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ON THE EXTREMAL CURVATURE AND TORSION OF
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Abstract. In this paper, we first derive formulas for the curvature and torsion of curves on
52 produced by stereographically projecting the image curves of analytic, univalent functions
belonging to the class S. We are concerned here with the problems of determining the extreme
values of the curvatures and torsions, as well as the functions belonging to S which attain these
extreme values. An analysis of the asymptotic behavior of these curvature and torsion formulas

will allow for the formulation of plausible conjectures.

1. Introduction

Let S denote the class of analytic, univalent functions f(2) defined on the unit disk
U= {z:|z| < 1}, and normalized so that f(0) =0 and f'(0) =1.

Let f € S and let II denote the stereographic projection of the image‘ plane of f onto
the unit sphere S2. For each fixed r; 0 <r < 1, let G = {z:|2| =7}, C, = f(Cr), and
" =TI(C.). For each fixed §, —m < 8 < +m, let Lo = {z:argz =0}, Ly = f(Lq), and

4 = TI(L)). | |

The determination of the extreme values of the local curvature at a specified point
on each of the curves C. and £} has been the object of an intense body of research [1,
pp.126, 262]. Of course, the local torsion at any specified point on each of these curves
is equal to zero, since they are plane curves.

Our ultimate objective is to maximize and minimize the local curvature and torsion
at a specified point on the stereographically projected curves Ch.and Ly on the unit
sphere S%. Note that the stereographically induced torsion will generally be a non-zero
quantity. It is this fact which motivates our investigation.

A parametrization of the curves under consideration is easily prescribed. Indeed, if
we write

f(z) = f(r,8) = (u(r,0),v(r,0), (z= re® e U) (1.1)
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then
! ={X(r,0): -7 <8< +n},
and
Ly ={X(r,0):0<r <1},
where

(1.2)

_ (2u(r,0) 2vu(r,0) |f]* -1
60 = (7p 41 17p £ 77T

In terms of the parametrization (1.2), the local curvature x(#;r, f) and the local tor-
sion 7(8;r, f) at the point X (r,8) on the curve C,. are classically defined by the formulas

_ |X9 X ng[

k(@;r, f) = IX—9|3 and 7(6;r,f) =

[XoX00Xgo0)
| X x Xgg|?

The local curvature x(r; 8, f) and torsion 7(r; 8, f) at the point X(r,6) on the curve £}
are given by similar formulas. The subscripts on X denote the variable with respect to
which the derivative is taken.

In our first result below, we provide explicit formulas for the curvatures and torsions
under study. In this and all results to follow, the quantity

o) = (139
will denote the spherical derivative of f(z), and the quantity
_ (7GRN 17"(2))2

2= (F) ~3 () (4]

will denote the Schwarzian derivative of f(z). Note that equation (1.7) below provides
and explicit connection between these two quantities.

Theorem 1.1. Let f € S, and let Z(r,0; f) = F}'#l(r_e)'
(a) At the point X (r,0) on the curve Cy, the local curvature k(8;r, f) is given by the
formula

1 3
K@) = (14 77°220,6:0) (15)
and the local torsion 7(0;r, f) is given by the formula
TZ(T: 93 f)Z‘rH (?", 91 f)
b;r, f) = 1.6
oD = a6, ) R
Furthermore, since
ZT' )
PZ0 B BT) iz, ) (1.7)

Z(r,0; f)
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all of these quantities are related by
47 f#2(r,0)x2(0; 7, )7 (837, f) = Im[z*{f, 2}]. (1.8)

(b) At the point X (r,0) on the curve LY, the local curvature k(r; 0, f) is given by the
formula

1 1
w(r;8, f) = (1+ 7 256: ) (1.9)
and the local torsion 7(r; 0, f) is given by the formula
rZ(r,0; f)Zr(r,8; )
: = — 3 1.10
T(T) 9) f) 4&2 (T; 9, f) ( )
Furthermore, all of these quantities are related by
4% f#2(r,0)k% (130, f)7(r;6, ) = ~Im[z*{f, 2}]. (1.11)

The proof of this result is lengthy, but straightforward, and will be omitted.

In deriving formulas (1.5) and (1.9), it becomes clear that the partial derivatives
—rZ.(r,0; f) and Z¢(r,8; f) are actually the real and imaginary parts of the same quan-
tity. Indeed, if we set

(1+2042) - (242 (%)

®(z; f) = o P () (1.12)
then
Re{®(z; f)} = ~ 572+ (r, 63 ), (1.13)
and .
Im{®(z; f)} = +§Zg(r,9;f). - (1.14)

Hence, the curvature functions are related to each other via ®(z; f).
Some conscquences of this theorem are easily noted. For example, an addition of
(1.8) and (1.11) yiclds the complementary relation

k2(@;r, )T(0;r, f) + k2(r;8, f)r(r;8,f) =0,

which is valid at the point X (r,8) € S? of intersection of the two curves ;' and L. It
may be deduced from this relation that either both torsions are zero at such a point or
that they are of opposite sign.

A consequence of (1.6), (1.7), and (1.10) is that both torsions are zero at a point
X(r,0) € 8% if and only if Im[z2{f, z}] = 0 at the corresponding point z = re? € U.
Thus, the level lines of the harmonic function Im[2?{f, z}] as well as its sign will be of
significance in our study of the torsion.
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At this point, we present some examples in order to familiarize the reader with the
algebraic form of the curvature and torsion functions. The examples presented here will
be of significance in the later sections of this paper.

Example 1. Linear-Fractional Transformations. Let f(z) = z/(1 — cz), where ¢ €
[0,1]. Since f is linear-fractional, the stercographically projected images C, and Ly of the
circular of linear arcs C,. and L are circular arcs. Consequently, 7(r; 8, f) = 7(6;r, f) =0
for every value of r, #, and c.

A brief calculation shows that

k(87 f) = 51;\/1 F2(1 = 2)r? + (1 + 2)2rd,

showing that, as expected, the curvature of the circle C,. is independent of 6.
Another brief calculation shows that

k(r; 8, f) = V1 +c?sin’ 6
showing that, as expected, the curvature of the circular arc Ly is independent of r.

Example 2. Some Well-Known Slit Mappings. Let

A

We shall suppress the dependence upon ¢ in order to minimize notation. This function
belongs to the class S for each value of t € [0,1]. If ¢ € [0,1), it maps the unit disk
U onto the complement of two linear, opposing, radially directed slits. If ¢ = 1, this
function becomes the well-known Koebe function, which maps U onto the complement
of the single linear interval (—oo, —%].

For the function (1.15), we have

1 — (4tcosO)r + (1 + 4% + 2cos20)r? — (4t cos O)r® + 7

Zird )= 1.16
(r.6;9) V1 —2r2cos20 + rt (1-16)
Note the symmetry in this formula and the formulas to follow in this example.
Evaluating the first partials of Z(r,8; f), we find that
e 6 X
) (1-r)( Z%a,;(f?)r“)
—orZ.(r,6; f) = = , 1.17
2 (r,6; /) 2r(1 — 2r2 cos 26 + r)3/2 (117

where ao(0) = ag(d) =1,
a (6) = £l5(9) = 0,
az(8) = a4(0) = —(4t% + 6 cos 26),
and :
az(0) = 4t(3 cos @ + cos 36),
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and that

) 2(sin §) (gﬁj b:(6)r*)
W i=0
_Q_ZG (r,0:5) = (1 — 2r2 cos20 + )%/’ (L18)

where bo () = bs(0) = 1,
by () = bs(9) = —3cos?,
b2(8) = ba(0) = 31,
and
by () = —4t2 cos 6 + cos 36.
Consequently, the curvature k(0;, f) at the point X (r,6) on the curve CJ is given
by

16 ,
i 3 ei(@)rt
1=0
S 1.1
w(6ir, ) 9r \ (1 — 2r2 cos 26 +74)%’ 4-19)

where ¢o(0) = c16(0) = 1,

1 (6) - 015(9) = 01

Co (9) = (:14(9) =2 - 8t2 — 12 cos 29,

c5(6) = c13(0) = 8t(3cosf + cos 36),

ca(8) = c12(0) = 19 + 8% + 16t* + 12(4t2 — 1) cos 26 + 18 cos 46,

cs(8) = c11(60) = —48t(3 +1*) cosd — 8t(11 + 412) cos 3¢ — 24t cos 50,

c(6) = c10(8) = 38 +88t* +12(1 + 10£2) cos 260 + 24(1 + 2t?) cos 48,

c7(8) = cy(6) = 24t(5 + 412) cos 0 + 16t(5 + 2t%) cos 30 + 24t cos 56.

and

cs(0) = —8(5 + 22t% + 4t%) — 48(2 + Tt?) cos 20 — 12(3 + 8t%) cos 40 — 8(1 + 2t2) cos 66.
Tn a similar manner, it can be seen that the curvature k(r; 8, f) at the point X (r, 8)

on the curve Lj is given by

5 4y(0)r

. = i=0D
K(T:B:f) = 2(1 —-2’]‘2 C0529+T4)3’ (120)

where do(8) = di2(8) = 2 + 4t — 412 cos 20,
dy(8) = d11(0) = —12t(cos@ + cos 36),
d2(8) = d1o(6) = 3(3 + 8t%) — 12(1 + 2t2) cos 260 — 9 cos 40,
ds(0) = dg(8) = —8t(5 + 92t2) cos § + 4t(11 + 4t*) cos 3¢ — 4t cos 58,
da(0) = dg(8) = 4(6 + 21#%) — 6(1 + 10¢2) cos 260 + 6(1 — 4t*) cos 40 + 6 cos 60,
ds () = dr(8) = —12t(5 + 442 cos 0 + 24t(3 + 2t%) cos 30 — 12t cos 50,
and
ds(6) = 4(5 + 22t% + 4t*) — 2(19 + 4412) cos 260 — (19 + 8t* + 16t*) cos 46
—2(1 — 8t%) cos 66 — cos 86.
An additional calculation shows that

6r2(r* — 1)(sin 20) Z(r, 6; f)

rZ(r,8; f) = (1 — 272 cos 26 + )2

. (1.21)



106 STEPHEN M. ZEMYAN

Hence, the torsion 7(6;r, f) at the point X (r,8) on the curve C) is given by

4(r* — 1)(1 — 2r% cos 20 + r*)(sin 20) 2% (r, 0;
sy, ) = 6re(r* —1)(1 —2r <1c;s @ + r*)(sin28)2*(r, 6; f)

( 5 ci(ﬁ)ri)

11—

and the torsion 7(r; 6, f) at the point X (r,8) on the curve Lj is given by

(6, f) = _3r%(r* — 1)(1 — 2r® cos 26 + r*) (sin 20) Z°(r, 6; f)

2 (35 aor)

In 82, a discussion of the extremal problems under consideration is presented, and
a method is described for determining the extreme values of the curvature functions
of a single function f € S. In §3, asymptotic properties of the curvature and torsion
functions for small values of r are explored, yielding some plausible conjectures. Finally,
in §4, some open problems relating to curvature and torsion are posed.

2. A Discussion of The Extremal Problems
Initially, for fixed values of r and #, we propose to determine the eight extremal values

K(r) = r;l;g k01, f) k(r) = ;neign(ﬁ;r, f)

K(0) = maxx(r;0,f) k(0) = mig‘ rlr; 0, 1)

feS fe
T(r)= I;lea:%c {0, f) tr) = ?}Eig'r(ﬂ; #:)
T(0) = max7(r;0, f) t(f) = max T(r;ﬂ,f')
feS resS

and the extremal functions for which these extremal values are attained.

Without loss of generality, we may assume that & = 0 in these eight problems. To
see this, we first note some elementary rotational properties of the curvature and torsion
functions.

If we set fe(z) = e f(e*z), then the range of f(z) is rotated by a factor of €, causing
a corresponding shift in the #-variable of the quantities in question. Specifically, brief
calculations show that

s(0;r, fe) = k(0 + &1, f),
T(0;7, f) =170 + €51, f),
&(r; 8, fo) = k(0 + ¢, f),

and

k(r;0, fo) =7(r;0 + ¢, f).



EXTREMAL CURVATURE AND TORSION 107

Thus, «(0;7, f) = &(8;7, f_s), showing that the extreme value of this curvature function
when 8 = 0 is the same as the extreme value for an arbitrary 6, and that the extremal
functions are related by a simple rotation.

Some additional geometric properties of the curvature and torsion are worth noting
here.

Tf we set f = f(Z), then the range of f(z) is reflected over the real axis, causing a
corresponding sign change in the f-variable of the quantities in question. Specifically,
another set of brief calculations shows that

k(8;7, f) = k(=6;7, 1),

7(0;7,F) = —7(=8;7, ),
K’(T; '97‘7?) - K’(T; _91 f)&

and
7(r;6, f) = —7(r; =0, f).

Although it appears on the surface that there are eight extremal problems to solve,
there are actually fewer. Indeed, the problems of determining the extreme values of the
curvatures as defined by (1.5) and (1.9) are equivalent to the problems of determining
the extreme values of |rZ,| and |Zg|. In view of (1.13) and (1.14), all of the curvature
problems are aspect of one problem, namely,

rfneagc Re{n®(z; f)} (2.1)

where || = 1, and ®(z; f) is defined by (1.12). One only need to choose n = £1 or %t
to see this.

An elementary observation shows that one of the minimal local curvature problems
is trivial.

Theorem 2.1. For every 68 € (—x, +7], and every r € (0,1), we have

k() = mink(r; 8, f) = 1.
fE:S

Proof. If f(z) = z, then f#(r,8) = 1/(1 +r?). It follows that Zo(r,0;f) =0, s0
that &(r;0, f) = 1. There are actually an infinite number of functions for which this
minimum is attained.

A partial result is also easily established for the other minimal local curvature prob-
lem.

Theorem 2.2. for every r € [7,1) and every 8 € (—m,+7], we have

k(r) = mink(8;r, f) =1,
ngS‘
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where 7 = 0.2597148103 . .. is the only root of the equation
1-10r2 —16r% —10r* + 7% =0
in the interval (0,1).

Proof. It is clear from (1.5) that «(8;r, f) = 1 if and only if Z,.(r,0; f) = 0. For the
functions defined by (1.15), we will have Z,.(r,8; f) = 0 if and only if

6
A(r,6,t) = ai(0)r
=0
=1— (4¢* + 6 cos 20)r? + 4t(3 cos b + cos 39)7'3 - (41,‘2 + 6 cos 26)7‘4 + 76

determined from (1.17) vanishes for some choice of the variables r, 8, and ¢. If we choose
f =mand t =1, then

A(r,m,1) =1 —10r2 — 1672 — 107 + 1% =0

if r =7 = 0.2597148103- - -. Furthermore, A(r,w,1) < 0 on the interval (7,1), and
A(r,%,0) =1+ 6r? +6r'! +r® > 0 for each r € (0,1). Hence, for each fixed p € (7, 1),
we may apply the Intermediate Value Theorem to the continuous function A(p,#@,t)
restricted to the cross-sectional rectangle R, = {(p,0,t) : 0 < § < 27,0 <t < 1} to
conclude that there must exist values 6, and t, for which A(p,8,,t,) = 0. That is, for
each p € (7, 1), there exists §, and t, for which k(6,;p, f) = 1, which was to be shown.
There are actually an infinite number of functions for which this minimum is attained.

For any given f € §, it is easy to locate the critical points of the curvature «(8;r, f)
on C; and the critical points of the curvature &(r; 4, f) on £}. By differentiating (1.5),

we obtain
r2Z.(r,0; f) Z.9(r,0; f)
4k(0;, f)

Thus, for a critical point of the curvature x(8;r, f) to occur at a point X(r,6) € C;
it is necessary that either Z,.(r,0;f) = 0 or Z,4(r,0;f) = 0. If Z.(r,0; f) = 0, then
x(0;7, f) = 1, a minimum value. If Z.4(r,8; f) = 0, then, by (1.6) and (1.7), it must
be the case that the torsion 7(8;r, f) = 0 and Im[2%{f,2}] = 0, where z = re? € U.
Consequently, if a local maximum value of the curvature x(f;r, f) occurs at a point
X (r,8) € C,, then the torsion vanishes at that point and Im[z2{f, z}] = 0 at the corre-
sponding point z = re? € U/ Also, by differentiating (1.9), we obtain

Zﬁ‘ (T: 91 f)Zrﬁ(Ta 61 f)
4x(r; 8, f) '
‘q
Thus, for a critical point of the curvature x(r;6, f) to occur at a point X (r,8) € L},

it is necessary that either Zo(r,8; f) = 0 or Z,4(r,0;f) = 0. If Z4(r,0; f) = 0, then
k(r;8,f) = 1, a minimum value. If Z.4(r,0; f) = 0, then the torsion 7(r;8,f) = 0

"{'0(9;7'1 f) =

K,,,.(T;B, f) =
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and Im[z2{f,z}] = 0, where z = rei? € I{. Consequently, if a maximum value of the
curvature s(r;8, f) occurs at a point X(r,0) € LY, then the torsion vanishes at that
point and Im[z2{f, z}] = 0 at the corresponding point z = re? € U. Procedurally then,
to determine the local maximum values of cither of the curvatures, we first determine
the set I'o = {z : Im[22{f, 2}] = 0} of level lines in U, and then examine the values of
each of the curvature functions on the sets [oNC. C U and ToNLy CU of critical points.

Additionally, we need only solve the two maximal local torsion problems. The two
minimal local torsion problems are casily seen to be completely equivalent to them, since

7(0;7, F) = —7(0;7, f), and 7(r;0, f) = —7(r;0, f).

3. Asymptotic Estimates for Small Values of r

Insight into the extreme behavior of the curvature and torsion of stercographically
projected curves may be gained by an examination of their asymptotic behaviors for small
values of r. In particular, the formulation of conjectures concerning the extreme values
of the curvatures and torsions and the functions which attain those values is possible
as a result of such an examination. Furthermore, the elimination of candidates for
extremal functions is also possible. Toward these ends, we compute the series expansions
of the curvature and torsion functions about the origin. However, in order to formulate
conjectures properly, we must first recall some basic facts from the elementary theory of
univalent functions.

It is well-known that the Koebe function

z i P
Kalz) = gy =+ 2607+ 3PS (3.1)

belongs to the class S and is the solution to many linear and nonlinear extremal problems
posed for that class, as is its it square root transform

. , z
has2(2) = Vka(2?) = T (eal2ay?

These functions will also assume importance here.

Let S denote the class of functions g(z) which are meromorphic and univalent on
the set A = {z : |z| > 1} and are normalized at oo so that g(00) = oo and g¢'(o0) = 1.
Any function g(z) € 3 will have an expansion of the form

bl bz
g(z) =z+bg+ — + — +
g9(2) 0 pr 2
The Arca Theorem [2, p.29] asserts that the coefficients of the functions in > must

satisfy the inequality
o0

Z n|by)? < 1.

fe=1
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Now, if f(z) = z + a22% + a3z® +--- € S, then g(2) = 1/f(1/z) € ), and has the
representation

(G,g = ag) a4 — 2(’12(1,3 + ag
glz)=2—a -+ =
( ) 2 -

2
z
Thus, if ¢(z) is produced from a function f € § in this manner, and [b| = 1, then the
Arca Theorem implies that b, = 0 for all n > 2, so that the series for g(z) terminates,
g(z) assumes the form

g(z) =z—azy+ @—;ﬂl, (3.2)

and f(z) assumes the corresponding form

f(2) =

3.3
1 “'(LzZ'f‘(OL% "(1,3),32 ( )

Since a function g(z) of the form (3.2) maps A onto the exterior of a linear segment which
contains the origin, the corresponding function f(z) will map U onto the complement of
a radially directed linear segment which contains the point at infinity. The mapping
properties, as well as the curvatures and torsions of such a function, were discussed in
Example 2 of §1. Since f(z) has no poles in U, both roots of the denominator must have
absolute value equal to one. Hence, f may be rewritten in the form

(Inl =&l =1) (3-4)

T T Y

where az = £ + 7 and a2 —az = £7. Conversely, if a function f(z) has the form (3.4),
then ay = £ + 7, a3 _5 +&n+7n%, and a4 = £ +§ n+ER +7°.

With these preliminary comments out of the way, we can now return to the asymptotic
naturc of the geometric quantities under discussion.

For simplicity in notation, let us write

PR 0) = 3 da(@)r,

n=0

and
Z(r,8; f) = Tf# ) -I—Zen " (3.5)

where d,,(6) and e, (#) are infinitely differentiable, 27-periodic functions of §. The first
few coeflicients in these series are given by

dO(g) - 1)

dy (8) = 2Re{aget?},

do(f) = —1 + 3Re{aze?} + 2(Im{a2e})?,

and

eo(f) = —ZRe{aze"g}

e1(0) = 1+ |az|* + 3Re{(a3 — 03)6216}



EXTREMAL CURVATURE AND TORSION 111
es(f) = —9Re{2a4e%% + 3agde?} + 6Re{agei9}Re{a§em} + 4(Re{age®})%—
18Re{ase® JRe{(a3 — a3)e**}.

The Curvature «(8;7, f).
An elementary calculation shows that

2l 8 f)= =g o Z nen(ﬂ)rngl,
n=1

and that

2eq (9) . 4(—32(9)

72 T

22(r,6: f) = ;12 - +(&(0) —6es(8) + 3 Ea(O)r™,
Fi=

where

n+-1
Ea(0) = 3 i(n+2 = )ej()ensz—i(6) = 2(n+Denta(6). (n21)

Hence, from (1.5), we obtain

1 1 , .
wll; v, ) = B + 5(1 — |az|? — 3Re{(a3 — a3)e® P — ea(O)r? + -+ -, (3.6)
showing that x(6;r, f) = O(1/7) for all f € S. It is clear that the smallest value of the
coefficient of r in the expansion (3.6) is —3, and that it is attained when |az| = 2 and
Re{(a2 — as)e**} = 1. Since this combination of coefficients is assumed only by the
function

f(z) =k_g(2) = (T__"(sz)—i — 4+ 2e 52 4 3e720,3 4 .. -

it is reasonable to suggest that k(8;7,k_g) < s(8;7; f) for small values of r and for all
f € S, with equality holding if and only if f(2) = k—g(2). Since x(6;7,k—p) = £(0;7, ko)
by the rotation properties given in §2, we may rephrase this observation and formulate
the following '

Minimal Conjecture for the Curvature r(8;, f). For small values of r,

16
S e (3.7)

w(r) = min(B;7, 1) = £(05m, ko) = 5 a3

fe
where ¢g = ¢16 = 1,
Cl = C15 = 0,
¢z = ¢y = —18,
C3 = C13 = 32,
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¢y = c12 = 97,
Cy = Cj1 = —336,

Cg = Ci1g = 330,
7 = cg = 452,
and

cg = —836.

It is also clear that the largest value of the coefficient of r in the expansion (3.6) is +2,
and that it is attained when a; = 0 and Re{(a? — a3)e**} = —1. Since this combination
of coefficients is assumed only by the function

f(2) = s/k-ng(2?) = i (:—wz)z) =z4+e 23 +...=h_y(2)

it seems reasonable to suggest that x(8; 7, f) < k(8;7, v/k—20(2%) ) = K(8;7, h_g) for small
values of r and for all f € S, with equality holding if and only if f(z) = h_s(2). Since
k(6;7,h_g) = &(0;7, ho) = K(5;7,h—_z) by the rotation properties given in §2, we may
rephrase this observation and formulate the following

Mazimal Conjecture for the Curvature x(0;r, f). For small values of 7,

1 §7iri
K(r) = maxs(8;r, f) = s(Zi7,hog) = oot (3.8)

—r ) — —
feS 3 gt 2r (14 r2)3

where o = ')"16‘:.1:
N=T3=Ys=Tr=Ye=Y11=73=7s = 0,

Y2 = 14 = 14,
Y4 = Y12 = 49)
Y6 = Y10 = 90,
and

vs = 28.

The Curvature k(r;0, f).
An elementary calculation shows that

Zo(r,0;f) = ) _ e (O)r"

n=0
and that
Z2(r,0; f) = ZH 6)r™,
n=0
where

Ho(8) = ) €i(0)ej(d). (n>0)
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Hence, from (1.9), we obtain

FO | 1 A0

3 T"l""'
r-l—e;,z((-))

k0, f) =4f1+

< 2

Since €} (0) = 2lm{ase*}, and e} () = 6Im{(as — a3)e??}, we get

Im{ase® }Im{(as - a?)e??} i (3.9)
/1 + (Im{azet?})?
It is clear that the largest value of the constant term in the expansion (3.9) is +v/5,

and that it is attained when as = +9ie~®. Since a, assumes these values only for the
functions

kir; &, f) = \/1 + (Im{aze®})? + 3(

Z A
= 2
(1 _ i(£E-0) z)

fxg-0(2) = (1tie?z)2
it scems reasonable to suggest that k(r; 8, f) < k(r; 0, ki o) for small values of r and for
all f € S, with equality holding if and only if f(z) = kiz_g(z). Since k(r;0,krz—g) =
k(r; £%, ko) by the rotation properties given in §2, we may rephrase this observation and
formulate the following
Mazimal Conjecture for the Curvature x(r;8, f). For small values of 7,

b

Z diri

(1+72)3

0
K@= 1}1651‘:;( w(ryl, f) = H,(r;j:-z—,kg) =

where dy = di2 = 9,

di =ds =ds =dy =dg =dy1 =0,

d2 = d1() = 30,
d4 = dg = 75,
and

There is no need to formulate a Minimal Conjecture for the Curvature k(r; 0, f), since
it has already been pointed out in §2 that this minimal problem has a trivial solution.

The Torsion 7(6;r, f) .
An clementary calculation shows that

o0

rZ.:9(r,8; f) = Znefn((?)r".

n=1

Placing this expansion and the previously derived expansions for Z(r,6; f) and k2(0;r, )
into (1.6), we obtain

7(0;7, F) = €L (0)r* + (eo(8)€s (6) + 2e5(0))7° + -+, (3.10)
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showing that 7(8;r, f) = O(r2) for all f € S. It is clear that the largest value of the
coefficient 72 in the expansion (3.10) is +6, since

¢ (0) = 3-5Ref (a3 — as)e*”)
= 3Re{2i(a2 — a3)e**}

= 6Im{ (a3 — a3)e*’},

and. it is possible that (as — a3)e? = i. Earlier in this section of this paper, it was noted
that if |ag — a| = |b1] = 1, then f(z) must assume the form (3.4). Since as — a3 = —7é,
it must be the case that n and £ satisfy the relation n¢ = ie®*, but this relationship
alone does not determine the optimal choice for n and £. To make the correct choice for
these constants, we must consider another term in the expansion (3.10) of 7(6;r, f); i.e.,
we must determine which choices of 7 and £ cause the coefficient of r* to be maximal. A
lengthy but straightforward calculation shows that

2eh(8) + eo(8)e! (0) = —48Re{aze Im{ (a3 — 2a3)e*’}
+12Im{(2a4 — 3aza3 + 2a3)e®?} + 12Im{as@ze®}.

If we let n = ie'(?=9) and £ = €¥?+9) where § is yet to be determined, then we obtain

2¢,(8) + eo(6)e, (8) = —24(sin § + cos ),

and this quantity is clearly maximized by the choice § = —32X. Consequently, we choose

1
n =e'®+¥)  and £ = ¢ (®=F). In turn, this implies that f(z) must be of the form
z

f(z) = = kax_4(2).

- (1- ei(%’i“’)z)2

It now seems reasonable to suggest that 7(8;r, f) < 7(8;7, ksx _,) for small values of r and
for all f € S, with equality holding if and only if f(z) = ka;_g(z). Since 7(6;7,kzx _g) =
g %13; 7, ko) by the rotation properties given in §2, we may rephrase this observation and
formulate the following -

Mazimal Conjecture for the Torsion T(0;r, f). For small values of r,

T(r) = maxT(6;
(r) max @7, f)

3
= T(Iﬂ;r: kO)
B 6r2(1—r4)(1 + 2V/2r + 5r2 + 2/2r% + r4)2

( g c,-r“)

1=0

where ¢ = ¢16 = 1,
e =¢5 =0,
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ca = c14 = —6,
cs = c13 = —8v/2,
c4 = C12 = 29,

Eii = 24\/5:
cg = C19 = 94,
er = g = —40V/2,
and
Ccg — —116.

Cg =

There is no need to formulate a Minimal Conjecture for Torsion 7(6;, f) since it has
already been pointed out in §2 that minimal value of the torsion is equal to the negative
of maximal value.

The Torsion 7(r;8, f)-
Substituting the previously derived expansions for Z(r,0;f), r2r(r,0;f)and
k%(r; 8, f) into (1.10), we obtain the expansion

6, f):__,( ¢(6) )+(2e5(9)ea(9) _eo(e)ea(9)+2eaw)),_+,__

4+ eg (6) (4+ e (9))? (4+ €5 (6)

Since the constant term in this expansion may be expanded to be

(40 | __3imas - e
4 + el (8) 214 (Im{axe®})?’

it is clear that its largest value is +%, and that it is attained by a function of the form
(3.4), provided that Im{aze*} = 0, and that Im{(a3—a3)e?} = —1. These requirements
will be met if né = —ie*®, and (€ +7)e* is real. If we let n = —ieil0=9) and ¢ = eH9+9)
where § is to be determined, then Im{aze®} = cosd — sind, so that either d =%, 0r
§=—32 If § = I, then (3.4) becomes

z Z

flz) = = =h_=_g(2).
) (1+ (3-022)  (1- (=3 +9)2)2) kel
If § = —2%, we are led to the same function. It now seems rcasonable to suggest that

7(r;0, f) < 7(r; 40, h,.,..%_g) for small values of r and for all f € S, with equality holding

if and only if f(2) = h_=z_g(2). Since 7(r;0,h_z ) = 7(r; —3% hz) by the rotation

properties given in §2, we may rephrase this observation and formulate the following
Magzimal Conjecture for the Torsion 7(r;6, f). For small values of ,

— gt 2 ré 2
(i;‘)eir")




116 STEPHEN M. ZEMYAN

where € = €192 = 1,
€1 =€ =¢€5 =€ = €7 =€g = €11 =0,
and
62264263:6]029.

There is no need to formulate a Minimal Conjecture for the Torsion 7(r;6, f), since
it has already been pointed out in §2 that the minimal value of the torsion is equal to
the negative of the maximal value.

4. Open Problems

1. All of the extremal curvature and torsion problems posed in §2 remain unsolved,
except for the partial solutions presented for the two minimal curvature problems.

Variational methods provide some additional information. Let f € S, and let f* € S
be a variation of f;i.e., let f*(z) = f(z) + eg(2z) + o(¢). Then

Z(r,60; f*) = 2(r,0; f) — 2eRe¥(g(2); f(2)) + o(e), (4.1)
where |
(e 1) = ) Q(TI;;‘};)” )(6) (42)

Note that U(zf'(2); f(z)) is actually the same as the quantity ®(z; f), which was defined
by (1.12).

Variational formulas for all of the curvature and torsion formulas may be expressed
in terms of ¥(g(z); f(z)). For example,

(057, ) = w057, )+ =g o (R (2 £ [r R (0(2) £(2)] + 0(0)

175

If all four curvature problems are considered as one, then, after a careful derivation,
the corresponding quadratic differential becomes

Aw? + Bw + C’) dw?
(i —1)®

Qw)dw? =1

w2’

where 7| - 1, and .A,B, and C are constants which depend upon the solution f(z) to
the problem.

2. New subclasses of S may be defined. For example, for a given r and 6, we may
define

Sr(r,0) ={f € S:|7(6;r, f)| < T}

to be the class of functions with Bounded Spherical Torsion T. Then, extremal problems,
e.g., coefficient estimation problems, may be posed for them.
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3. Since univalence criteria, given in terms of the Schwarzian derivative {f,z} exist,
[2, pp. 261,264], it may be entirely possible to provide additional univalence criteria in
terms of restrictions upon the curvature and torsion functions.

4. If f € S has a pole at a point { € 9, how do the curvature and torsion functions
behave as z = re¥? — (7

5. Do there exist maximum principles for the curvature and torsion functions? For
example, if 0 < 71 < rg < 1, does the maximum value of the curvature x(8;r, f) occur
on the boundary of the annulus A(ry,r3) = {z : 11 < |2] < 72}7

References

[1] S. D. Bernardi, Bibliography of Schlicht Functions, Polygonal Publications, 1982.

[2] P. L. Duren, Univalent Functions, Springer-Verlag New York Inc., 1983.

[3] S. M. Zemyan, “On the total torsion of certain non-closed sphere curves,” Bull. Austral. Math.
Soc., 36 (1) (1987), 39-47.

Department of Mathematics, The Pennsylvania State University, Mont Alto Campus, Mont Alto, Penn-
sylvania, 17237-9799, U.5.A.
E-mail address: zemyan@math.psu.edu



