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ON P-HARMONIC MAPS AND THEIR APPLICATIONS TO
GEOMETRY, TOPOLOGY AND ANALYSIS

SHIHSHU WALTER WEI

0. Introduction

The use of the p-energy functional on spaces of maps u : M — N between Riemannian
manifolds has contributed to our understanding of mathematics. The critical points of
tre p-cnergy functional, p-harmonic maps, have been employed in many different contexts
for solving various problems.

(i) For p = 1, Bombieri-De Giorgi-Giusti [3] construct a 1-harmonic function u : R2™ —
R whose zero-level set ™' (0) = {z € R*™ : 22 + ... + a2 =al 4+ z%,} is an
area-minimizing cone over the product of (m — 1)-spheres {z € R*™ . i+ -+ 22, =
Loty + -+ 23, = 1} in R¥™ for m > 4.

Arising also from a nonlincar entire solution [3] of the minimal surface equation by
means of the Fleming-De Giorgi construction ([20], [10]), this cone provides the first
counter-cxample to interior regularity for solutions to the co-dimension 1 Plateau prob-
lem, and shows the optimality of the estimate n— 7 obtained by Federer’s Reduction tech-
nique for the highest possible Hausdorff dimension of the singular set of an n-dimensional
arca-minimizing rectifiable current in R™! [21].

In the paper of S.P. Wang and S.W. Wei [73], a class of counter-examples to a
Bernstein-type theorem in hyperbolic space was constructed, using smooth 1-harmonic
function in hyperbolic space. Since then many works on this topic were developed by
M. Anderson (in his Berkeley thesis) [1], R.M. Hardt and F.H. Lin (31], and recently by

others.

(i1} In the case p == 2, p-harmonic maps are harmonic maps which include harmonic
functions (where N = R) and harmonic 1-forms (where N = S'). The study of harmonic
functions, which arises from complex analysis, stimulates the the development, of the
theory of elliptic and parabolic P.D.Es and serves as a tool in solving geometric and
classical variational problems [9] [45], while the study of harmonic forms which uniquely
represent cohomology classes according to Hodge Theory, has extensive applications to
topology, analysis and geometry.

A pioneerirg theorem of Eells-Sampson [19] shows the existence of a harmonic map in
the homctopy class of any smooth map on a compact manifold into a compact manifold
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with nonpositive sectional curvature. Hartman [28] proves the uniqueness of harmonic
maps inte compact manifolds with negative sectional curvature and rank > 1 somewhere.
The Dirichlet problem for harmonic maps with compact, nonpositive target manifolds is
solved by Hamilton [26], and the result is gencralized to harmonic maps with images in
geodesically small discs by Hildebrandt-Kaul-Widman [29].

(iii) For 1 < p < oo, p-harmonic maps include geodesics (where dim M = 1) and minimal
submanifolds M in N ( where dim M = p). In fact, suppose M is one-dimensional. Then
forany p > 1, u : M — N is p-harmonic and parametrized proportionally to the arc
length if and only if u is a geodesic in N, and u is p-energy minimizing if and only if u is
length-minimizing [68]. On the other hand, suppose M is m-dimensional and u : M — N
is an isometric immersion. Then for any m > 1, u : M — N is m-harmonic if and only
if M is a minimal submanifold in N, and u is m-energy minimizing if and only if M is
area-minimizing [68]. In general, an isometric immersion u : M -+ N is p-harmonic for
any p > 1 if and only if » is minimal.

The idea of representing fundamental groups by closed geodesics is due to E. Car-
tan (8] who proves that if M is a compact Riemannian manifold, then every nontrivial
free homotopy class of loops in M contains a closed geodesic of minimum length. The
study of geodesics leads to many beautiful discoveries in Riemannian Geometry (such
as the Cartan-Hadamard, Bonnet-Meyer, Synge, Rauch Comparison Theorems), Classi-
cal Morse Theory (where it plays an important role in solving the higher dimensional
Poincaré conjecture [52]) and Morse Theory on infinite dimensional spaces such as Ba-
nach manifolds [44] {46] [50].

\ccording to a theorem of Federer-Fleming, minimal varieties of least area represent
homology groups. The theorem asserts that the singular homology greups of every com-
pact Lipschitz neighborhood retract A in n-space with integer coefficients are isomorphic
with the homology groups of the complex of all integral currents with support in A;
in each integral homology class there is a cycle of least mass [22]. Analogous to har-
monic maps are minimal submanifolds, which have proven to be useful in applications
to differential geometry, algebraic geometry, geometric measure theory, topology, partial
differentia: equations, complex analysis, mathematical physics and representation theory.

(iv) The case p = co has been studied by L.C. Evans [12].

1. Reguiarity Theory

Regularity estimates for elliptic systems, in particular the Euler-Lagrange equation
for p-energy, were first obtained by K. Uhlenbeck [63] for p > 2, and later by P. Tolksdorf
[61] for p > 1. The question of minimizing the p-energy in appropriate homotopy classes
has been studied by B. White [71,72]. A ground-breaking regularity theory of p-energy
minimizing maps between Riemannian manifolds has been established by Hardt-Lin [30]

and Luckhaus [34], for case p > 1 (the case p = 2 is due to Schoen-Uhlenbeck [56] and
Giaquinta-Giusti [24]).
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TLet M™ be a compact Riemannian manifold with possibly non-empty boundary, and
N* be isometrically immersed in RY. LY(M,N) denotes the set of maps u: M — RY
whose component functions have first weak derivatives in LP and u(z) € N a.e. on M.
The p-energy for v € LY (M, N) is given by

1
Ey(u) = E/M |du|Pdz (1.1)

where du denotes the differential of u, dz is the volume element of M and 1 < p < oo.
A map u € LY(M,N) is said to be p-harmonic if it is a weak solution to the Euler-
Lagrange equation for E, on LY(M, N). u is called p-stable (or p-minimizing) if u is
a iocal (resp. global) minimum of the p-energy functional E, on L7(M, N) having the
same trace on OM. u is said to be p-unstable if u is not p-stable.

i.2. Definition. A map @ : R7*! — N is said to be a p-minimizing tangent map
(p-MTM) if 1 is p-minimizing on every compact subset of R7*? and is a homogeneous
extension of w : S7 — N of degree-zero.

1.3. Theorem (Hardt-Lin [30], Theorem 4.5 p.573).

Suppose € is the largest integer such that any p-minimizing tangent map from the unit
ball in B into N is a constant map for each j = 1,...,£. Then the interior singular set
of any v-minimizer u € LYP(Q, N) is empty in case n < £ + 1, is a discrete set in case
n="{+1, and has Hausdorff dimensionn — ¢ — 1 in case n = £+ 1. Moreover, £ 2 [p].
(Where ) is a C? bounded open subset of R™ with the Euclidean meiric.)

As a consequence,

1.4. Theorem (Hardt-Lin [30], Luckhaus [34]). For p > 1, the Hausdorff
dimension of the singular set of a p-minimizing map v € LY(M™, N*) in the interior of
M cannot exceed n—[p]—1, in general. If n = [p]+1, u has at most isolated singularities.
IFn<[pl+1 (orif [p] +1 < n, off the singular set) u is locaily Hélder continuous up
to the boundary and the gradient of u s also locally Hélder continuous in the interior of
M.

Since then the regularity problem of p-minimizing maps between Riemannian mani-
folds has become an active research area. Furthermore, the above Theorems 1.3 and 1.4
also have an impact on the development of the theory of p-harmonic maps which we will
discuss in subscquent sections (e.g. §2, 5, 6, 7, 9).

Generalizing the work of Ming Li {35] which treats the case of p = 2, Shah-Sen Wang
proves some general partial interior regularity for p-minimizers into complete manifold
N ( which are not necessary the retract of a uniform tubular neighborhood N, ).

1.5. Theorem [70]. A p-minimizer u € LY(M,N) is CY* outside a closed singular
set Sy, in the interior of M with Hausdorff dimension at most n — p.
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The regularity of p-energy minimizing section of fiber bundle has been studied by
Shab-Sen Wang [69], in which the Hausdorff dimension of the singular set does not
exceed n — [p] — 1.

On the other hand, using Hardy Method (compensated compactness) in harmonic
analysis, Libin Mou and Paul Yang have established the partial regularity of stationary
p-harmonic maps into a sphere, thus generalizing results of L. C. Evans [11] for p = 2.

1.6. Theorem [41]. Let M be a compact n-manifold. For 1 < p < n, o stalionary
p-harmonic map u € LY(M,S*) is CY* outside a closed singular sel S, with n — p
dimensional Hausdorff measure zero. If p = n, then u is CL*,

Meore recently, T. Toro and C.Y. Wang [62] have shown that a stationary p- harmonic
maps from an open subset of R™ into a homogencous space with a left invariant metri
is C1% except possibly for a closed singular set of n — p dimensional Hausdorff measure
Zero .

2. Fundamentals in Differential Geometry

Ir differential geometry, p-harmonic maps are natural ob jects of study [68]. We begin
with length-minimizing geodesics:

2.1. Proposition. Let M be a complete Riemannian manifold, z,,xo € M have

distance d, and let QUM; z1,z2) be the set of all piecewise stnooth paths from x1 to T» in

M. Then the p-energy function
E, : Q(M;zy,z2) > R

fakes on its mintmum, %dp precisely on the set of length-minimizing geodesics from z, to
Lo,

Preof. Denote L(u) the length of a curve u(t) from t = a to ¢t = b. Then by Hélder
inequality

L{u)? < ([b l%l”dt) (/b 1th)§ where % + 3 =1

< (b- a)SpEp(u) and equality holds if and only if |%f =c
Hence, if w is length-minimizing from z; = w(0) to zy = w(1), then
PEp(w) = L(w)? < L(u)? < pE,(u) (2.2)

Here the equality L(w)? = L(u)? can hold only if u is also length-minimizing, possibly
reparametrized. On the other hand, the equality L(u)? = pEy(u) can hold only if the
parameter is proportional to arc-length along u. This proves that E,(w) < Ey(u) unless
u is also iength-minimizing.
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Analogous to (2.2),

2.3. Proposition. Let u be an immersion of an n-manifold M in N. Denote the
n-dimessional area of u(M) by A(u). Then

Alu) < n_“z;zEn(u) and equality holds if and only if u is conformal.

For the mass functional, the first and second variational formulas are due to Federer
in flat space [20] and to Lawson-Simons in the general Riemannian case [36] ; formulas for
the energy functional and for the area functional are found in Eells-Sampson [19] and in
Simens {51] respectively. In [68] we develop fundamental tools in the study of p-harmonic
maps by deriving the first and second variational formulas for the p-energy functional on
maps between Riemannian manifolds, and obtaining estimates on a Bochner formula in
this general setting.

Consider a C* map v : M — N, where M is compact. Denote the pull-back tangent
bundie of N by v as v~ !T'N, and the pull-back connection by V*.

(Cnoose a one-parameter C? family of C! maps u; such that ug = u and %]tﬂ, =
is % and a two-parameter C! variations F'(-,s,t) = us; such that

(‘3us,t 8U5,L aus,t 8us,i
= = —= and w=

- W
55 0 U= Tgs 100 ot ac 100

We shail also denote by F : M x [0,1] — N the map defined by F(z,t) = u(z) for
one-parameter C? variations through C' maps, i.e. Fis C! in « and C? in t.

V=

2.4. First variational formula for p-energy.

d -2 F
& By(u) = /M e P Z < VEV, Fues) > da

where {ey,-- -, eq} is a local orthonormal frame field on M, and V = FM(%)

2.5. Corollary. A curve u is p-energy minimizing if and only if u is length-
minimizing. A curve u is a p-harmonic and parametrized proportionally to the arc length
if and only if u is a geodesic.

Proof. This follows directly from the first variational formula 2.4. and the proof of
Proposition 2.1.

2.6. Corollary. An isometric immersion u : M — N is p-harmonic for any p > 1
if and only if v is minimal.

Proof. Assume the dimension of M is n. Then by setting ¢ = 0 (2.4) in which
idertifying e; with du(e;), |dulP~? = n*7 | it follows that

o= 3 < VlduP2du(es),V > d = / nE Y < VY dule), VE + VT > do
JM i M i



150 SHIHSHU WALTER WEI
£ n=2 . T n—=2
= 02 (KHV>-divV" >)dz =n"= < H)V >dz
S M

where A is the mean curvature of M in N, VT and V- are tangential and normal
components of M in N respectively. This completes the proof.

Dr. Ren-Long Xia has proved the above result 2.6 by the method of moving frame.

2.7. Second variational formula of two parameters for p-energy. (u is not
necessary p-harmonic)

82

a¢ _ 4 » |
j&—t%bp(us,t) = /M(p — 2)|dus ¢|P (Z < V.. V,F(e;) >)

X (> < VEW,F.(e;) > )dz

J

+ / [dus a2 (3 < VEVE W + RN (W, Fu(e)V, Fues) >
M i=1 ‘

n
+> < VEV,VEW > )Vdo

i=1

where W = F,(£) and RV is the curvature tensor on N and < RN (z,y)y,z > denotes
the sectional curvature of N for the plane spanned by its orthonormal basis {z,y}

2.8. Corollary. Suppose either for each fited z € M, the curve F(z,t) is a constant
speed geodesic in M or u is a p-harmonic map with compactly supported V(x,0) in the
interior of M. Then

d? -
5 Ep(ue)hoo = /M(p - 2)lduP~H(3 < Vi@ > )’

+|dulP2 (V¥ 4 > RN (0,80, > dx

where €; means du(e;).
As an immediate consequence of Corollary 2.7,

2.9. Corollary. Let the sectional curvature of N be nonpositive. Suppose either of
the foliowing two conditions holds:

(i) F: 4 x[0,1] =+ N be a homotopy of u through p-harmonic maps or
(i) F': M x[0,1] = N be a geodesic homotopy of u ( i.e. for each z € M, F(z,t) is a
geodesic, parametrized by constant speed fort €[0,1]).

Then ihe function t — Ey(ut) is a convex function on [0,1] for p > 2.
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Let A be the Hodge-DeRham Laplacian in which A = —(dd* + d*d). Ric™ and
Riemn!Y denote the Ricci curvature of M and the sectional curvature of N respectively.

2.16. The Bochner Formula. ([75], (19)).

; A ldul?® = Bldul?P > ((Adu, du) + | ¥ dul?

_ 2 (BN (dule;), dule;))du(e;), dule;))

+ E (du(RicMe;), du(es)) +2(8 — VI v ldull’)

at oli peints where |du| # 0

This formula is globally true in the distribution sense, even if |du| vanishes at various
points. As an application of this Bochner formula, we have

2.1%. Theorem. Let u : M — N be a p-harmonic map in which p > 2 and suppose
RicM >0 and Riem®™ < 0. Then

(1) w is constant or totally geodesic

(2) If RicM > 0 at a point, then u is constant.

(3) If Riem™ < 0, then u is either constant or of rank one, in which case its image is a
closed geodesic.

3. An Extrinsic Average Variational Method.

In dealing with p-harmonic maps from or into n-manifolds with positive Ricci curva-
ture and n < p where well-known analytic tools such as heat flow method and Sobolev
embedding theorem do not seem to yield much information, one may consider a geomet-
ric approach - an extrinsic average variational method [65]. Let M < R? be an isomet-

ric imersion and {V{",---,VT} be the tangential projection of an orthonormal frame
f

Vi, +, ¥ in R? onto M. Denote d’z by the flow generated by V[ Let uy =uo ¢>, ,
A"< be ‘(he Weingartan map and QM be as in (3.4) where N = M We obtain

3.1. An Average Second Variational Formula on The Domain For The
p-energy of A p~-harmonic Map u: M™ — Nk,

q 2 g-n .
> Eemes) = [ ip-0 3 (3 < Aea > )
. M a=1 1=1

:)'_

+ |du? z < QM(e;),€; >nidx

i=1
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where ~ means du(-), {e1, -, e,} is tangent to M and {v1,---,v4_n} is normal to M.

Similarly, we can isometrically immerse N* into R? and choose an adopted orthonor-

mai basis {Vi,---,V,} in R? such that {Vi,---,Vi} is tangent to N*. Then apply
-

v ) .. .
ug = 9,7 ,up = u,s =t in the second variational formula 2.7.

3.2. An Average 2nd variational formula on the target for p-emergy of
1w M™ — N* (1 is not necessarily p-harmonic).

q 5 . . |
2 (;_ltEJtZUEP(qbz/j ou)= [M |dul”~"{(p - 2)| ; h(&:, &)l

=1
+ldul? > < QN (&), & >nlda
=1

Via this average process in the Calculus of Variations and a linearization in the
integrands in formulas (3.1) and (3.2), we find a large class of manifolds with positive
Ricel cusvature:

3.3. Definition. A Riemannian manifold N is said to be superstroengly unstable
(SSU) , if there exists an isometric immersion in B? such that, for every unit tangent,
vector 20 to N at every point y € N, the following symmetric linear operator Q{f is
negative definite.

k
(Qy (X), X)n =D (2hxail? ~ hx.x - haias) (3.4)

=1

and N is said to be p-superstrongly unstable (p-8SU) for p > 2 if the following
functiona! is negative valued.

k
Fpy(X) = (0= Dlhx,x P + > (2lhx,ecl* = hx,x - has o) (3-5)

i=1

where ! is the second fundamental form of N in R? with standard inner product v - w
and Euclidean norm [v| defined for v, w in R?; and {a1,..., ¢} is an orthonormal frame
on IV,

3.6. Sxample. The simplest example of an SSU manifold is S* where k > 2 in
which (Q'g’ (X),X)~n =2~k and the simplest example of a p-SSU manifold is S* where
k> pin which £, ,(X) =p— k.

3.7. Definition. A p-SSU index wyp on a p-SSU manifold NV is defined to be

wp = Inf 2(4)/(k+p - 2)S()

where op(y) = nfig (= F, (X)) and S(y) > 0 be a positive upper bound of the
sectional curvature of N at y.
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3.8. Example. The simplest p-SSU index w, on a p-SSU manifold NV is wy, = r’;g—_”—g—

on SF for k > p in which op(y) =k —pand S(y) =1

A 7-S8U index w, plays a dominating role in the regularity of a p-minimizer u into a
-SSU ranifold. In fact, via the Gauss curvature equation, (3.5) implies that on a p-SSU
manifoic N

~(k+p— 2)S(y) < Fpy (X) < "‘%ﬂ(y)

everywhere and hence, w, < 1. However, (as indicated quantitatively from §4) the closer
this p-SSU index w), is to 1, the easier u is to establish the Liouville theorem (in terms of
the voiume growth condition in the domain), and the “smoother” the map is (in terms
of the Hausdorff dimension of the singular set in the domain).

4. Furither Regularity Theorems.
Applying Theorem 1.3, we refine Theorem 1.4 in [75] and [67]:

(i) Maps into manifolds with nonpositive sectional curvature or a domain of
a strictly convex function.

4.1. Theorem. Every p-minimizing, LY map into ¢ manifold of non-positive sec-
tional curvature, or into the domain of a strictly convez function, is CY®. In particular,
every p-manimizing LY map into either a complete noncompact manifold with positive
sectionai curvature or an open hemisphere is CH%.

(it} Maps into manifolds of positive Ricei curvature.
For sach constant 0 < o < 1, and each p-SSU index w, on a p-SSU manifold V, we

set an 1nteger

. —4-2 —
2+[[p+2y/p—0]] if wp> p‘% (4.2)

max 1+ [=%-],[p] otherwise

d(wy,0) = {

where

([£]], the greatest integer [t] of ¢, if ¢ is not an integer; otherwise {[t]] = ¢ — 1.  (4.3)

4.4, Regularity Theorem. Let u € LY (M,N) be p-minimazing, and u(z) € Ny,
a.e., for a compact subset Ny of p-SSU manifold N with p-SSU index w,. Then u s
locaiiy Holder coniinuous up to the boundary and the gradient of w is also locally Holder
continucous outside a closed singular set S, in the interior of M. Furthermore, for any
fixed constant 0 <o <1,

max{n — 2 — [%—],n — [p] — 1} otherwise

1—wy,

-9 p—o]] i pil-ot2yp—a
dim(Sp)S{n 3—(lp+2vp—oll o w2750
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4.5. Corollary. If u e LY(M, S*) is p-minimizing, then

(n--3—(lp+2vp—cl]] if (2p*—op-2(1—0)+d(p—1)\/p—0)/o <k
dim(S;) < )L max{n — 2 — [M],n -~ [p] — 1}

2p—2 .
if p<k<(2p®—o0p—2(1-0)+4(p—1)/p— ag)/o

for any constant 0 < o < 1.

(iii) Maps into manifolds with boundary.

Let
. _ptl—-0o+2p=0 (4.6)
TP p+l+2yp—0 '

set

. 2-FCo
24+ 2/p=o] if yEp<ag Zer

d(a,0,p} = ¢ 1+ [1%] if a< 3¢, ,, (4.7)
1+ [22e=1)) if GEet <a<2

and let the closed upper half-ellipsoid

(B, ={(z1,...,Tpe1) € RFH tazy + oy 442l =1 and zpa > 0}.

[P s
Then we have

4.8. Theorem. Ifu € Lf(M”,@*,) is p-minimizing, then u is locally Hélder
continuous up to boundary and the gradient of u is also locally Hélder continuous in the
wnterior of M for n < d(a,0,p)+1, has at most isolated singularities forn =d(a,o,p)+1
and has a closed singular set of Hausdorff dimensions dim(S,) < n —d(a,o,p) ~ 1 for
n > d(a,7,p) + 1 where o is any fired constant satisfying 0 < o < 1.

The above estimate which augments our previous regularity result on an open upper-
hemisphere S¥ is optimal in the sense that if ¢ = l,then 0 =0, ¢, , = 1, (E@ L= g_}i
and the estimate on dim(S,) is the best possible result because of the equator map
u{z) = li—fj—l, U) from the unit ball in R™ to S™. As a consequence, we obtain imnmediately

the follown g

4.9. Theorem. Let u: M" — gi be an LY map which minimizes p-energy on each
compact domain of M. Then u is locally Hélder continuous up to-the boundary and the
gredient of u is also locally Hélder continuous outside a closed interior singular set S,
of dim{S,) <n —3 - [p+2,/p].

This result (4.9) is also due to Frank Duzaar.
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5. HExistence Theorems.

(i) Representing components of the space C°(M, N)N LY (M, N) by p-harm-
onic maps

In: [67] we use the direct method in the Calculus of Variations [2,72] and the regularity
theory [30,75] to obtain an existence theorem for p-harmonic maps, generalizing the work
of Eells-Sampson [19], Schoen-Yau [58] and Burstall [2] which treat the case p = 2.

5.2. Theorem. Let M be o complete Riemannian n-manifold and N be a compact
Riemannian manifold with a contractible universal cover N and assume that N has no
non-trivial p-minimizing tangent map of R® for £ < n. Then any continuous (or more
generaily T —) map u from M into N of finite p-energy can be deformed to a C1©
p-hermonic map wg minimizing p-energy in the homotopic class, where 1 < p < co.

There are various classes of manifolds N which satisfy the above condition by the
results of Bishop-O’Neill, Eberlein, Burns and Sacks-Uhlenbeck ([5,,13,6,49]). In partic-
ular, we have

5.2. Corollary. Let M be a complete Riemannian n-manifold and N be a compact
Iiemannian manifold with convex supporting universal cover N. Then any homotopy
ciass a7 continuous maps of M into N containing a map of finite p-energy contains a
C*¢ p-harmonic map minimizing p-energy in the homotopic class.

(@11

2. Corollary [67].Let N be a compact Riemannian manifold with nonpositive
sectional curvature or, more generally, suppose the universal cover N has no focal point
or let IV be a closed surface with no conjugate points. Then any continuous map on
o complete Riemannian manifold M to N of finite p-energy is homotopic to a C1*
p-mingmizer.

(iij Representing homotopy classes by p-harmonic maps of least p-energy.

-Just as harmonic forms represent cohomology groups, stable minimal varieties repre-
sent homology groups, or geodesics represent fundamental groups, so do p-harmonic maps
represent nomotopy groups. This is one of the features that distinguishes p-harmonic
maps from harmonic maps. For completeness, we prove the following two theorems in

[68].

§.4. Theorem If M is a compact Riemannian manifold, then for any positive integer
k. ecch class in my (M) can be represented by a OV p-harmonic map ug from S* into
M minimizing p-energy in its homotopy class for any p > k.

Proof. Let ¢:S* — M be a C! map for any p > k. Define Hy = {u € L¥(S* M):
u is homotopic to ¢}. Since u is CP, where f = 1 _1% by the Sobolev embedding theorem,
Hy is well-defined and nonempty.
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Denote I, = inf{F,(u):u € Hy}. Then I, < oo since Ep(¢) < co. Suppose {u;}
15 & sequence in Hy such that lmj,e Ep(u;) = I,. Since M is compact, {u;} is an
7h-bounded subset. The Sobolev embedding theorem then implies that {u;} is a relative
compact subset i C7 norm, for all 0 < v < 1 — £ and hence the limits 1 of some
convergent subsequence, denoted by {w;} again is C7. In particular, ug is the limit of
a unifermly convergent subsequence {u;} in C” norm. Since M is compact and any
geodesic pall of sufficiently small radius is strongly convex, ug is hemotopic to u; for
sufficientls Jr large j and hence by the transitivity of homotopy, ug is in H, ¢- Therefore,
Bp(ug) > 5. The lower semicontinuity of E, then implies that E (uo) = [ and hence by
Theorem 3 1 in [301, up is C®. Thus, we have shown that every C* map ¢:S* — M can
be defermed to a O p-harmonic map 1y minimizing p-energy in the homotopy class.
In particelar, up is p-stable.

(iii) Representing m-th homotopy classes by m-harmonic maps

Generalizing Cartan’s Theorem [8] (in which m = 1), and Sachs-Uhlenbeck’s Theorem
[49] {iz which m = 2), we have

5.8. “TTheorem. For any positive integer m, each nontrivial class in m,, (K) can be
represented by a sum of CH% m-harmonic maps u; - S™ — K,j = 1,...,s, for some
postitve inieger s.

oof. Let ¢:5™ — K be a C'! map representing a nontrivial class in 7m (K). Then
¢ has te m-energy and hence the map ¢(z) = ¢ ( I—fi) is a finite m-energy extension
of ¢ to B™*!. Minimizing m-energy in the homotopy class of ¢ which agrees with b
on BB™F = S™, one obtains a p-minimizer u € LP*(B™ K) extending ¢. By the
boundary regularity of Hardt and Lin [30], u is C® at the boundary 8B™%! and has
isolated singularities z1,...,z,, s > 1 in B™*! otherwise 7, (K) = 0. By [30], blowing
up u at cach x;, 1 < j < s one obtains a nontrivial m-minimizing tangent map defined on
R™H(c.f. Definition 3.1.), hence a C1® m-harmonic map u;: 8™ — K by the restriction.

However,

5.86. Theorem. For any positive integer k, if mi (M) is nontrivial and 2 <p <k,
then ithere is no nonconstant p-stable smooth map S*¥ — M which represents a nontrivial
ciass i wpl M).

3.7. Remark. Theorem 5.6 still holds even if the hypothesis on nontrivial (M) is
dropped (c.f. Theroem 9.7).

6. Unigueness

We study the strong resemblance of p-harmonic maps to geodesics in terms of unique-
ness properties. It is well-known that every geodesic on a compact manifold of nonpositive
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sectional curvature minimizes length in its homotopy class; hence it is stable. By the use
of the sccond variational formula 2.7, we generalize this result, to p-harmonic maps:

6.1. Theorem. Let M be compact with possibly nonempty boundary OM and N be
compact with nonpositive sectional curvature. Then every p-harmonic map up : M — N
minimizes p-energy in its homotopy class (of maps which agree with wy on OM of OM is
nonempty). in particular, every p-harmonic map ug : M — N s p-stable.

By virtue of the existence result 7.2 and the second variational formmila 2.7, we obtain
the following uniqueness results, generalizing the work of Hartman [28].

8.2. Theorem. If uy and u, are homotopic p-harmonic maps from M into N with
Riem®™ < 0, then they are homotopic through p-harmonic maps us(-) and the p-energy
is constant on any arcwise connected set of p-harmonic maps, i.e. Fy(us) = Ep(ug) =
Ey{us) for ¥s € (0,1). Furthermore, each path s — G(x,s) is a geodesic segment with
length independent of x € M.

6.3. Corollary. Let Riem”™ < 0 and let ug,u,:M — N be two p-harmonic maps. If
OM is non-veid and ug = uy are homotopic relative to a Dirichlet problem, then ug = u;.

With the aid of Theorem 6.1, we have

6.4. Corollary. Let OM be empty, Riem”™ < 0 and up : M — N be a p-harmonic
map. Assume that there is some point of ug(M) at which Riem™ < 0. Then ug is unique
wm its homotopy class unless it is constant or maps M onto a closed geodesic o in N. In
the latter case, we have uniqueness up to rotations of o.

6.5. Corollary. If 8M is empty, Riem”™ < 0, ug,uy : M — N are homotopic
p-harmonic maps and ug has rank greater than one somewhere, then ug = uy.

6.8. Corollary. If Riem”™ <0 and two homotopic p-harmonic maps ug,u1:M — N
agree at one point, then ug = u;.

'8.7. Remark. The hypotheses on curvature can not be dropped. Ynging Lee and
Derchyi Wu [38] have counter-examples. In fact, given any tw compact surfaces M and N
with the same genus g > 1, Y.I. Lee and D.C. Wu have constructed, in every homotopy
class of diffeomorphic maps, there are at least two distinct harmonic maps between M
and N with some appropriate metrics.

7. Dirichelet Problemn.

3y minimizing p-energy in a class Hy of maps with fixed trace and modifying [2],
[72] and '67] (as in the proof of Theorem 2.2), we solve in [68], the Dirichlet problem for
p-harmonic maps to which the solution is due to Hamilton [26] in the case p = 2 and
Riem™ < G:
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7.1, Theorem. Let M be a compact Riemannian n-manifold with boundary 8M and
N e o compact Riemnannian manifold with a contractible universal cover N. Assume
thai N kas no non-trivial p-minimizing tangent map of R® for £ < n. Then any u €
Lip(0M, N) N CY M, N) of finite p-energy can be deformed to a p-harmonic map ug €
CLhe (M —OM, NYNCY(M, N) minimizing p-energy in the homotopic class with trace (in
the Sobolev space ) uglom = uloar , where 1 < p < co. In particular, everyu € C'{(M,N)
can be deformed to a CY% p-harmonic map ug in M — OM minimizing p-energy in the
homoiovic class with Holder continuous wolap = uloar-

7.2. Corollary. Let M be a compact manifold with (possibly empty) boundary and
N as ghove. If u € C*(M,N) is not p-harmonic, then u can be dejormed to a CH*
p-harmonic map ue with uoloamr = w|anmr and Ey(ue) < Ep(u).

Les ¢ 1 OM — N be a C! map, Cextendible to M and denote by Cy(M,N) the
space of extensions of ¢ to C° maps M — N. If Riem” < 0, then one can combine the
existence theorem 7.2 and uniqueness theorem 6.2 to obtain the following:

7.3. Theorem of Existence and Uniqueness. If ¢ € C*(OM,N), then every
compornent of Cy(M, N) with an element of finite p-energy contains a unique p-harmonic
representative, which is CY%* in M — OM, Hélder continuous up to OM and an E,-
TRATAIN S0

7.4. Theorem. Let M be a compact Riemannian n-manifold with boundary 6 M
and IV be a compact p-SSU manifold Then for anyn € Lnl'*%”’(c’)M, N) one can find a p-
harmonic map uy € LYP(M, N) minimizing p-energy in the class of maps u € LYP(M, N)
with irace ulpp =, where 1 < p < oo. The regularity properties of ug are described
in Theorem 8.1. In particular, every uw € C1(M,N) can be deformed to a CY* p-
harmonic map ue in M — OM — S, minimizing p-energy in the homotopic class with
Hilder continuous uolap = ulom, where dim(S,) < d(wp,a) as described in (4.2).

8. T'he E,-Hessian, p-index and p-nullity of Id

:n {68], we compute the E,-Hessian Hf;" (v, w) of the identity map id on C(Id~1T(M))
and the associated quadratic form ¢(v) in terms of the Jacobi operator Jr4 of the energy
functional! (p = 2) and the Lie derivative L,g of ¢ in the direction of v, generalizing the
work of Yanc [7] for p = 2.

8.2. Theorem.

Lp('u):na;i/ P-
M
_ -9 .
:n}%[ Zu(divv)z‘\—i--l—lng|2ci:z:.

2(div )2 + (Jrq(v),v)dz

As ar application, we link p-stability to eigenvalues and scalar curvature.



ON P-HARMONIC MAPS AND THEIR APPLICATIONS 159

8.2. Theorem. Suppose that M is a compact Einstein manifold. Idy is p-unstable

. 95 ¢ M . L. . .
iff AL < fﬁf’;c"fl—z, where Ay is the first positive eigenvalue of A on functions.

‘The bound on the eigenvalue is sharp (c.f. Remark 5.3). The case p = 2 is due to
E. Mazet [40] and R. T. Smith [53] (c.f. [15]) and the case p = 2 in Theorem 8.4 is due
to Urakawa ([64]). Let A(r) = #{cigenvalues A of = A : 0 < \ < r} and m(r) be the
multivlicity of r (with m(0) defined to be 0). Then by Theorem 8.2 we have

8.3. Theorem. Let M be a closed oriented Einstein manifold with RicM = ¢g for
some constant ¢. Then

(a) »— index(Tdpr) = M(222)

n+p-2
- N A /o 2ne
(b) p — nullity(Idy) = dim (i) +mn(55).
where 1 denotes the algebra of infinitesimal wsometries, 1.e. of vector fields v satisfying
Lv,_(/' =0

8.4. Theorem. The identity map on every compact manifold of constant curvature
is p-stable except for the standard unit sphere S™. In particular, Idgn ;r is p-stable where
U # {e} is a finite group of isometries acting freely on S™.

8.5. Theorem. The identity map on every compact manifold which supports o
nonisometric, conformal vector field v is p-unstable for p<n.

8.6. Theorem. Let M be a compact manifold with RieM < 0. Then Idps 1s p-stable
and nuility(Idy) < n.

9. Applications in Geometry, Topology and Analysis
Theorems 5.4 and 5.5 can be interpreted as

9.1. A New Generalized Principle of Synge If there are no nonconstant CHe p-
_ ¢
stable maps from S* into M for some p > i, then 7i(M) = 0. Furthermore, if there are no
noncensiant CH% m-harmonic maps from S™ into M for am m > 1, then m,, (M) = 0.
J ’ m

This principle gives a new role in Riemannian geomelry to p-harmonic maps, resulting
in the new proofs of

9.2. Cartan-Hadmard Theorem. Every compact Riemannian manifold M with
nionposiiwve sectional curvature is K(m, 1).

89.3. Preissman Theorem. On q compact manifold M with negative sectional
curvature, cvery abelian subgroup of the fundamental group w (M), different from the
identity, is cyelic.

9.4. Gromoll-Wolf [25], Lawson-Yau [39] Theorem. Let M be a compact
manifeld with nonpositive sectional curvature. Suppose the fundamental group m, (M )
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contains an Abelian subgroup of rank k. Then there exists an isomelric immersion of o
compaci k-dimensional flat torus on M.

9.5. Bochner-Frankel Theorem. Let M be a compact, orientable and Riem™ <0,
but not identically zero. Then its group of isometries is finite and no two elements are
homotopic. "

The harmonic version of Theorems 9.4. and 9.5. are due to Hartman- Sampson [48]
and Jos: [33] respectively. the p-harmonic version of Theorem 9.4. is discussed in [74],
and the case p = 2 in the following theorem is due to Eells-Sampson [14].

3.6. Theorem. Let N be a complete manifold with Riem™ < 0 and Ny be a closed
sotally geodesic submanifold. Any nonconstant p-harmonic map of a compact manifold
inte a tudular neighborhood of Ng has its image in Nj.

Via an extrinsic average variational method, we obtain a nonexistence result

§.7. Theorem. Fvery p-SSU manifold N is p-SU; i.e. N can neither be the domain
nor the iarget of any nonconstant p-stable maps (into a complete manifold or from a
compact manifold)(c.f. Theorem 3.1.[75], p.251).

Balancing the above existence theorem (5.4. or Principle 9.1.) and nonexistence
theorems, we nave

0.8. Theorem. Every compact p-SSU menifoid N is {p]-connected.
ir semmary, we have

9.8 Theorem. Let N be a compact p-SSU manifold. Then ihe following assertions
(1) through (1G) hold:

(1) Ric"” > 0.

(2) dim N > p.

{3) N can not be the domain of any nonconstant p-stable map.

4} N can not be the target of any nonconstant p-stable map.

(5) The identity map Idn 1s p-unstable.

(6) N s ip]-connected.

(7) C*{3 N} is dense in LY(M,N) for any compact manifold M with possibly non-
empty boundary.

(8) inf{&,(n) : n is homotopic to (: M — N} =inf{E,(n):n 1is homotopic to & :
N — K} = 0 for any compact manifold M, any map ¢ : M -+ N, any complete
manifold K and any map £ : N = K.

9 N i homeomorphic to k-sphere Skif2<p<k<2p+lork=3,p>1.

(16) Given any boundary data 7 € Ll"%'p(aﬁ’[, N) the Dirichelt problem for p-harmonic

' map has 6 solution uy (€ LYP(M,N) minimizing p-energy in the class of maps
1 € LYPIM, N) with ulaap =, where 1 < p < 00) of which regularity properties are
agescribed i eorem 4.4.
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This jcads to

9.9. Topological Vanishing Theorem. Let N be a minimal k-submanifold of a
unit Buclidean sphere ST71 such that the Ricei curvature Ric™ of N satisfies

1
RicY >k (1 — _)) (9.10)
1
where 2 < p < k. Then N is p-SSU. As a consequence, m;(N) = --- = = (V) = 0.
Furthermore, C1(M,N) is dense in L}(M, N) N is p-SU and mf{bvw) n s
homotopic to ( : M — N} = inf{E,(n) : 18 homotopic to € : N — K} = 0 for

any compact manifold M, any map ( : M —> N, any complete manifold K and any
map £ N — K. Further the Dirichlet problem for p-harmonic map is solvable for any
bouramy deian € L* P’p(ﬁM N). In particular, if (9.10) holds for 2 <p < k < 2p+ 1,

or Lolds for k = 3, p > 1(N is not necessarily minimal), then N is homeomorphic to Sk

Proof. Tor any unit vector X € T,(N), choose an orthonormal frame {aa, ..., o}
on N such that at p, ap = X. For 1 <4 < j <k, let R;; (resp. R;;) denote the sectional
curvature of N (reqp the unit sphere S¢ 1) for the section a; A a;. For 1 < 4,5 < k,
let hy; = (Va,a;)" where V is the Riemannian connection on S9! and ( )J" is the
projeciion onto the normal space T,(N)*. The fact that N is minimal says

k
> hii =0 (9.11)
i=1

Let h{¥, Z) = (Vv Z,v) where ¥V is the Ricmannian connection on R, Y and Z are local
vector ficlds on S971 and v is the unit normal vector to S9!, Then A(X,X) =1 and
the second fundamental form L of N in RY splits into

WX, X)|? = b2, + |h(X, X)? - (9.12)
= hi, + 1. (9.13)

Applying the Gauss-curvature equation, we have for 1 <i<k-—1
Ry = Eik + <hii, hlck) - h?k (9.14)

where { | ) is the Riemannian metric on S7 1,
Sciming (9.13) over 1 <4<k — 1 and applying (9.11), we have

k
Ric(X) == Riclay) = (k— 1) - 2 hZ (9.15)

n view of (9. 74) thc assumption (9.10) implies z@ 1 % < 22 and hence
(8.25) hi, < *22 On the other hand, (2.12) in ([32] p. 322) implies

(QY(X),X)n = (=2RicX + kX, X) (9.16)
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- Applying {3.5), (9.12), (9.15) we have under the assumption (9.10)

Fpy(X) = (p = 2) (3 + 1) +(QF (X), X)n

oy k=P YN
< (p--2)( ” + 1) —2(1 p)k{k

=0.

Hence I is p-SSU and the first assertion now follows from Theorem 9.8.
IF9<p<k<2p+1,then N is homeomorphic to S* for k > 4 by Hurewicz theorem,
the Poincaré duality Theorem, Smale’s and Freedman’s Theorcms. If k¥ = 3 with weaker
conditions that 1 < p and N is not necessary a minimal submanifold, then the metric
on a compact 3-manifold N with RicV > 0, by a theorem of Hamilton ([27]), can be
deformed to a metric § with Ric™ 9 = ¢ > 0. But on a 3-manifold N, this is equivalent
to the sectional curvature Riem™:?) = £ > 0. It follows from the Cartan-Ambrose-Hicks
thecrem {[?7]} that N is homeomorphm to S2. This completes the second assertion.

The conditions in Theorem 9.9. are sharp (c.f. [75], Remark on p.251-252); that
is, there exist Clifferd embeddings N* = SP <\/) x SP ( ) C §?P+1 (1) with RicN =
k(1—2) but wp(N) # 0for all p. There also exist totally geodesic embeddings N* =87(1)

in thc un’t sphere with Ric™ = k(1 — :10) where p = k but 7,(N) # 0. Furthermore, the
Ricci curvature condition (9.10) is vacuous if p is precisely k by the following:

8.17. Proposition. Let N be a k-dimensional minimal submanifold of the unit
Euciidean sphere S971(1) with Ricci curvature Ric™. Then

RicN <k-1
and eguality holds if and only if N is a totally geodesic submanifold of S7=1(1).

Ag every compact, irreducible homogeneous space can be isometrically, minimally
immersed into a Euclidean sphere [60], Theorem 9.9 implies

g. Theorem. Let N be a compact k-dimensional irreducible homogeneous space
'with the small&st positive eigenvalue X\ of A on functions. Then if (a) A1 < p Sczl
s true, then the fellowing assertions (b) through (i) hold:

{(b) Every p-stable map ¢: M — N from a compact manifold M is constant.

(¢c) - Every p-siable map v: N — K 1into a complete manifold K is constant.

(d) The identity map Idy is p-unstable.

{e) X < ?iﬁ;‘i’;

(f} Ty .Z*m == W[P](N) = 0.

(g) inf{®,(n) :n is homotopic to (: M — N} =inf{E,(n) :n is homotopic to &
N — X} = 0 for any compact manifold M, any map ( : M — N, any complete
mentold K and any map € : N — K.
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(ky CY{M,N) 1s demnse in LT7(M,N).
) Civen anyn € L (OM, N), there is a p-harmonic map ug € LYP(M, N) minimiz-
ing p-energy in the class of maps u € LYP (M, N) with ulsp =1, where 1 < p < 0.

The regularity properties of ug are described in Theorem 4.4.

T e b nd fon s e P Scal™ _ 28cal® —
I'he case p = 2, as distinct from the case p > 2, o TR = faeg e (a) = (e).

Hence with the same assumption on N as in Theorem 9.12 we recover

9.1%. Theorem. ([32],{43]) The following properties are equivaient:

-

- 2Scal™
™~ N .

-
o

©

1

|

1,

very stable harmonic map : M — N from a compact manifold M is constant.
suery stable harmonic map v: N — K is constant.

T

The wdentity map Idy is an unsteble harmonic map.

o, <

N SN N N
by

P N N
&

In addition, any of the statements above implies

(f") 7 (N} =m(N)=0.
(¢") infsE(n):n is homotopic to (: M — N} =inf{E(n) :n is homotopic

to £ : N — K} = 0 for any compact manifold M, any map ( : M — N, any
compiete manifold K and any map € : N — K.

The 2bove results indicate a “gap phenomenon” when the first eigenvalue ) is in

p_Scal™ 2Scal” _ , e i Tl N
[p T, % +Cpl_ 2) for the case p > 2 and this gap is “filled in” when p = 2. Fur-

thermoere, this phenomenon dashes the hope that assertion (d), the identity map on a
compact irreducible homogeneous space NV is p-unstable, is strong enough to conclude
assertions (b) and (c¢) that every nonconstant map from N or to N is p-unstable. We
furnish an

9.20. Example of a gap phenomenon. The “gap” on the Cayley Plane is

p Scal™ 2Scal™ \ P 16
p—-1 k "k+p-2) |2(p—1) ' p+14

)#@ for pe[4,10).

Thus, “or any p € (8, 10), the identity map on the Cayley plane is p-unstable by theorem
8.2. However, for the same range of p, the Cayley plane is the target of a p-stable map
: §% — Fy/Spin(9) by Theorem 5.4, since mg(Fy/Spin(9)) # 0. In sharp contrast, the
identity map on Cayley plane is (2-)unstable and any nonconstant map into or from the
Cayley viane is (2-)unstable ([32]).

As z further application of Theorem 9.9, we have

9.21. Classification Theorem of compact, irreducible, p-SSU symmetric

spaces. Let N be a compact, irreducible p-SSU symmetric space. Then N is one of the
following

(i) ihe simply connected simple Lie groups (Ai>1 for p< 2+ 17131_—1’ By = Cy for
p <2 and (C)i>3 for p<2+ 7
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(ii) SU{2n)/Sp(n), n >3 for p<2+4 ¥l
(iii) Spheres S* forp < k
(iv) Guaternionic Grassmannians Sp(m + n)/Sp(m) x Sp(n), m > n > 1 for p < 2 +
2
mtn—1

(v} Eg/Xy, forp <3
(vi) Cayley Plane Fy/Spin(9), for p < 4.

In the case » = 2, the above theorem recovers a theorem of Howard-Wei and Ohnitas

9.22. Theorem([43]{32]). Let N be a compact irreducible symmetric space. The
following statements are eguivalent :

(a) IV is 5SU.

(b)y N ¢ SU; t.e. N 1is neither the domain nor the target of any nonconstant stable
harmonic map.

(¢) N is U; i.e. Idy is an unstable harmonic map.

Y N is one of the following:

(i) the simply connected simple Lie groups (A;)i>1, B2 = Cy and (Cl)i»3
(i) SU(2n)/Sp(n), n >3
(i) Spheres S*, k> 2
(v) Quaternionic Grassmannians Sp(m +n)/Sp(rn) x Sp(n),m > n > 1
(v) Es/i#y
{(vi) Cuoyley Plane Fy/Spin(9).

The geometric measure theorctic approach yields the following topological informa-
tior. which extends 9.8/(6) and 9.8/(9):

9.23. Theorem. Let N be a compact p-SSU manifold with o p-SSU index w,. If
k< ‘z,uk.ﬂp, o) — 1, then N is homeomorphic to S* and if k > 2d(w,,0) — 1, N is
(d{wp,c* — 1)-connected and each class in Td(w,,a) (V) is represented by a sum of C1®
d(wp,o‘; -harmonic maps of S¥¥r?) — N where d(w,, o) is defined in (4.2).
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