TAMKANG JOURNAL OF MATHEMATICS Volume 28, Number 2, Summer 1997

COMMUTATIVITY AND DECOMPOSITION FOR NEAR RINGS

HAMZA A. S. ABUJABAL

Abstract. Let R be a distributively generated (d.g) near ring satisfy one of the following conditions.

- (*) For each x, y in R, there exists a positive integer n = n(x, y) such that $xy = (yx)^n$.
- (**) For each x, y in R, there exist positive integers m = m(x, y) and n = n(x, y) for which $xy = y^m x^n$.

In [2], Bell proved the commutativity of R satisfying (*) or (**) under appropriate additional hypothesis. In this paper, we generalize the above properties for wider class of near rings known as D-near rings. Also we provide an example for justification of our results. Furthermore, we give a decomposition Theorem for near rings satisfying (**).

1. Some Commutativity Theorems for Near Rings

In [6], Ligh and Luh introduced the notion of D-ring as follows:

Definition 1. A near ring R is called a D-near ring if every non-zero homomorphic image S of R satisfies the following conditions:

 (C_1) S has a non-zero right distributive element.

 (C_2) (S, +) is abelian implies that (S, +, .) is a ring.

All rings and distributively generated (d.g) near rings are examples of D-near rings. The following example shows that D-near rings are generalizations of d.g near rings.

Example 1. Let $R = \{0, x, y, z, u, v\}$ with addition and multiplication tables, defined as follows:

Received June 18, 1996.

¹⁹⁹¹ Mathematics Subject Classification. 16U80.

Key words and phrases. Near rings, D-near rings, distributively generated near rings, zero symmetric, zero commutative, commutativity, annihilators, orthogonal sum and decomposition of near rings.

+	0	x	y	\boldsymbol{z}	u	v		0	x	y	z	u	v
0	0	x	y	z	u	v	0	0	0	0	0	0	0
x	x	0	v	и	z	y	x	0	x	x	x	0	0
y	у	u	0	v	x	z	y	0	x	z	y	v	u
z	\mathbf{Z}	v	u	0	y	x	t	0	x	y	z	u	v
u	u	y	\boldsymbol{z}	x	v	0	u	0	0	0	0	0	0
υ	v	z	x	y	0	u	v	0	0	0	0	0	0

Then R is a D-near ring which has a unique left identity z with uz = 0 = vz. This indicates that z is not a right identity. By virtue of [7, Theorem 3.2], if a d.g near ring has a unique left identity, then it is also a right identity. Thus R is not a d.g near ring. This shows that the class of D-near rings is larger than the class of d.g near rings.

Let R be a D-near ring. In this section, we study the commutativity of R satisfying one of the following conditions:

- (*) For each x, y in R, there exists a positive integer n = n(x, y) such that $xy = (yx)^n$.
- (**) For each x, y in R, there exist positive integers m = m(x, y) and n = n(x, y) for which $xy = y^m x^n$.

Definition 2. A near ring R is called zero-symmetric if 0x = 0 for all $x \in R$, that is left distributive gives x0 = 0.

Definition 3. A near ring R is called zero-commutative if xy = 0 implies that yx = 0 for $x, y \in R$.

First, we recall [1, Lemma 1], [1, Lemma 2] and [3, Lemma 3].

Lemma 1. Let R be a zero-symmetric near ring satisfying the following conditions:

- (a) For each x in R, there exists an integer n = n(x) > 1 such that $x^n = x$.
- (b) Every non-trivial homomorphic image of R contains a non-zero central idempotent. Then (R, +) is abelian.

Lemma 2. Let R be a zero-symmetric near ring with no non-zero nilpotent elements. Then the following conditions hold.

- (i) Every distributive idempotent is central.
- (ii) For every idempotent e and every element y in R, $ey^2 = (ey)^2$.
- (iii) If R has a multiplicative identity element, then all idempotent elements are central.

Lemma 3. Let R be a near ring which is zero commutative. Then

- (i) If $a, b \in R$ such that ab = 0, then arb = 0 for all $r \in R$.
- (ii) The annihilator of any non-empty subset of R is an ideal.

(iii) The set of all nilpotent elements is an ideal if it is a subgroup of the additive group R^+ of R.

First, we prove the following lemma.

Lemma 4. Let R be a near ring satisfying (*) or (**). Then the idempotent elements of R are central.

Proof. Let R satisfies (*), and let e be an idempotent element of R. If $x \in R$, then there exist integers $p = p(e, x) \ge 1$ and $n = n(x, e) \ge 1$ such that $xe = (ex)^n$ and $ex = (xe)^p$. Multiplying by e on the left of the first and right of the second, we get $exe = e(ex)^n = (ex)^n = xe$ and $exe = (xe)^p e = (xe)^p = ex$. Thus, ex = xe. Therefore, the idempotent elements of R are central.

Now, let R satisfies (**) and e be an idempotent element of R. Then there exist integers $r = r(x, e) \ge 1$ and $s = s(x, e) \ge 1$ such that $xe = e^r x^s = ex^s$. Thus $exe = ex^s = xe$. Also, for some $m = m(e, x) \ge 1$ and $n = n(e, x) \ge 1$, we have $ex = x^m e^n = x^m e$. Thus $exe = x^m e = ex$. So exe = ex. Hence ex = xe for all x in R. Therefore, the idempotent elements of R are central.

Lemma 5. Let R be a zero-symmetric D-near ring. If for each x in R, there exists a positive integer m = m(x) > 1 such that $x^m = x$, then R is a commutative ring.

Proof. By the definition of D-near ring, every non-zero homomorphic image of R contains a non-zero distributive element. If x is a non-zero distributive element with m = m(x) > 1 such that $x^m = x$, then $x^{m-1} = e$, that is x^{m-1} is a distributive idempotent. In view of Lemma 2(i), x^{m-1} is a distributive central idempotent, because R has no non-zero nilpotent elements. By Lemma 1, (R, +) is abelian. But R is a D-near ring. Hence R is a ring. By a well-known result of Jacobson [5], R is a commutative ring.

Now, we are in a position to prove our main results.

Theorem 1. Let R be a D-near ring satisfying (*). Thus R is commutative.

Proof. If n = n(x, y) = 1, then xy = yx. Thus R is commutative. Assume that n = n(x, y) > 1 and R satisfies the property (*). First, we show that xy = 0. By (*), we have $yx = (xy)^n = 0$. Therefore, R is zero-commutative. Thus the left and the right annihilator of R coincide. Let A be an an annihilator of R. By Lemma 3(ii), A becomes an ideal. Let a in R with $a^2 = 0$. Given any $x \in R$ we have axa = 0 because a(ax) = 0 and R is zero-commutative. By assumption $ax = (xa)^n$ for some n = n(a, x) > 1. Therefore $ax = x(axa)(xa)^{n-2} = 0$ and so $a \in A$. Since the homomorphic image R/A of R is a D-near ring, take positive integers p and q such that $x^2 = x^{p+q}$. Thus $x(x^{p+q-1}-x) = 0$. But R is zero-commutative. So $(x^{p+q-1} - x)x = 0$. Hence $x(x^{p+q-1} - x)x^{p+q-1} = 0$. Therefore, $(x^{p+q-1} - x)^2 = 0$. This shows that $x^{p+q-1} - x \in A$. By Lemma 5, R/A is a commutative ring. Hence x(xy - yx) = 0, and so $x^2y = xyx$ for all $x \in R$. But

 $x^2 = x^{p+q}$. Thus $x^{p+q-2} = e$ is idempotent and so is central by Lemma 4. Hence

 $yx^{2} = x^{p+q-2}yx^{2}$ = $x^{p+q-3}xyx^{2}$ = $x^{p+q-3}(xyx)x$ = $x^{p+q-3}x^{2}yx$ = $x^{p+q-2}xyx$ = $x^{p+q-2}x^{2}y$ = $x^{2}y$.

So

$$yx^{2} = x^{2}y = xyx \text{ for all } x, y \in R.$$
(1)

By our hypothesis (*), we can write

$$xy = (yx)^n$$
 where $n = n(x, y) > 1$.

Similarly, for each pair of elements y, x in R, there exists an integer r = r(y, x) > 1such that $yx = (xy)^r$. This implies that $(xy)^{rn} = xy$. Now, we have

$$xy = (xy)^{rn}$$

= $((xy)^r)^n$
= $(\underbrace{xy \cdot xy \cdot xy \cdots xy}_{r-times})^n$
= $((xyx)\underbrace{yx \cdot yx \cdot yx \cdots yx}_{(r-2)-times}y)^n$

Repeated (1) continuously, we get

$$xy = (yx^{2} \underbrace{yxyx\cdots yx}_{(r-2)-times} y)^{n}$$

$$= ((yx)^{2} \underbrace{xyxy\cdots xy}_{(r-2)-times})^{n}$$

$$= ((yx)^{r-2}yx^{2}y)^{n}$$

$$= ((yx)^{r-2}yxyx)^{n}$$

$$= ((yx)^{r})^{n}$$

$$= (xy)^{n}$$

$$= yx.$$

Therefore, R is commutative.

Theorem 2. Let R be a D-near ring satisfying (**). Then R is commutative.

Proof. Let R satisfies (**) and let $n = n(x, y) \ge 1$ and $m = m(x, y) \ge 1$. Then it is easy to check that R is zero-commutative. Then by (**), we get

$$yx = x^n y^m = \underbrace{xx \cdots (x}_{n-times} \underbrace{y)y \cdots y}_{m-times} = 0.$$

Let $x, y \in R$ with xy = 0. Then R is zero commutative.

Using the same argument as in the proof of Theorem 1, we get

$$x^2y = xyx = yx^2$$
 for all $x, y \in R$.

This implies that for any $s \ge 2$, we can write

$$x^{s}y = yx^{s} \text{ for all } x, y \in R.$$

$$\tag{2}$$

Now by (**), we have $xy = y^m x^n$. Let $y = x^p y^q$ for some positive integers p, q, m and n. Using (2), we obtain

$$\begin{aligned} xy &= y^{m-1}yxx^{n-1} \\ &= y^{m-1}x^py^qx^{n-1} \\ &= y^{m+q-1}x^{n+p-1} \end{aligned}$$

Thus

$$xy = y^{m+q-1}x^{n+p-1}. (3)$$

Furthermore, by using (2) and (3), we get

$$\begin{aligned} xy &= x^{n+p-1}y^{m+q-1} \\ &= x^{p-1}x^ny^my^{q-1} \\ &= x^{p-1}y^mx^ny^{q-1} \\ &= x^py^q = yx. \end{aligned}$$

Hence xy = yx. Therefore, R is commutative.

2. A Decomposition Theorem for Near Rings

In [4], Bell and Ligh established the direct sum decomposition for rings satisfying the properties $xy = (xy)^2 f(xy)$ and $xy = (yx)^2 f(yx)$, where $f(X) \in \mathbb{Z}[X]$, the polynomial ring over Z. Furtheremore, in [4], they remarked that in case of near rings the analogous results do not give direct sum decomposition. The authors of [4], defined a weaker condition of orthogonal sum as follows.

Definition 4. A near ring R is an orthogonal sum of subnear rings M and N denoted by $R = M \oplus N$, if MN = NM = (0) and each element of R has a unique representation in the form m + n such that $m \in M$ and $n \in N$.

In this paper, we consider the near ring property:

(***) For each x, y in a near ring R, there exist positive integers $m = m(x, y) \ge 1$ and n = n(x, y) > 1 for which $xy = y^m x^n$. Indeed, we prove the following result.

Theorem 3. Let R be a near ring satisfying (* * *). Then the set N of all nilpotent elements of R is a subnear ring with trivial multiplication. Indeed N is an ideal in R. If $M = \{x \in R | x^n = x, \text{ for a positive integer } n(x) > 1\}$, then M is a subnear ring of R with (M, +) is abelian. Furthermore, $R = M \oplus N$.

Before proving our decomposition result for near rings, we state the following lemma.

Lemma 6 [4]. Let R be a near ring with idempotent elements are multiplicative central, and let e and f be any idempotent element of R. Then there exists an idempotent element g such that ge = e and gf = f.

Proof of Theorem 3. Let R satisfies (* * *). Then it is easy to check that R is necessarily zero-symmetric as well as zero-commutative. Suppose that $a \in N$ and $x \in R$. Then there exist integers $m_1 = m_1(a, x) \ge 1$, and $n_1 = n_1(a, x) > 1$ such that

$$ax = x^{m_1} a^{n_1}. (4)$$

Now, select $m_2 = m_2(x^{m_1}, a^{n_1}) \ge 1$ and $n_2 = n_2(x^{m_1}, a^{n_1}) > 1$ such that

$$x^{m_1}a^{n_1} = a^{n_1n_2}x^{m_1m_2}. (5)$$

Combining (4) and (5), we obtain

$$ax = a^{n_1 n_2} x^{m_1 m_2}$$

Using the same argument as above for arbitrary q, such that the integers $m_1 \ge 1, m_2 \ge 1, \dots, m_q \ge 1$ and $n_1 > 1, n_2 > 1, \dots, n_q > 1$. But $a \in N$. So $a^{n_1 n_2 \dots n_q} = 0$ for sufficiently large q. Thus ax = 0. But R is zero-commutative. Then the nilpotent elements of R annihilate R on both sides, so NR = RN = (0). This implies that $N^2 = (0)$ and $N \subseteq Z(R)$, the center of R. Further, let $a, b \in N$ such that $a^{s'} = 0$ and $b^{t'} = 0$ for all $s' \ge 1$ and t' > 1. Then $(a - b)^{s'+t'} = 0$, that is $a - b \in N$. By Lemma 3 (iii), we get N is an ideal of R.

Let $r \in R$ and let s > 1, t > 1 be integers such that $r^{s+t} = r^2$. So we have $r = r - r^{s+t-1} - r^{s+t-1}$. Because $r(r - r^{s+t-1}) = 0$ and R is zero-commutative. So we get $(r - r^{s+t-1})r = 0$ and $(r - r^{s+t-1})r^{s+t-1} = 0$. Hence $(r - r^{s+t-1})^2 = 0$ and $r - r^{s+t-1} \in N$. Also, we have

 $(r^{s+t-1})^{s+t-1} = r^{(s+t-1)(s+t-1)}$ = $r^{(s+t-2)(s+t)} \cdot r$ = $(r^{s+t})^{s+t-2} \cdot r$ = $(r^2)^{s+t-2} \cdot r$ = $(r^{s+t-2})^2 \cdot r$. Since r^{s+t-2} is idempotent, $(r^{s+t-1})^{s+t-1} = r^{s+t-1}$ for s+t-1 > 1 and $r^{s+t-1} \in M$.

Next, we show that M is a subnear ring of R. Let $u, v \in M$ and let $l = l(u) \ge 1$, k = k(v) > 1 be integers such that $u^{l} = u$ and $v^{k} = v$. Then $e = u^{l-1}$ and $f = v^{k-1}$ are idemoptent elements such that eu = u and fv = v. Thus

$$uv = eufv = efuv = uvef = (ef)^m (uv)^n$$

for some integers $m = m(uv, ef) \ge 1$ and n = n(uv, ef) > 1. Hence, we can write

$$uv = ef(uv)^n = (uv)^n.$$

This implies that $uv \in M$. Since R/N has the property $x^{j(x)} = x$ for an integer j(x) > 1. So we have an integer i > 1 such that

$$(u-v)^{i} = (u-v+a) \text{ for } a \in N.$$
(6)

Using Lemma 6, we choose an idempotent h for which he = e and hf = f such that hu = u, and hv = v. Multiplying (6) by h, we get $(u - v)^i = u - v \in M$. This implies that M is a subnear ring.

By Lemma 1, (M, +) is abelian. It is obvious to see that $M \cap N = (0)$. Now, let $x_1 + y_1 = x_2 + y_2$ for $x_1, x_2 \in M$ and $y_1, y_2 \in N$. Then $x_1 - x_2 = y_2 - y_1$. Since $x_1 - x_2 \in M$ and $y_2 - y_1 \in N$. This implies that $x_1 - x_2 = y_2 - y_1 \in M \cap N = (0)$. Thus $x_1 = x_2$ and $y_1 = y_2$. Therefore, $R = M \oplus N$.

References

- H. E. Bell, "Near rings in which each element is a power of itself," Bull. Austral. Math. Soc., 2 (1970), 363-368.
- [2] H. E. Bell, "Certain near rings are rings II," Internat. J. Math and Math. Sci., 9 (1986), 267-272.
- [3] H. E. Bell, "Certain near rings are rings," J. London Math. Soc., 4 (1971), 267-270.
- [4] H. E. Bell, "Some decomposition theorems for periodic rings and near rings," Math. J. Okayama Univ., 31 (1989), 93-99.
- [5] N. Jacobson, "Structure of rings," Amer. Math. Soc. Colloq. Pub., 37 Providence, (1956).
- [6] S. Ligh and J. Luh, "Some commutativity theorems for rings and near rings," Acta Math. Acad. Sci. Hungar., 28 (1976), 19-23.
- [7] S. Ligh, "On distributively generated near rings," Proc. Edinb. Math. Soc., 16 (1969), 239-243.
- [8] M. A. Quadri, M. Ashraf and A. Ali, "Certain conditions under which near rings are rings," Bull. Austral. Math. Soc., 42 (1990), 91-94.

Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 31464, Jeddah 21497, Saudi Arabia.