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COMMUTATIVITY AND DECOMPOSITION FOR NEAR RINGS

HAMZA A. S. ABUJABAL

Abstract. Let R be a distributively generated (d.g) near ring satisfy one of the following

conditions.

#) For each z,y in R, there exists a positive integer n = n(z, y) such that zy = (yz)™.
g
(#%) For each z,y in R, there exist positive integers m = m(z,y) and n = n(z,y) for which

zy=y"z".

In [2], Bell proved the commutativity of R satisfying (*) or (**) under appropriate additional
hypothesis. In this paper, we generalize the above properties for wider class of near rings known
as D-near rings. Also we provide an example for justification of our results. Furthermore, we

give a decomposition Theorem for near rings satisfying (**).

1. Some Commutativity Theorems for Near Rings
In [6], Ligh and Luh introduced the notion of D-ring as follows:

Definition 1. A near ring R is called a D-near ring if every non-zero homomorphic
image S of R satisfies the following conditions:

(C1) S has a non-zero right distributive element.

(Cs) (S, +) is abelian implies that (S, +,.) is a ring.

All rings and distributively generated (d.g) near rings are examples of D-near rings.

The following example shows that D-near rings are generalizations of d.g near rings.

Example 1. Let R = {0, z,y, z,u,v} with addition and multiplication tables, defined
as follows:
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Then R is a D-near ring which has a unique left identity z with uz = 0 = vz. This
indicates that z is not a right identity. By virtue of [7, Theorem 3.2], if a d.g near ring
has a unique left identity, then it is also a right identity. Thus R is not a d.g near ring.
This shows that the class of D-near rings is larger than the class of d.g near rings.

Let R be a D-near ring. In this section, we study the commutativity of R satisfying
one of the following conditions:

(¥) For each z,y in R, there exists a positive integer n = n(z,y) such that zy = (yz)™.
(#%) For each z,y in R, there exist positive integers m = m(z,y) and n = n(z,y) for
which zy = y™2™.

Definition 2. A near ring R is called zero-symmetric if 0z = 0 for all z € R, that is
left distributive gives 20 = 0.

Definition 3. A near ring R is called zero-commutative if zy — 0 implies that yz = 0
for z,y € R.
First, we recall [1, Lemma 1], [1, Lemma 2] and [3, Lemma 3.

Lemma 1. Lei R be a zero-symmetric near ring satisfying the following condi-
tions:

(a) For each z in R, there exists an integer n = n(z) > 1 such that z" = z.

(b) Every non-trivial homomorphic image of R contains a non-zero central tdempotent.
Then (R,+) is abelian.

Lemma 2. Let R be a zero-symmetric near ring with no non-zero nilpotent elements.
Then the following conditions hold.

(i) Ewvery distributive idempotent is central.
(ii) For every idempotent e and every element y in R, ey? = (ey)?.
(i) If R has a multiplicative identity element, then all idempotent elements are central.

Lemma 3. Let R be a near ring which is zero commutative. Then

(i) If a,b € R such that ab = 0, then arb =0 forallrT € R.
(ii) The annihilator of any non-empty subset of R is an ideal.
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(iii) The set of all nilpotent elements is an ideal if it is a subgroup of the additive group
RY of R.

First, we prove the following lemma.

Lemma 4. Let R be a near ring satisfying (x) or (¥x). Then the idempotent elements
of R are central.

Proof. Let R satisfies (), and let e be an idempotent clement of R. If z € R,
then there exist integers p = p(e,z) > 1 and n = n(z,e) > 1 such that ze = (ez)" and
ex = (ze)?. Multiplying by e on the left of the first and right of the second, we get
exe = e(ex)™ = (ex)" = ze and eze = (ze)Pe = (ze)? = ex. Thus, ez = ze. Therefore,
the idempotent elements of R are central.

Now, let R satisfies (#+*) and e be an idempotent element of R. Then there exist
integersr = r(z,e) > 1and s = s(z,e) > 1such that ze = e"z° = ez®. Thuseze = ez’ =
ze. Also, for some m = m(e,z) > 1 and n = n(e,z) > 1, we have ez = z™e™ = z™e.
Thus eze = z™e = ex. So exe = ex. Hence ex = ze for all z in R. Therefore, the
idempotent elements of R are central.

Lemma 5. Let R be a zero-symnetric D-near ring. If for each x in R, there ezists
a positive integer m = m(z) > 1 such that z™ = z, then R is a commutative Ting.

Proof. By the definition of D-near ring, every non-zero homomorphic image of R
contains a non-zero distributive element. If z is a non-zero distributive element with
m = m(z) > 1 such that ™ = =z, then ™! = e, that is 2™ " is a distributive
idempotent. In view of Lemma 2(i), z™ ! is a distributive central idempotent, because
R has no non-zero nilpotent elements. By Lemma 1, (R, +) is abelian. But R is a D-near
ring. Hence R is a ring. By a well-known result of Jacobson [5], R is a commutative ring.

Now, we are in a position to prove our main results.

Theorem 1. Let R be a D-near ring satisfying (x). Thus R is commutative.

Proof. If n = n(z,y) = 1, then zy = yz. Thus R is commutative. Assume that
n = n(z,y) > 1 and R satisfies the property (). First, we show that zy = 0. By (),
we have yz = (zy)™ = 0. Therefore, R is zero-commutative. Thus the left and the right
annihilator of K coincide. Let A be an an annihilator of R. By Lemma 3(ii), A becomes an
ideal. Let a in R with a? = 0. Given any = € R we have aza = 0 because a(az) = 0 and
R is zero-commutative. By assumption az = (za)™ for some n = n(a,z) > 1. Therefore
az = z(aza)(za)®? = 0 and so a € A. Since the homomorphic image R/A of R is a
D-near ring, take positive integers p and ¢ such that z? = P4, Thus z(zPt?" ! —z) = 0.
But R is zero-commutative. So (zPT971 — z)z = 0. Hence z(zPt9"1 — g)zPte 1 = 0.
Therefore, (P91 — z)2 = 0. This shows that zP*9~! —z € A. By Lemma 5, R/A
is a commutative ring. Hence z(zy — yz) = 0, and so 2’y = zyz for all z € R. But
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z? = zP+%. Thus 27*?~2 = ¢ is idempotent and so is central by Lemma 4. Hence

yzz — $p+q-—2yx2

- 1:‘”"’“39:3/2:2
= P13 (zyz)x
- $p+q—3x2yx
— $p+q—2xyx
- $p+q—2$2y
= z2y.
So
o . 1
z° =z°y =zyz for all z,y € R. (1)
Y Yy Y

By our hypothesis (), we can write
zy = (yz)" where n = n(z,y) > 1.

Similarly, for each pair of elements Y, in R, there exists an integer r = r(y,z) > 1
such that yz = (zy)". This implies that (zy)™ = zy. Now, we have

ry = (zy)™
= ((=y)")"
=(zy-zy-zy---zy)"
e
= ((ay2)yz -yz -y -yz )"

—
(r—2)—times

Repeated (1) continuously, we get

2 n
zy = (yz° yzyx - - -y
(yz© yzyz - - -yz y)
(r—2)—times
2 n
= ((yz)* zyzy-- -z
((yz)? zyay - zy)
(r—2)—times

(yz)"2yzy)"

Therefore, R is commutative.
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Theorem 2. Let R be a D-near ring satisfying (xx). Then R is commutative.

Proof. Let R satisfies () and let n = n(z,y) > 1 and m = m(z,y) > 1. Then it is
easy to check that R is zero-commutative. Then by (¥%), we get

yr=z"y" =zz---(cy)y---y=0.
——— ——
n—times m-—~times

Let z,y € R with zy = 0. Then R is zero commutative.
Using the same argument as in the proof of Theorem 1, we get
z?y = zyz = yz? for all z,y € R.

This implies that for any s > 2, we can write

2%y = ya® for all z,y € R. (2)
Now by (*x), we have zy = y™z™. Let y = zPy? for some positive integers p, ¢, m and
n. Using (2), we obtain

Ty = ym——lymmn—-l
e ym—lxpqu

=Y

n—1

m+q—1,n+p—1

Thus
Ty = ,Um—i-q-—--lmn+p——l _ (3)
Furthermore, by using (2) and (3), we get

n+p—1, m4+qg—1

Y
- mp—lxnymyq—-l

Rl =

s mp- -1 ymmnyq—l

=yt =98

Hence zy = yz. Therefore, R is commutative.
y=y )

2. A Decomposition Theorem for Near Rings

In [4], Bell and Ligh established the direct sum decomposition for rings satisfying the
properties zy = (zy)%f(zy) and zy = (yz)? f(yz), where f(X) € Z[X], the polynomial
ring over Z. Furtheremore, in [4], they remarked that in case of near rings the analogous
results do not give direct sum decomposition. The authors of [4], defined a weaker
condition of orthogonal sum as follows.

Definition 4. A near ring R is an orthogonal sum of subnear rings M and N denoted
by R=M®N,if MN = NM = (0) and each clement of R has a unique representation
in the form m + n such that m € M and n € N.

In this paper, we consider the near ring property:
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(x % *) For each z,y in a near ring R, there exist positive integers m = m(z,y) > 1 and
n = n(zx,y) > 1 for which zy = y™z". Indeed, we prove the following result.

Theorem 3. Let R be a near ring satisfying (x x x). Then the set N of all nilpotent
elements of R is a subnear ring with trivial multiplication. Indeed N is an ideal in R.
If M = {z € R|z™ =z, for a positive integer n(z) > 1}, then M is a subnear ring of R
with (M, +) s abelian. Furthermore, R= M & N.

Before proving our decomposition result for near rings, we state the following lemma.

Lemma 6 [4]. Let R be a near ring with idempotent elements are multiplicative
central, and let e and f be any idempotent element of R. Then there exists an idempotent
element g such that ge = e and gf = f.

Proof of Theorem 3. Let R satisfies (* * *). Then it is easy to check that R is
necessarily zero-symmetric as well as zero-commutative. Suppose that a € N and = € R.
Then there exist integers my; = my(a,z) > 1, and n; = n;(a,z) > 1 such that

gir= 3" glt, (4)
Now, select ma = mo(z™1,a™) > 1 and ny = na(z™,a™) > 1 such that
:L.an anl — anlnzxml ma y (5)

Combining (4) and (5), we obtain

sl e e

Using the same argument as above for arbitrary g, such that the integersmy; > 1, my > 1,
cooMg>landng >1,n >1,...,ny> 1. Buta € N. So a™"™ " = () for sufficiently
large ¢. Thus ar = 0. But R is zero-commutative. Then the nilpotent elements of
R annihilate R on both sides, so NR = RN = (0). This implies that N2> = (0) and
N C Z(R), the center of R. Further, let a,b € N such that a* = 0 and bt = 0 for all
s'>1andt > 1. Then (a — b)*+* =0, thatis a — b € N. By Lemma 3 (iii), we get N
is an ideal of R.

Let r € R and let s > 1, t > 1 be integers such that r*+t = 2. So we have
r=r—r*t-l _psti-1 Because r(r — r°tt"1) = 0 and R is zero-commutative. So
we get (r — r*** 1)y = 0 and (r — rott1)rs+t=1 = . Hence (r — r*+t~1)2 = 0 and
r—r*t*1 € N. Also, we have

(,rs+t~-1)s+t—1 - T(s+t—-1)(s+t—l)

— pleHt=2)(ot)

r

e (Ts+t)s+t—"2 )
== (T2)s+t—-2 .

e (rs+t—2)2 .7
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Since r*+t=2 is idempotent, (rtt-1)stt—l = pstt=1 for s+t — 1> 1 and r*+*~1 € M.

Next, we show that M is a subnear ring of R. Let u,v € M and let | = l(u) > 1,
k = k(v) > 1 be integers such that u' = u and v* =v. Then e = w1 and f =v*1 are
idemoptent elements such that eu = v and fv = v. Thus

wv = eufv = efuv = wvef = (ef)™ (uv)"
for some integers m = m(uv,ef) > 1 and n = n(uv,ef) > 1. Hence, we can write
uv = ef (uv)™ = (uv)".

This implies that uv € M. Since R/N has the property 27 (#) = g for an integer j(z) > 1.
So we have an integer ¢ > 1 such that

(u—v)' =(u—v+a)foraeN. (6)

Using Lemma, 6, we choose an idempotent h for which he = e and hf = f such that
hu = u, and hv = v. Multiplying (6) by h, we get (u —v)" = u —v € M. This implies
that M is a subnear ring.

By Lemma 1, (M,+) is abelian. It is obvious to see that M N N = (0). Now, let
Ty + 1y, = To +yo for x1,70 € M and y1,y2 € N. Then z; — 23 = y2 — y1. Since
Z1 — %9 € M and y2 —y, € N. This implies that z; —22 = y2 —y1 € MNN = (0). Thus
T, = 29 and y; = y2. Therefore, R=M @ N.
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