x: y \to \sigma_x(y) = \mu(x, \sigma, y).$$

and another smooth map σ^x on M is also defined as follow

$$\sigma^x: M \to M, \quad \sigma^x: y \to \sigma^x(y) = \sigma_y(x).$$

The map σ_x satisfies the following conditions

$$\sigma_x(x) = x \tag{2.5}$$

 $e_x = id_M$, where e is the identity element of \sum and $\forall x \in M$ (2.6)

$$\sigma_x \tau_x = (\sigma \tau)_x \tag{2.7}$$

$$\sigma_x \tau_y \sigma_x^{-1} = (\sigma \tau \sigma^{-1}) \sigma_x(y) \tag{2.8}$$

For each x we write \sum_x for the image of \sum under the map: $\sum \to \sum_x$, : $\sigma \to \sigma_x$, then from (2.6) and (2.7) we conclude that \sum_x is a subgroup of Diff(M) and this map is a homomorphism.

For each $\sigma \in \sum$ we define a tensor field S^{σ} of type (1.1) on the \sum -space M as follows

$$S_x^{\sigma}(X_x) = (\sigma_x) * (X_x)$$
 for all $x \in M$ and $X_x \in T_x M$

Then we have the following properties

$$S^{\sigma}$$
 is smooth (2.9)

$$(\tau_x) * (S^{\sigma}X) = S^{\tau\sigma\tau^{-1}}((\tau_x) * X), \forall \sigma, \tau \in \sum, X \in D^1(M), x \in M$$

$$(2.10)$$

$$S^{\sigma}$$
 is Aut(M)-invariant (2.11)

$$(\sigma^x) * X_x = (1 - (\sigma_x)) X_x = (1 - S^{\sigma}) X_x$$
(2.12)

A \sum -space M is called a reduced \sum -space, if for each $x \in M$, then $T_x M$ is generated by the set of all $(\sigma^x) * (X_x)$, that is

$$T_x M = gen\{(\sigma^x) * (X_x) : X_x \in T_x M \text{ and } \sigma \in \sum\}$$

= gen{(\(\tau - S^\sigma) X_x : X \in T_x M \text{ and } \sigma \in \sigma\)} (2.13)

If $X_x \in T_x M$ and $(\sigma^x) * (X_x) = 0$ for all $\sigma \in \Sigma$, then $X_x = 0$ and thus no non-zero vector in $T_x M$ is fixed by all $(S^{\sigma})_x \forall \sigma \in \Sigma$ ([3], [4]) (2.14)

3. Now, we consider special structures on \sum -spaces.

An affine \sum -space is a \sum -space M together with an affine connection ∇ with the following property. ([3])

 ∇ is \sum_{M} -invariant, that means, each σ_x is an affine transformation.

 ∇ is called canonical, if it also has the property

$$\nabla S^{\sigma} = 0 \text{ for all } \sigma \in \sum$$

A reduced affine \sum -space is a reduced \sum -space having such connection.

A Riemannian \sum -space is a \sum -space M together with a \sum_{M} -invariant Riemannian metric g, that means this metric g has the property that each σ_x is an isometry with rescret to the metric g.

A reduced Riemannian \sum -space is a reduced \sum -space which admits such metric. We shall study only Riemannian reduced \sum -spaces. ([3], [4])

4. Now, we consider the real flag manifold ([1])

$$M = SO(n)/SO(K_1) \times \cdots \times SO(K_v), \qquad K_1 + \cdots + K_v = n$$

where $v \geq 3$. If v = 2, then the real flag menifold becomes

$$M = SO(n)/SO(K_1) \times SO(K_2), \qquad K_1 + K_2 = n$$

which is called real Grassmann manifold. This is a symmetric space which is a special case of reduced \sum -space.

This flag manifold can be written

M = G/H

where $G = SO(n) = \{A \in GL(n\mathbb{R}) | A^t A = I_n\}$ and $H = SO(K_1) \times \cdots \times SO(K_v)$ which consists of matrices of the form

Let g and h be the Lie algebras of G and H respectively. Then we have

$$g = o(n) = \{ \alpha \in gl(n, \mathbb{R}) / \alpha + {}^t \alpha = 0 \}$$

and h consists of matrices of the form.

$$h = \left\{ \alpha = \begin{pmatrix} \alpha_1 & 0 & 0 & \cdots & 0 \\ \hline 0 & \alpha_2 & 0 & \cdots & 0 \\ \hline 0 & 0 & \alpha_3 & \cdots & 0 \\ \hline \hline 0 & 0 & 0 & \cdots & \alpha_v \\ \hline \hline 0 & 0 & 0 & \cdots & \alpha_v \end{pmatrix} / \alpha_i \in o(K_i), \quad i = 1, \dots, v \right\}.$$

Let m be the tangent space of the flag manifold at its origin 0. Then we have

$$g = h + m$$
.

Then m can be represented by matrices as follows

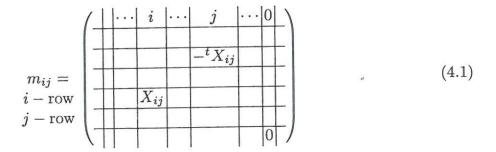
$$m\left\{\beta = \begin{pmatrix} 0 & -{}^{t}X_{12} & -{}^{t}X_{13} & \cdots & -{}^{t}X_{1v-1} & -{}^{t}X_{1v} \\ \hline X_{12} & 0 & -{}^{t}X_{23} & \cdots & -{}^{t}X_{2v-1} & -{}^{t}X_{2v} \\ \hline X_{13} & X_{23} & 0 & \cdots & -{}^{t}X_{3v-1} & -{}^{t}X_{3v} \\ \hline \cdots & \cdots & \cdots & \cdots & \hline X_{1v} & X_{2v} & X_{3v} & \cdots & X_{v-1v} & 0 \end{pmatrix} / X_{ij} \in M(K_j \times K_i, \mathbb{R})$$
the set of matrices $K_j \times K_i$
 $1 \le i < j \le v$

The vector space m can be decomposed as follows

$$m = \oplus m_{ij}$$

$$1 \le i < j \le n$$

i - column j - column



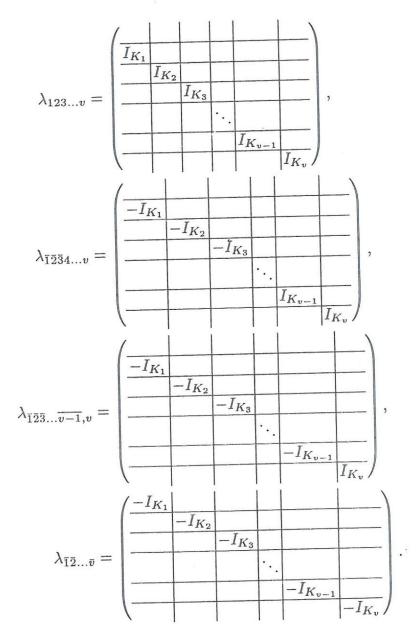
Each vector $\beta \in m$ can be written

$$\beta = \beta_{12} + \dots + \beta_{1v} + \beta_{23} + \dots + \beta_{2v} + \dots + \beta_{v-1v}, \quad \text{where } \beta_{ij} \in m_{ij}$$
(4.2)

We consider the matrices

	$(\varepsilon_1 I_{K_1})$	0	0)
	0	$\varepsilon_2 I_{K_2}$	0			·
	0	0	$\varepsilon_3 I_{K_3}$			
$\lambda_{\varepsilon_1\varepsilon_2\varepsilon_v} =$				ŀ.,		
					$\varepsilon_{v-1}I_{K_{v-1}}$	0
	[1			0	$\varepsilon_v I_{K_v}$ /

where $\varepsilon_i = \pm$, i = 1, 2, ..., v - 1, v. When we have $\varepsilon_i = 1$ we write $\varepsilon_i = i$ and when $\varepsilon_j = -1$, then we write $\varepsilon_j = \overline{j}$ and I_{K_i} i = 1, 2, ..., v is the K_i unit matrix. For example:



The number of such matrices can be found as follows. We consider the following sets

$$J = \{1, 2, 3, \dots, v\}, \quad \bar{J} = \{\bar{1}, \bar{2}, \bar{3}, \dots, \bar{v}\}$$

We form the matrices by taking K elements from J and v - K elements from \overline{J} , where $K = 0, 1, \ldots, v$. The number of such matrices is

$$\binom{v}{0} + \binom{v}{1} + \binom{v}{2} + \dots + \binom{v}{v-1} + \binom{v}{v} = 2^{v}.$$

From each of these matrices we obtain an automorphism on g as follows. We consider the matrix

$$\lambda_{ar{1}ar{2}3...v}$$

and the associated automorphism $\theta_{\bar{1}\bar{2}3...v}$, which is constructed as follows

$$\theta_{\bar{1}\bar{2}3...v} = \lambda_{\bar{1}\bar{2}3...v} \cdot \lambda_{\bar{1}\bar{2}3...v}^{-1} : g \to g$$
$$\theta_{\bar{1}\bar{2}3...v} = \lambda_{\bar{1}\bar{2}3...v} \cdot \lambda_{\bar{1}\bar{2}3...v}^{-1} : \alpha \to \theta_{\bar{1}\bar{2}3...v}(\alpha) = \lambda_{\bar{1}\bar{2}3...v} \cdot \alpha \lambda_{\bar{1}\bar{2}3...v}^{-1}$$

Proposition 4.1. For every matrix $\lambda_{\varepsilon_n \dots \varepsilon_v}$ we can correspond another matrix $\lambda_{\varepsilon'_1 \dots \varepsilon'_v}$ such that they give the same automorphism on g.

Proof. Each matrix $\lambda_{\varepsilon_1...\varepsilon_v}$ has the property

$$\lambda_{\varepsilon_1\dots\varepsilon_n}^2 = I_n \tag{4.3}$$

which implies

$$\lambda_{\varepsilon_1\dots\varepsilon_{\nu}} = \lambda_{\varepsilon_1\dots\varepsilon_{\nu}}^{-1}.$$
(4.4)

There exists another matrix $\lambda_{\varepsilon'_1 \varepsilon'_2 \dots \varepsilon'_v}$ with the property

$$\varepsilon_1' = (-1)\varepsilon_1, \quad \varepsilon_2' = (-1)\varepsilon_2, \cdots, \varepsilon_v' = (-1)\varepsilon_v$$

$$(4.5)$$

and simultaneously satisfies the relation

$$\lambda_{\varepsilon_1\varepsilon_2\ldots\varepsilon_v} = -\lambda_{\varepsilon_1'\varepsilon_2'\ldots\varepsilon_n'}.\tag{4.6}$$

The associated automorphisms $\theta_{\varepsilon_1...\varepsilon_v}$ and $\theta_{\varepsilon'_1...\varepsilon'_v}$ to $\lambda_{\varepsilon_1...\varepsilon_v}$ and $\lambda_{\varepsilon'_1...\varepsilon'_v}$ respectively have the form

$$\theta_{\varepsilon_1 \dots \varepsilon_\nu} = \lambda_{\varepsilon_1 \dots \varepsilon_\nu} \cdot \lambda_{\varepsilon_1 \dots \varepsilon_\nu}^{-1} \tag{4.7}$$

$$\theta_{\varepsilon_1'\ldots\varepsilon_\nu'} = \lambda_{\varepsilon_1'\ldots\varepsilon_\nu'} \cdot \lambda_{\varepsilon_1'\ldots\varepsilon_\nu'}^{-1} \tag{4.8}$$

From (4.7) and (4.8) we obtain

$$\theta_{\varepsilon_1\dots\varepsilon_v} = \theta_{\varepsilon'_1\dots\varepsilon'_v} \tag{4.9}$$

For example

$$\theta_{\bar{1}\bar{2}\bar{3}...v} = \theta_{12\bar{3}...\bar{v}}, \quad \theta_{\bar{1}\bar{2}\bar{3}...\bar{v}} = \theta_{12\bar{3}...v} \tag{4.10}$$

We denote by T the set of all these automorphisms, that is

$$T = \{\theta_{\varepsilon_1 \dots \varepsilon_v} / \varepsilon_1 = \pm 1, \dots, \varepsilon_v = \pm 1\}$$
(4.11)

Proposition 4.2. There is an operation on T which makes it a group.

Proof. We denote by \cdot this operation defined by

$$: T \times T \to T$$
 (4.12)

$$\cdot: (\theta_{\varepsilon_1 \dots \varepsilon_v}, \theta_{\varepsilon'_1 \dots \varepsilon'_v}) \to \theta_{\varepsilon_1 \dots \varepsilon_v} \cdot \theta_{\varepsilon'_1 \dots \varepsilon'_v} = \theta_{\varepsilon''_1 \dots \varepsilon''_v}$$
(4.13)

where $\theta_{\varepsilon_1'' \dots \varepsilon_v''}$ defined by

$$\varepsilon_1'' = \varepsilon_1 \cdot \varepsilon_1', \dots, \varepsilon_v'' = \varepsilon_v \cdot \varepsilon_v' \tag{4.14}$$

This operation \cdot turns out the set T onto a finite group with $2^{\nu-1}$ elements. The identity element of this group is the automorphism $\theta_{12...\nu}$. Each element $\theta_{\varepsilon_1\varepsilon_2...\varepsilon_{\nu}}$ of this group has the property

$$\theta_{\varepsilon_1...\varepsilon_n}^2 = \theta_{1...v}$$

which implies

$$\theta_{\varepsilon_1\ldots\varepsilon_v}=\theta_{\varepsilon_1\ldots\varepsilon_v}^{-1}$$

which means each element of the group T has its inverse the same element.

This group has the following generators

$$\theta_{\overline{1}23\ldots v-1,v}, \theta_{1\overline{2}3\ldots v-1},\ldots,\theta_{123\ldots v-1,v}, \theta_{123\ldots v-1,\overline{v}}$$

Proposition 4.3. Each element of the group T acts on the Lie algebra g = h + m as follows. It leaves h as fixed pointwise and reverses some of the vectors on m and leaves other fixed. This depends on the form of the automorphism.

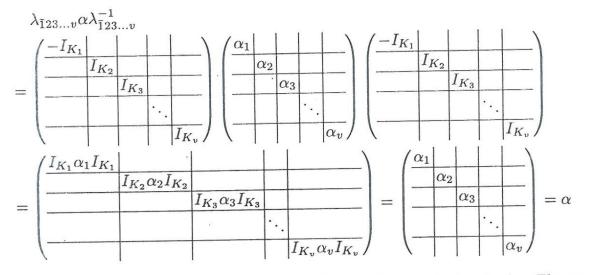
Proof. We take for example the automorphism $\theta_{\bar{1}23...v}$. Therefore we have

$$\theta_{\bar{1}23\dots v} = \lambda_{\bar{1}23\dots v} \cdot \lambda_{\bar{1}23\dots v}^{-1} : h \to h$$
$$\theta_{\bar{1}23\dots v} = \lambda_{\bar{1}23\dots v} \cdot \lambda_{\bar{1}23\dots v}^{-1} : \alpha \to \theta_{\bar{1}23\dots v}(\alpha) = \lambda_{\bar{1}23\dots v} \alpha \lambda_{\bar{1}23\dots v}^{-1}$$

. . .

.....

where



Hence the automorphism $\theta_{\bar{1}23...v}$ preserves pointwise the subalgebra h of g. The same is true for every other automorphism of T.

We also have

$$\theta_{\bar{1}23\dots\nu} = \lambda_{\bar{1}23\dots\nu} \cdot \lambda_{\bar{1}23\dots\nu}^{-1} : m \to m$$

$$\theta_{\bar{1}23\dots\nu} = \lambda_{\bar{1}23\dots\nu} \cdot \lambda_{\bar{1}23\dots\nu}^{-1} : \beta \to \theta_{\bar{1}23\dots\nu}(\beta) = \lambda_{\bar{1}23\dots\nu}\beta\lambda_{\bar{1}23\dots\nu}$$
(4.15)

where

$$\begin{split} &\lambda_{\overline{1}23...v} \cdot \beta \cdot \lambda_{\overline{1}23...v} \\ &= \begin{pmatrix} \frac{-I_{K_1}}{I_{K_2}} & \frac{1}{I_{K_3}} \\ \frac{-I_{K_1}}{I_{K_2}} & \frac{-I_{K_1}}{I_{K_2}} \\ \frac{-I_{K_1}}{I_{K_2}} & \frac{-I_{K_2}}{I_{K_3}} \\ \frac{-I_{K_1}}{I_{K_2}} & \frac{-I_{K_2}}{I_{K_2}} \\ \frac{-I_{K_2}}{I_{K_3}} \\ \frac{-I_{K_2}}{I_{K_3}} \\ \frac{-I_{K_1}}{I_{K_2}} & \frac{-I_{K_2}}{I_{K_2}} \\ \frac{-I_{K_2}}{I_{K_3}} \\ \frac{-I_{K_3}}{I_{K_3}} \\ \frac{-I_{K_3$$

$$= \begin{pmatrix} 0 & {}^{t}X_{12} & {}^{t}X_{13} & \cdots & {}^{t}X_{1v} \\ \hline -X_{12} & {}^{-t}X_{23} & \cdots & {}^{-t}X_{2v} \\ \hline -X_{13} & X_{23} & 0 & {}^{-t}X_{2v} \\ \hline \hline \cdots & \cdots & \ddots & \cdots & \cdots \\ \hline -X_{1v} & X_{2v} & X_{3v} & \cdots & \end{pmatrix} = \theta_{\bar{1}23\dots v}(\beta)$$

$$(4.17)$$

From (4.1), (4.2) and (4.17) we obtain

$$\theta_{\bar{1}23...v}(\beta_{12}) = -\beta_{12}, \theta_{\bar{1}23...v}(\beta_{13}) = -\beta_{13}, \cdots, \theta_{\bar{1}23...v}(\beta_{1v}) = -\beta_{1v}, \qquad (4.18)$$

$$\theta_{\bar{1}23...v}(\beta_{23}) = \beta_{23}, \theta_{\bar{1}23...v}(\beta_{24}) = \beta_{24}, \cdots, \theta_{\bar{1}23...v}(\beta_{2v}) = \beta_{2v} \cdots$$

$$\theta_{\bar{1}23...v}(\beta_{v-1,v}) = \beta_{v-1,v}$$

Each automorphism $\theta_{\varepsilon_1\varepsilon_2...\varepsilon_v}$ maps the vector β_{ij} , $1 \leq i < j \leq v$ as follows. The automorphism $\theta_{\varepsilon_1\varepsilon_2...\varepsilon_v}$ can be written

$$\theta_{123...,\mu-1,\bar{\mu},\overline{\mu+1},...,\overline{v-1},\bar{v}}$$

where $1 \le \mu \le v$. If $i = 1, 2, ..., \mu - 1$ and $j = \mu, \mu + 1, ..., v - 1, v$ or the other way, then we have

$$\theta_{\varepsilon_1 \varepsilon_2 \dots \varepsilon_n}(\beta_{ij}) = -\beta_{ij} \qquad i < j$$

If $i = 1, 2, ..., \mu - 1$ and $j = 2, 3, ..., \mu - 1$ i < j or $i = \mu, \mu + 1 ..., v - 1, v$ and $j = \mu + 1, ..., v - 1, v$, then we obtain

$$\theta_{\varepsilon_1 \varepsilon_2 \dots \varepsilon_v}(\beta_{ij}) = \beta_{ij} \qquad i < j$$

Theorem 4.4. The action of the group T on the tangent space m of the flag manifold $M = SO(n)/SO(K_1) \times \cdots \times SO(K_v)$ leaves no vector fixed.

Proof. Each vector $\beta \in m$ by virtue of (4.2) can be written

$$\beta = \beta_{12} + \beta_{13} + \dots + \beta_{1v} + \beta_{23} + \beta_{24} + \dots + \beta_{2v} + \beta_{34} + \dots + \beta_{v-1v}$$
(4.19)

The automorphism $\theta_{\bar{1}2...v}/m$ on m reverses all the vectors

$$\beta_{12},\beta_{23},\ldots,\beta_{2v}$$

The automorphism $\beta_{12,...,v-1,\bar{v}}/m$ on m on reverses the vectors

$$\beta_{1v}, \beta_{2v}, \ldots, \beta_{v-1v}$$

From the above we conclude that the automorphisms

$$T_1' = \{\theta_{1\bar{2}3...,v}/m, \theta_{1\bar{2}3...,v}/m, \theta_{123...,v-1,\bar{v}}/m\}$$

on m do not leave vector fixed.

(1 10)

GR. F. TSAGAS AND A. J. LEDGER

Let T_1 be the set which is defined by $T_1 = T/m \cdot T_1$ is a group with $2^{\nu-1}$ elements which have the same properties as the elements of T. T_1 is obtained by the restriction of T on m. Obviously T'_1CT_1 .

Theorem 4.5. Let $M = SO(n)/SO(K_1) \times \cdots \times SO(K_v)$ be the real flag manifold. Then M admits a reduced \sum -structure, that is, it is a reduced \sum -space.

Proof. We have proved that there is the group T_1 whose each element is a linear transformation on the tangent space m of the homogeneous space M at its origin 0. These linear transformations leave no vector fixed on m.

It is known that every linear transformation

$$\theta_{\varepsilon_1\ldots\varepsilon_n}:g\to g$$

gives another automorphism on the Lie group G, that is

$$\theta_{\varepsilon_1,\ldots,\varepsilon_n}: G \to G$$

which leaves the subgroup H fixed pointwise. This automorphism $\theta_{\varepsilon_1...\varepsilon_v}$ gives a diffeomorphism $f_{\varepsilon_1...\varepsilon_v}$ on the manifold M = G/H, which is defined by

$$f_{\varepsilon_1...\varepsilon_{\nu}}: M = G/H \to M = G/H$$

$$f_{\varepsilon_1...\varepsilon_{\nu}}: cH \to f_{\varepsilon_1...\varepsilon_{\nu}}(cH) = \theta_{\varepsilon_1...\varepsilon_{\nu}}(c) \cdot H, \quad c \in G$$

From the contruction of $f_{\varepsilon_1...\varepsilon_v}$ we obtain that

$$f_{\varepsilon_1...\varepsilon_v}: 0 = H \to f_{\varepsilon_1...\varepsilon_v}(H) = H = 0$$

that means it fixes 0 and has the property

$$((f_{\varepsilon_1\ldots\varepsilon_v})_*)_0=\theta_{\varepsilon_1\ldots\varepsilon_v}$$

The set of automorphisms $\sum_{0} = \{f_{12,\dots v}^{0}, f_{\overline{12}\dots v}^{0}, \dots\}$, which is obtained by the group T_1 , forms a finite group of $2^{\nu-1}$ elements which have the same properties as the elements of T_1 .

It is known that the Lie group G acts transitively on the manifold M. This action determines, to every point $x \in M$, a finite group of diffeomorphism on M, $\sum_{x} = \{f_{12\ldots v}^{x}, f_{12\ldots v}^{x} \ldots\}$ with 2^{v-1} elements which have the same properties as the elements of T. Each element of \sum_{x} is determined as follows. Firstly, we consider the follows mapping:

$$f^{0}_{\bar{1}2...v}: M \to M, \quad f^{0}_{\bar{1}2...v}: 0 \to 0$$

It is known that each element of G can be considered as a diffeomorphism on the manifold M. There is one element $\lambda \in G$ with the property

$$\lambda: M \to M, \quad \lambda: 0 \to x \tag{4.20}$$

The element $f_{12...v}^x$ of the group S_x which is a diffeormorphism on M, is defined by

$$f^x_{\bar{1}2\dots v} = \lambda o f^o_{\bar{1}2\dots v} o \lambda_{-1} : M \to M$$

This diffeomorphism $f^x_{\bar{1}2...v}$ has the property

$$f^x_{\bar{1}2\dots v}: x \to x$$

that means $f_{\bar{1}2...v}^x$ leaves x fixed. Therefore the group S_x has the form

$$\sum_{x} = \{ f_{12...v}^{x} = \lambda o f_{12...v}^{o} o \lambda^{-1}, f_{\overline{1}2...v}^{x} = \lambda o f_{\overline{1}2...v}^{o} o \lambda^{-1}, \ldots \}$$

Hence to each point $x \in M$ we can associate a finite group of diffeomorphisms \sum_x . Each diffeomorphism $f \in \sum_x$ leaves x fixed and $(f_x)_*$ for all $f \in \sum_x$ do not leave vector fixed on $T_*(M)$. q.e.d.

On the tangent space m of M = G/H at its origin 0 we consider an inner product <> defined by

$$<>: m \times m \to \mathbb{R}, <>: (\beta, \beta') \to <\beta, \beta'>= -\frac{1}{2}Tr(\beta'\beta')$$
(4.21)

If K is the Killing-Cartan form on o(n), then we have

$$K: g \times g \to \mathbb{R}, K: (\alpha, \alpha') \to K(\alpha, \alpha') = -(n-1)Tr(\alpha\alpha')$$
(4.22)

Since o(n) is a simple Lie algebra, it is known that $K(\alpha, \alpha')$ is negative definite. From (4.21) and (4.22) we concluded that

$$\langle \beta, \beta \rangle = -\frac{1}{2(n-1)}K(\beta,\beta)$$

$$(4.23)$$

From (4.23) and the above we conclude that the inner product $\langle \rangle$ on m is positive definite which gives a Riemannian metric d on M.

Theorem 4.6. Let $M = SO(n)/SO(K_1) \times \cdots \times SO(K_v)$ be the real flag manifold, where $K_1 + \cdots + K_v = n$. Then the inner product (4.23) on the tangent space m of M at its origin, which comes by the restriction on m of the negative of the Killing-Cartan form on o(n) induces a Riemannian metric d on M. Then (M, d) is a reduced Riemannian \sum -space.

Proof. We assume that the vectors β and β' have the form

	/ 0	$-^{t}X_{12}$	$-^{t}X_{13}$	 $-^{t}X_{1,v-1}$	$-^{t}X_{1v}$	
	$-X_{12}$	0	$-{}^{t}X_{23}$	 $-^{t}X_{2,v-1}$	$-{}^{t}X_{2v}$	
0	X_{13}	X_{23}	0	 $-^{t}X_{3,v-1}$	$-^{t}X_{3v}$	
$\beta = \begin{bmatrix} - \\ - \\ - \\ - \\ - \\ - \end{bmatrix}$,
	$\overline{X_{1,v-1}}$	$X_{2,v-1}$	$X_{3,v-1}$	 0	$-^{t}X_{v-1v}$	
	$\left(\begin{array}{c} \hline X_{1v} \end{array} \right)$	X_{2v}		 X_{v-1v}	0 /	/

	(0	$-tX'_{12}$	$-^{t}X'_{13}$		$ -^{t}X'_{1v-1} $	$-{}^{t}X'_{1v}$	
	X'_{12}	0	$-{}^{t}X'_{23}$		$-{}^{t}X'_{2v-1}$	$-^{t}X'_{2v}$	
01	$\overline{X'_{13}}$	X'_{23}	0		$-{}^{t}X'_{3v-1}$	$-^{t}X'_{3v}$	(4.24)
$\rho \equiv$							(/ .
	$\overline{X'_{1v-1}}$	X'_{2v-1}	X'_{3v-1}		0	$-^{t}X_{v-1v}^{\prime}$	
	$\left\langle \begin{array}{c} X_{1v}' \end{array} \right\rangle$	X'_{2v}	X'_{3v}		X'_{v-1v}	0 /	

then we obtain

$$\beta\beta' =$$

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$-X_{12} - {}^{t}X_{12}' - {}^{t}X_{23}X_{23}' - \cdot$	$\cdots - {}^t X_{2v} X'_{2v}$		
				$-X_{13}^{t}X_{13}^{\prime}-X_{23}^{t}X_{2}^{\prime}$	$_{3} - {}^{t}X_{34}X'_{34} - \cdots - {}^{t}X_{3}X_{3}$
·					
·					
·		1		Y	
·					
					. (4.2
$-{}^{t}X_{\nu-1\nu}X_{\nu-1\nu}'$	·				
	=	$X_{1v-1}^{i}X_{1v-1}'-\cdots X_{v-2v-1}$	$-^{t}X_{v}$	$1v X'_{v-1v}$	

The relation (4.21) by means of (4.25) implies

$$<\beta,\beta'>=\frac{1}{2}Tr[({}^{t}X_{12}X_{12}'+\cdots+{}^{t}X_{1v}X_{1v}')+(X_{12}{}^{t}X_{12}'+{}^{t}X_{23}X_{23}'+\cdots+{}^{t}X_{2v}X_{2v}') +(X_{13}{}^{t}X_{13}'+X_{23}{}^{t}X_{23}'+{}^{t}X_{34}X_{34}'+\cdots+{}^{t}X_{3v}X_{3v}')+\cdots+(X_{1v-1}{}^{t}X_{1v-1}'+\cdots +X_{v-2,v-1}{}^{t}X_{v-2,v-1}'+{}^{t}X_{v-1v}{}^{t}X_{v-1v}')+(X_{1v}{}^{t}X_{1v}'+\cdots+X_{v-1v}{}^{t}X_{v-1v}')]$$

$$(4.26)$$

If $\theta_{\varepsilon_1...\varepsilon_v}$ is one automorphism of the group T_1 , then by the properties of $\theta_{\varepsilon_1...\varepsilon_v}$ we have

$$<\theta_{\varepsilon_{1}...\varepsilon_{v}}(\beta),\theta_{\varepsilon_{1}...\varepsilon_{v}}(\beta')> = \frac{1}{2}Tr[\theta_{\varepsilon_{1}...\varepsilon_{v}}(^{t}X_{12})\theta_{\varepsilon_{1}...\varepsilon_{v}}(X'_{12}) + \dots + \theta_{\varepsilon_{1}...\varepsilon_{v}}(^{t}X_{1v})\theta_{\varepsilon_{1}...\varepsilon_{v}}(X'_{1v})] + [\theta_{\varepsilon_{1}...\varepsilon_{v}}(X_{12})\theta_{\varepsilon_{1}...\varepsilon_{v}}(^{t}X'_{12}) + \theta_{\varepsilon_{1}...\varepsilon_{v}}(^{t}X_{23})\theta_{\varepsilon_{1}...\varepsilon_{v}}(X'_{23}) + \dots + \theta_{\varepsilon_{1}...\varepsilon_{v}}(^{t}X_{2v})\theta_{\varepsilon_{1}...\varepsilon_{v}}(X'_{2v})] + [\theta_{\varepsilon_{1}...\varepsilon_{v}}(X_{12})\theta_{\varepsilon_{1}...\varepsilon_{v}}(X'_{13})$$

$$+\theta_{\varepsilon_{1}...\varepsilon_{v}}({}^{t}X_{2v})\theta_{\varepsilon_{1}...\varepsilon_{v}}(X_{2v}')] + [\theta_{\varepsilon_{1}...\varepsilon_{v}}(X_{12})\theta_{\varepsilon_{1}...\varepsilon_{v}}(X_{13}') \\ +\theta_{\varepsilon_{1}...\varepsilon_{v}}(X_{23})\theta_{\varepsilon_{1}...\varepsilon_{v}}({}^{t}X_{23}') + \theta_{\varepsilon_{1}...\varepsilon_{v}}({}^{t}X_{34})\theta_{\varepsilon_{1}...\varepsilon_{v}}(X_{34}') + \cdots \\ +\theta_{\varepsilon_{1}...\varepsilon_{v}}({}^{t}X_{3v})\theta_{\varepsilon_{1}...\varepsilon_{v}}(X_{3v}')] + \cdots + [\theta_{\varepsilon_{1}...\varepsilon_{v}}(X_{1,v-1})\theta_{\varepsilon_{1}...\varepsilon_{v}}({}^{t}X_{1,v-1}') + \cdots \\ +\theta_{\varepsilon_{1}...\varepsilon_{v}}(X_{v-2,v-1})\theta_{\varepsilon_{1}...\varepsilon_{v}}({}^{t}X_{v-2,v-1}') + \theta_{\varepsilon_{1}...\varepsilon_{v}}({}^{t}X_{v-1v})\theta_{\varepsilon_{1}...\varepsilon_{v}}(X_{v-1v}')] \\ + [\theta_{\varepsilon_{1}...\varepsilon_{v}}(X_{1v})\theta_{\varepsilon_{1}...\varepsilon_{v}}({}^{t}X_{1v}') + \cdots + \theta_{\varepsilon_{1}...\varepsilon_{v}}({}^{t}X_{v-1v})\theta_{\varepsilon_{1}...\varepsilon_{v}}(X_{v-1v}')]$$

$$(4.27)$$

We also have

$$\theta_{\varepsilon_1...\varepsilon_v}({}^tX_{ij}) = {}^tX_{ij} \text{ and } \theta_{\varepsilon_1...\varepsilon_v}(X'_{ij}) = X'_{ij}, \quad 1 \le i < j \le v$$

$$(4.28)$$

or

$$\theta_{\varepsilon_1 \dots \varepsilon_v}({}^t X_{ij}) = -{}^t X_{ij} \text{ and } \theta_{\varepsilon_1 \dots \varepsilon_v}(X'_{ij}) = -X'_{ij}, \quad 1 \le i < j \le v$$

$$(4.29)$$

and

$$\theta_{\varepsilon_1 \dots \varepsilon_v}({}^t X'_{ij}) = {}^t X'_{ij}, \theta_{\varepsilon_1 \dots \varepsilon_v}(X_{ij}) = X_{ij}, \quad 1 \le i < j \le v$$
(4.30)

or

$$\theta_{\varepsilon_1 \dots \varepsilon_v}({}^t X'_{ij}) = -{}^t X'_{ij}, \theta_{\varepsilon_1 \dots \varepsilon_v}(X_{ij}) = -X_{ij}, \quad 1 \le i < j \le v$$

$$(4.31)$$

From (4.26), (4.27), (4.28), (4.29), (4.30), and (4.31) we obtain

$$<\beta,\beta'>=< heta_{\varepsilon_1\ldots\varepsilon_v}(\beta), heta_{\varepsilon_1\ldots\varepsilon_v}(\beta')>,\quad\forall\theta_{\varepsilon_1\ldots\varepsilon_v}\in T_1$$

$$(4.32)$$

This relation (4.32) completes the proof.

5. We consider the complex flag manifold

 $M_1 = SU(n)/SU(K_1) \times \cdots \times SU(K_v),$

where $K_1 + \cdots + K_v = n, v \ge 3$. If v = 2, then the complex flag manifold becomes

$$M_1 = SU(n)/SU(K_1) \times SU(K_2), \quad K_1 + K_2 = n$$

which is called complex Grassmann manifold. This is a symmetric space, which is a special case of a reduced \sum -space.

This flag manifold can be written

 $M_1 = G/H$

where $G = SU(n) = \{A \in GL(n, C) | A * A = I_n\}$ and $H = SU(K_1) \times \cdots \times SU(K_v)$, which consists of matrices of the form

$$H = \left\{ A \in SU(n)/A = \begin{pmatrix} A_1 & & \\ \hline & A_2 & \\ \hline & & \ddots & \\ \hline & & & A_v \end{pmatrix}, A_i \in SU(K_i), \quad i = 1, \dots, v \right\}.$$

(. . . .)

We consider the Lie algebras g and h of G and H respectively, which are defined by

$$g = u(n) = \{\alpha \in gl(n, C)/\alpha + \alpha = 0\}$$

$$h = \left\{ \alpha = \left(\begin{array}{c|c} \alpha_1 & & \\ \hline \alpha_2 & \\ \hline & \ddots \\ \hline & & \alpha_v \end{array} \right) / \alpha_i \in u(K_i), \quad i = 1, \dots, v \right\}$$

Let *m* be the tangent space of the complex flag manifold $M_1 = SU(n)/SU(K_1) \times \cdots \times SU(K_v), K_1 + \cdots + K_v = n$, at its origin 0. Then we have

$$g = h + m$$
.

Then m can be represented by the matrices as follows

$$m = \left\{ \beta = \begin{pmatrix} 0 & -^t \bar{X}_{12} & -^t \bar{X}_{13} & -^t \bar{X}_{1,v-1} & -^t \bar{X}_{1v} \\ \hline X_{12} & 0 & -^t \bar{X}_{23} & -^t \bar{X}_{2,v-1} & -^t \bar{X}_{2v} \\ \hline X_{13} & X_{23} & 0 & \cdots & -^t \bar{X}_{3,v-1} & -^t \bar{X}_{3v} \\ \hline \cdots & \cdots & \cdots & \cdots & \hline X_{1v} & X_{2v} & X_{3v} & \cdots & X_{v-1v} & 0 \end{pmatrix} / X_{ij} \in M(K_j \times K_i, \mathbb{C})$$
the set of matrices
$$K_j \times K_i / 1 \le i < j \le v$$

We can construct a group \sum_1 which has the same properties as \sum , defined in §4. Now, we can state the theorem.

Theorem 5.1. Let $M_1 = SU(n)/SU(K_1) \times \cdots \times SU(K_v)$, $K_1 + \cdots + K_v = n$ be the complex flag manifold. Then M_1 admits a reduced \sum -structure, hence it is a reduced \sum -space.

On the tangent space m of $M_1 = SU(n)/SU(K_1) \times \cdots \times SU(K_v)$ at its origin 0 we define the following inner product

$$<,>:m \times m \to \mathbb{R}, <,>:(\beta,\beta') \to <\beta,\beta'>=\frac{1}{2}Tr(\beta\beta')$$

$$(5.1)$$

If K is the Killing-Cartan form on u(n), then we obtain

$$<,>:g \times g \to \mathbb{R}, K: (\alpha, \alpha') \to K(\alpha, \alpha') = -2nTr(\beta\beta'), \beta = \alpha/m, \beta' = \alpha'/m$$
 (5.2)

From (5.1) and (5.2) we conclude that

$$\langle \beta, \beta' \rangle = -\frac{1}{4n} K(\beta, \beta')$$
(5.3)

It is known that $K(\beta, \beta') = K(\alpha/m, \alpha'/m)$. Since $K(\alpha, \alpha')$ is negative definite on the simple Lie algebra u(n), we conclude from (5.3) that the inner product \langle , \rangle , defined by (5.1), is positive definite. This inner product defines a metric d_1 on $M_1 = SU(n)/SU(K_1) \times \cdots \times SU(K_v)$, where $K_1 + \cdots + K_v = n$.

Therefore we can state the theorem.

Theorem 5.2. Let $M_1 = SU(n)/SU(K_1) \times \cdots \times SU(K_v)$ be the complex flag manifold, where $K_1 + \cdots + K_v = n$. Then the inner product (5.1) on the tangent space mof M_1 at its origin, which comes by the restriction on m of the negative of the Killing-Cartan form on u(n) induces a Riemannian metric d_1 on M_1 . Then (M_1, d_1) is a reduced Riemannian \sum -space.

Now, we consider the quaternionic flag manifold

$$M_2 = Sp(n)/Sp(K_1) \times \cdots \times Sp(K_v)$$

where $K_1 + \cdots + K_v = n \ v \ge 3$. If v = 2, then quaternionic flag manifold takes the form

$$M_2 = Sp(n)/Sp(K_1) \times Sp(K_2), \qquad K_1 + K_2 = n$$

which is called a quaternionic Grassmann manifold. This is also a symmetric space, which is a special case of a reduced \sum -space.

This flag manifold can be written

$$M_2 = G/H$$

where $G = Sp(n) = \{A \in GL(n, \mathbb{H}) | A * A = I_n\}$ and $H = Sp(K_1) \times \cdots \times Sp(K_v)$. It contains matrices of the following form

Let g and h be the Lie algebras of G and H respectively, which are defined by

$$g = sp(n) = \{\alpha \in gl(n, H) / \alpha^t J + J\alpha = 0\}, \text{ where}$$
$$J = \begin{pmatrix} J_1 \dots 0 \\ \dots \dots \\ 0 \dots J_n \end{pmatrix}, J_i = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \quad i = 1, \dots n$$

$$h = \left\{ \alpha = \left(\begin{array}{c|c} \alpha_1 & & \\ \hline \alpha_2 & \\ \hline & \ddots & \\ \hline & & \alpha_v \end{array} \right) / \alpha_i \in sp(K_i), \quad i = 1, \dots, v \right\}$$

We consider the tangent space m of the quaternionic flag manifold $M_2 = Sp(n)/Sp(K_1) \times \cdots \times Sp(K_v), K_1 + \cdots + K_v = n$, at its origin 0. Then we have

$$g = h + m$$

The vector space m can be written by form of matrices as follows

	0	$- \bar{X}_{12}$	$-*\bar{X}_{13}$		$-t\bar{X}_{1,v-1}$	$-t\bar{X}_{1v}$	$X_{ij} \in M(K_j \times K_i, \mathbb{H})$	
(X_{12}	0	$-t\bar{X}_{23}$		$-t\bar{X}_{2,v-1}$	$-t\bar{X}_{2v}$	the set of matrices	
$m = \left\{ \beta = \right\}$	X_{13}	X ₂₃	0		$-t\bar{X}_{3,v-1}$	$-t\bar{X}_{3v}$	$K_j \times K_i / 1 \le i < j \le v$	
l							and H is the field of quaternionic numbers.	
	X_{1v}	X_{2v}	X_{3v}		$X_{v-1,v}$	0 /	dana	

We also can construct a group \sum_2 which has the same properties as \sum , defined in §4. Now, we have the theorem.

Theorem 5.3. Let $M_2 = Sp(n)/Sp(K_1) \times \cdots \times Sp(K_v)$, $K_1 + \cdots + K_v = n$, be the quaternionic flag manifold. Then M_2 admits a reduced \sum -structure, hence it is a reduced \sum -space.

On the tangent space m of $M_2 = Sp(n)/Sp(K_1) \times \cdots \times Sp(K_v)$ at its origin 0 we define the following inner product

$$<,>: m \times m \to \mathbb{R}, <,>: (\beta, \beta') \to <\beta, \beta'> = \frac{1}{2}Tr(\beta\beta')$$
 (5.4)

Let K be the Killing-Cartan form on Sp(n), then we have

$$K: g \times g \to \mathbb{R}, K: (\alpha, \alpha') \to K(\alpha, \alpha) = -2(n+1)Tr(\beta\beta'), \beta = \alpha/m, \beta' = \alpha'/m$$
 (5.5)

The relations (5.4) and (5.5) imply

$$\langle \beta, \beta' \rangle = -\frac{1}{4(n+1)} K(\beta, \beta') \tag{5.6}$$

where $K(\beta, \beta') = K(\alpha/m, \alpha'/m)$. Since $K(\alpha, \alpha')$ is negative definite on the simple Lie algebra Sp(n), we obtain from (5.6) that the inner product $\langle \rangle$, defined by (5.4), is positive definite. This inner product defines a metric d_2 on $M_2 = Sp(n)/Sp(K_1) \times \cdots \times Sp(K_v)$, where $K_1 + \cdots + K_v = n$.

From the above we have the theorem.

Theorem 5.4. Let $M_2 = Sp(n)/Sp(K_1) \times \cdots \times Sp(K_v)$ be the quaternionic flag manifold, where $K_1 + \cdots + K_v = n$. Then the inner product (5.4) on the tangent space m of M_2 at its origin, which comes by the restriction on m of the negative of the Killing-Cartan form on Sp(n) induces a Riemannian metric d_2 on M_2 . Then (M_2, d_2) is a Riemannian \sum -space.

References

[1] F. Hirzbruch, Topological methods in algebraic geometry, Springer-Verlag, New York, 1966.

- [2] P. J. Graham and A. J. Ledger, "s-Regular manifolds, Differential Geometry in honour of K. Yano," Kinokuniya, Tokyo, (1972), 133-144.
- [3] A. J. Ledger and A. R. Razani, "Reduced ∑-space," Illinois Jour. Math. 26(1982), 272-299.
- [4] A. J. Ledger, Affine and Riemannian ∑-spaces, Seminar on Mathematical Science, No 5, Keio University, 1982.
- [5] O. Loos, "Spiegelungräume and homogene symmetrische," Räume Math. Z., 99 (1967), 67-72.
- [6] O. Loos, "Reflexion spaces of minimal and maximal torsion," Math. Z., 106 (1968), 67-72.
- [7] O. Loos, "An intrinsic characterisation of fibre bundles associated with homogeneous spaces defined by Lie group automorphisms," Abhandl. Math. Sem. Univ. Hamburg, 37 (1972), 160-179.
- [8] Gr. Tsagas, "Special connections on the real flag manifolds," Proc. of the 2rd Congress of Geometry. Thessloniki, 1987, 221-221.

Division of Mathematics, Department of Mathematical and Physics, School of Technology, University of Thessaloniki Thessaloniki, 54006- GREECE.

Department of Pure Mathematics, University of Liverpool, P. O. Box 147, Liverpool LG9 3BX, United Kingdom.