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ON SUBCLASSES OF UNIFORMLY CONVEX FUNCTIONS AND 

CORRESPONDING CLASS OF STARLIKE FUNCTIONS 

R. BHARAT!, R. PARVATHAM AND A. SWAMINATHAN 

Abstract. We determine a sufficient condition for a function f(z) to be uniformly convex of 

order et that is also necessary when f (z) has negative co-efficients. This enables us to express 
these classes of functions in terms of convex functions of particular order. Similar results for 
corresponding classes of starlike functions are also obtained. The convolution condition for the 
above two classes are discussed. 

1. Introduction 

Let $ be the class of functions 

00 

f ( Z) = z + L anzn 
n=2 

(1.1) 

that are analytic and univalent in the unit disk E = { z : I z I < 1}. Let S* (a) and 
K(a) denote the subclasses of functions f(z) in S such that Re{ zj~~))} > a and Re{ 1 + 
Zr~~))} > a, 0 ~ a < 1, respectively. S*(O) = S* and K(O) = K denote the ordinary 
class of starlike functions and convex functions respectively. Goodman [1] defined the 
following subclass of K. 

Definition 1.1.([1]) A function f(z) is uniformly convex in E if f(z) is in Kand has 
the property that for every circular arc I contained in E, with centre c also in E, the 
arc f(,) is convex. 

Ronning [2] found a more applicable one variable analytic characterization for the 
above class denoted by UCV. 

Definition 1.2.([2]) A function f(z) = z + I::=2 anzn is in UCV if and only if 

zf"(z) I zf"(z) I 
Re 1 + f, ( z) ~ f, ( z) ' z E E. 
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Definition 1.3.([5]) Let T be the subfamily of S consisting of functions of the form 

00 

f(z) = Z - L anzn, 
n=2 

an 2". 0, z EE. (1.2) 

Let T* (a) and C* (a) be the subfamily of functions in T that are starlike of order 
a and convex of order a respectively for O :S a < 1. Silverman [5] gave a co-efficient 
characterization for these classes. 

Theorem A.([5]) A function f(z) = z - L:=2 anzn, an 2". 0 is in T*(a) if and only 
ifL:=2(~=~)an :S 1 and is in C*(a) if and only if L:=2 n~n_-:)an :S 1. 

This led to the following sharp distortion bounds and extreme points. 

Theorem B.([5]) (i) If f(z) E T*((.l!), then 

1-a 1-a 
r - --r2 :S !f(z)! :Sr+ --r2, 

2-a 2-a 
2(1 - a) 2(1 - a) 

1- r:S!J'(z)!:Sl+ r 2-a 2-a 

and the extreme points are given by 

(1.3) 

(1.4) 

( 1-a Ji z) = z, fn(z) = z - --zn 
n-a 

(n=2,3,--·). 

(ii) If f(z) E C*(a), then 

1-a 2 1-a 2 r - _ ._ { :S lf(z)I :Sr+_,_ . r 
-a 
1-a 1-a 

1- --r :S lf'(z)! :S 1 + --r, 
2-a 2-a 

(1.5) 

(1.6) 

and the extreme points are 

1 - Q'. fi(z) = z, fn(z) = z - ( . zn 
nn-a 

(n=2,3,--·). 

Ronning [3] introduced the class of functions Sp such that f E UCV {:} zf' E Sp. 
Ronning generalized the class UCV and SP by introducing a parameter a in the 

following way. 

Definition 1.4.([4]) A function f(z) is in Sp(a) if f(z) satisfies the analytic charac­ 
terization 

l
zf'(z) / R zf'(z) 
f(z) - 1 :S e f(z) - a 

and f(z) is in UCV(a) if and only if zf'(z) is in Sp(a). 

(1.7) 
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Therefore for the class Sp(a) [2] we get a domain whose boundary is a parabola with 
vertex w = 1-~a. We see that for all ex E [-1, 1) we have Sp(a) C S* and Sp(a) </_ S for 
a< -l. Hence we observe that UCV(a) CK for a 2 -1. 

Ronning [4] generalized the class SP in a different manner than (1.7). 

Definition 1.5. ([4]) A function f(z) = z+ I::=2 anzn is in the class P(a,(3) if f(z) 
satisfies the analytic characterization 

I z f' ( z) - ( a + (3) I < Re z f' ( z) + a - f3 f(z) - f(z) 0 < a < oo, 0 :S (3 < l, z EE. 

This means that zJ~~)) for f(z) E p(a,(3) and z EE lies in that portion of the plane 
which contains w = l and is bounded by the parabola y2 = 4a(x - (3). We observe that 
Sp= P(!, !). Since P(a,(3) C P(a,O) it seems to be most interesting in this context to 
study the classes where (3 = 0. For simplicity of notation, we define P(a) = P(a, 0) and 
hence we have 

p(a) = {f(z) ES; I Zr;~~) - a/ :S Re z((~) + a zEE,O<a<oo}. 

In this note we obtain co-efficient characterization for some subclasses of UCV(a) 
and Sp(a). In section 2, we define some subclasses of UCV(a), Sp(a) and P(a) with 
negative co-efficients for f (z ). In section 3, we obtain some convolution results for these 
classes of functions. 

2. Co-efficient Characterization 

Definition 2.1. Let UCT(a) be the class of functions f(z) = z-I:::=
2
anzn, an 2 0 

satisfy the condition 

'

zf"(z)' zf"(z) 
f'(z) :SRe{l+ ;1f,,\ -a}, z EE. (2.1) 

Definition 2.2. Let SpT(a) be the class of functions f(z) = z-I:::=2anzn, an 2 0 satisfy the condition 

I zf'(z) _ / R { zf'(z)} _ 
f'(z) 1 :S e f(z) a, z EE. (2.2) 

Now we obtain a sufficient condition for f(z) in UCV(a). 

Theorem 2 .1. If 
(X) 

L(2n - 1 - a)nlanl :S 1 - a 
n=2 

(2.3) 
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Proof. In view of the definition of UCV(a) it is sufficient if we verify the condition 

I 
zf"(z) I < Re z(:(~) + 1 - a. 
f'( z) - 

We have 

l

zf"(z),_ .zf"(z) <2,zf"(z)' f'(z) Re f'(z) - f'(z) 
< L:=2 2n(n - l)lanllzln-l 

1- I::=2 nlanllzjn-l 
< I::=2 2n(n - l)lanl 

1 - I::=2 nlanl 
The above expression is bounded by 1-a if and only if (2.3) is satisfied and the proof 

is complete. 

Novv we show that the sufficient condition of Theorem 2.1 for UCV(a) is also a 
necessary condition for UCT(a). 

Theorem 2.2. Let f(z) = z- I::=Z anzn, an~ 0 then I::=2 n(2n-1-a)an::::; 1-a 
if and only if f(z) is in UCT(a). 

Proof. In view of Theorem 2.1 we need only show that f(z) in UCT(a) satisfies the 
co-efficient inequality. 

If f(z) E UCT(a) and z is real, then the definition of UCT(a) yields 

1 I::=2 n(n - l)anzn-l I::=Z n(n - l)anzn-l 
- -a>~~~~---- 

1 - ""'00 na zn-l - 1 - ""'00 na zn-l L.in=2 n L.in=2 n 
. Let z - 1 along the real axis, then we get 

or 
00 00 

( 1 - a) 1 - L nan ~ 2 L n( n - 1 )an 
n=2 n=2 

which gives the required result. 

Corollary 2.1. UCT(a) = C*(11et). 

Proof. From Theorem 1.2 we get the functions in UCT(a) satisfy the condition 

~ n(2n- l - a) 
~ l an::::; 1 
n=2 - a 

(2.4) 
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which is equivalent to saying that 

oo n[n - (1ta)] < 1 L 1- (!±~, - 
n=2 2 

The above expression in comparison with Theorem A gives the result. 

Corollary 2.2. If f(z) E UCT(a), then 

1-a 2 1-a 2 
r- 2(3:-a{ :S lf(z)I :Sr+ 2(3-a.r 

1-a 1-a 
1- --r :S !f'(z)! :S 1 + --r 

3-a 3-a 
and the extreme points are 

1-a 
fi(z)=z, fn(z)=z- ( \zn, n 2n - 1- a n = 2,3,· · ·. 

Proof. Since the distortion theorems are extreme points are available for C* (a) in 
Theor.em B, the distortion theorems and extreme points are immediately available by 
applying Corollary 2.1. 

Definition 2.3. Let UCT(a,/3) be the class of functions f(z) = z - L:=
2 
anzn, 

an > 0 that satisfy the condition 

zfu(z) /zfu(z)/ 
Re{ 1 + f'(z) } ~ a f'(z) + /3, 

We write UCT(l, /3) = UCT(/3) and observe that UCT(O, /3) = C*(/3). 

a 2". 0, /3 2". 0. 

Theorem 2.3. A function f(z) = z - L:=2 anzn is in UCT(a, /3) if and only if 
00 

I)n(l + a) - (a+ /3)]nan :S 1 - /3. 
n=2 

(2.5) 

Proof. Proceeding as in Theorem 2.2, we get that, for f(z) E UCT(a, /3) it is 
sufficient to verify the co-efficient inequality. 

Therefore for z real, we get 

L:=2 n(n - l)anzn-l L:=2 n(n - l)anzn-l /3 
1 - Loo > a Loo + . 1 - na zn-l - 1 - na zn-l n=2 n n=2 n 

Let z - 1 along the real axis, which gives 
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which is equivalent to 

(X) 00 

(1 - f3){ 1 - L nan} 2 (1 + a) L n(n - l)an 
n=2 n=2 

which gives the required result and the proof is complete. 

Corollary 2.3. UCT(a,(3) = C*(~:!). 

Proof. From Theorem 2.3 for f(z) in UCT(a, (3) (2.5) can be written in an equivalent 
form 

which together with Theorem A gives the result. 

Hence the distortion theorems and extreme points are immediately available for f ( z) 
in UCT(a,(3). 

Corollary 2.4. If f(z) E UCT(a, (3), then 

l-(3 2 l-(3 2 r- _,_ f3{ :S j/(z)j :Sr+_,_ _,r 

l-(3 1-(3 
1- 8r::;jj'(z)j:Sl+ r 

2+a- 2+a-(3 
and the extreme points are 

n = 2,3,· ··. 

Remark. In [5] it is given that 

C*(a) C T*(-2-). 
3-a 

Therefore we get the 

UCT(a,(3) = C*(:: :) 

implies that 
* 2a+2 

UCT(a,(3) c T (2a + 3 _ (3). 
2 In particular UCT(l, 0) =UCT with f(z) = z - ~ being sharp. 

Now let us draw our attention to the class Sp(a) and SpT(a) and find their co-efficient 
criterion. 
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Theorem 2.4. If I::=2(2n - 1 - a)lanl ::::; 1 - a then f(z) = z + I::=2 anzn is m 
Sp(a). 

Proof. By Alexander type theorem, we get that f(z) E UCV(a) {=:> zf'(z) E Sp(o:). 
Therefore by replacing the co-efficient lanl in Theorem 2.1 by lannl, the required result is 
obtained. 

Remark. For o: = 0, the above result gives the co-efficient characterization which is 
sufficient condition for a function to be in the class Sp. 

Since f(z) E UCT(a) {=:> zf'(z) E SpT(a) and f(z) E UCT(a,,B) {=:> zf'(z) E 
SpT(a,,B), the co-efficient an in Theorem 2.2 and Theorem 2.3 can be replaced by ann to 
get the required result for SpT(a) and SpT(a,,B) respectively. Hence we state the results 
directly. 

Theorem 2.5. f(z) = z- I::=2 anzn, an~ 0 is in SpT(a) if and only if I::=2(2n- 
1 - a )an ::::; 1 - a. 

Theorem 2.6. f(z) = z - I::=zanzn, an ~ 0 is in SpT(a,,B) if and only if 
I::=2[n(l + a) - (a+ ,B)]an ::::; 1 - ,8. 

Remark. Comparing Theorem A with Theorem 2.5 and Theorem 2.6 we get that 
(i) SpT(a) = T*(1tet) 
(ii)SpT(a,,B) = T*(~:!). 

Thus distortion bounds and extreme points of SpT(a) and SpT(a,,B) are easily avail­ 
able and we state them using Theorem B. 

Corollary 2.5. If f(z) E SpT(a), then 

1-o: 1-o: 
r - --r2 :S lf(z)I ::::; r + --r2 

3-a 3-a 

1- 2(1-a)r::::; lf'(z)I::::; 1+ 2(1-a)r 
3-a 3-a 

and the extreme points are 

1-a n 
Ji ( z) = z and f n ( z) = z - 2n _ 1 - a z ' n = 2,3,···. 

Corollary 2.6. If f(z) E SpT(a,,B) then 

1-,8 1-,8 
r - r2 < If (z) I < r + r2 2+a-,B - - 2+a-,B 

1+ 2(l-,B) r<jf'(z)l<l+ 2(l-,B) r 
2+a-,B - - 2+a-,B 
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and the extreme points are 

1 - /3 n 
fi(z) = z and fn(z) = z - [n(l + a) - (a+ /3)( ' n = 2,3,- · ·. 

Definition 2.4. For f(z) = z + :z=:=2 anzn, let 
z E f, 0 <a< oo }. 

Theorem 2.7. If 
00 

L[n + 2(a - l)]nlan! :S 2a - 1 
n=2 

(2.6) 

then f(z) of the form (i) is in CP(a). 

Proof. From the definition of CP(a), it is sufficient if we see the inequality 

I 
zf"(z) I { zf"(z) } 

1 + f' ( z) - a :S Re f, ( z) + 1 + a 

or equivalently 

I zf"(z) I { zf"(z) } 1+ f'(z) -a -Re 1+ f'(z) -a :S2a. 

We have 

The last expression is bounded by 2a, if and only if (2.6) holds and the proof is 
complete. 

Definition 2.5. Let CPT(a) be the class of functions f(z) = z- :z=:=2 anzn, an 2". 0 
such that f(z) is in CP(a). 

Since f(z) E CPT(a) {=> zf'(z) E PT(a), we get that 

l

zf'(z) / zf'(z) 
PT (a) = { f ( z) E T; f( z) - a :S Re £ 1 _ \ + a, z EE, 0 <a< oo }. 
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Theorem 2.8. f(z) = z - I:::=2 anzn, an 2 0 is in CPT(a) if and only if 
00 

L n( n ~ I + a )an :S a. 
n=2 

(2.8) 

Proof. From the definition of CPT(a), we get that for f(z) E CPT(a) and z real, 

I:::=2 n(n - l)anzn-I I:::=2 n(n - I)anzn-I 2 1 - °"oo 1 2 °"oo 1 + 1 - a 1 - L..,n=2 nanzn- 1 - L..,n=2 nanzn- 

Let z - 1 along the real axis which gives 

which gives I:::=2 n[n - 1 + a]an :S a and the necessary part follows. The sufficiency 
part is obvious, because the inequality (2.8) is a better estimate than (2.7) for f(z) to 
be in CPT(a). 

Corollary 2.7. CPT(a) = C*(l - a) for O < a :S 1. 

Proof. From Theorem 2.8 we get that 

00 
°"n(n-l+a) L an< 1 
n=2 a - 

implies that 

Loo n[n - 1 + a] 
--=-----=-an < 1 1 - (1 - a) - 

n=2 

which is in compansion with Theorem A gives the result. 

Corollary 2.8. If f(z) E CPT(a), then for O < a :S 1 

r - _ , . a , r2 :S If ( z) I :S r + _ , . a , r2 

1- _a_r < lf'(z)I < 1 + _a_r 
l+a - - l+a 

and the extreme points are 

a n 
fi(z)=z andfn(z)=z- n(n-I+a\z' n = 2,3, ·· ·. 
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Proof. The result is immediately available by applying Theorem B and Corollary 
2.7. 

Remark. In [5] it is given by 

C*(a) C T*(-2-); 
3-a 

Therefore 
2 

CPT(a) C T*(2 + a). 
In particular 

2 
wiht z - z6 being sharp. 

Theorem 2.9. f(z) = z - I::=2 anzn, an ~ 0 is in PT(a) if and only if 
00 

L) n + a - 1 )an ::::; a. 
n=2 

(2.9) 

Proof. By Alexander type theorem f(z) E CPT(a) ¢=> zf'(z) E PT(a) therefore 
we can replace the co-efficient an in Theorem 2.8 by an/n which gives the required result. 

Corollary 2.9. PT(a) = T*(l - a), 0 <a::::; 1. 

Proof. For f(z) E PT(a), (2.9) can be written as I::=2 ~:J;=~? an ::::; 1 which in 
comparison with Theorem A gives the result. 

Thus the distortion theorems and extreme points are easily available by using Corol­ 
lary 2.9 and Theorem B which we state directly. 

Corollary 2.10. Let f(z) E PT(a). Then for O <a::::; 1 
a 2 a 

r - --r < lf(z)I < r + --r2 l+a - - l+a 

2a , 2a 
1 - --r < If (z)I < 1 + --r l+a - - l+a 

and the extreme points are 

a fi(z) = z and fn(z) = z - zn, n = 2,3, · · ·. 
n-l+a 

Remark. The expression (2.9) gives f(z) E P(a) if and only if I::=2[n + 2(a - 
l)]lanl :S 2a - 1 which coincides with order or growth for co-efficients in P(a), found to 
be O(i) in [4]. 
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3. Convolution Theorems 

Let f (z) = z - I::=2 anzn, an 2". 0 and g(z) = z - L:=2 bnzn, bn 2". 0. We investigate 
the nature of quasi-convolution h(z) = f(z) * g(z) = z - L:=2 anbnzn, given that f(z) 
and g(z) are members of subclasses of UCV(a) and Sp(a). 

For a< -1, SpT(a) <t. S. Therefore we shall consider the case a> -1 for SpT(a). 

Theorem 3.1. If f(z) = z - :z=:=Z anzn, an 2 0 and g(z) = z - L:=2 bnzn, bn 2". 0 
are elements of SpT(a), then (f * g)(z) = h(z) = z - L:=2 anbnzn is in SpT(/3) where 
/3 = /3(a) = 2(2~~)' 0 :Sa< 1. The result is best possible. 

Proof. By Theorem 2.5, since f(z) and g(z) are in SpT(a) we have 

00 00 

L(2n -1-.a)an :S 1- a and L(2n-1- a)bn :S 1- a 
n=2 n=2 

We wish to find largest /3 = /3(a) such that 
00 

· L(2n - 1 - /3)anbn :S 1 - /3 
n=2 

Equivalently we want to show that the conditions 

Loo 2n-1- a 
-----an< 1 1-a - 

n=2 
(3.1) 

and 
00 
~ 2n-1-a 
L 1 bn :S 1 
n=2 -a 

(3.2) 

imply that 

(3.3) 

( ) 3-a? for all /3 = /3 a :S Z(Z-a). 

From (3.1) and (3.2) and by means of Cauchy Schwarz inequality, we get that 

Loo 2n-1-a ~ 
V anbn :S l. 1-a 

n=2 
(3.4) 

It will be sufficient therefore to prove 

2n - 1 - /3 2n - 1 - a ~ 
anbn :S ~ y anbn, /3 :S /3(a), n = 2, 3, · · ·. 
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or va::,;;;, < ( 2n - 1 - a 1 - (3 - ~ - )C.__ ~ a). 

From (3.4) it follows that 

1-a va::,;;;, ~ 
Inequality (3.5) is equivalent to 

for all n. (3.5) 

1 + f3 < 1 _ n[ 1 - a ]2/1 _ [ 1 - a ]2. 
2 - 2n - 1 - a 2n - 1 - a (3.6) 

The right hand side of (3.6) is an increasing function of n, (n = 2, 3, · · · .); Therefore by 
setting n = 2, in (3.6) we get 

1 + f3 7 - a:2 - 2a --<----- 2 - 4(2-a) 

which gives 
3-a2 

{3 :S (](a) = - ,_ , . 

The result is sharp with equality where 

1-a f(z) = g(z) = z - --z2 

3-a 

Remark. (i) (](a)= 2(2~:) > a for O <a< l. 
(ii) For f(z) and g(z) in SpT(O) we have f(z) * g(z) E SpT(i)- 

Corollary 3.1. For f(z) and g(z) as in Theorem 3.1 we have 
00 

h(z) = z - L va::,;;;, 
n=2 

Proof. This result foll9ws from the Cauchy-Schwarz inequality and (3.4). This result 
is sharp for same function in Theorem 3.1. 

Theorem 3.2. For f(z) E SpT(a) and g(z) E SpT(f3) we have 

3 - a(] 
f(z) * g(z) E SpT(,i -· ~) = SpT(,). 

The result is sharp. 
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Proof. Proceeding as in the proof of Theorem 3.1 we get 

l ( 1-et )( 1-{3 ) 1 + 'Y - n 2n-l-Ct 2n-l-{3 -- < -----------,,,--- 
2 - l ( 1-Ct )( 1-{3 ) 

- 2n-l-et 2n-1-f3 

(3.7) 

Right hand side of (3. 7) is an increasing function for n = 2, 3, · · · . Therefore setting 
n = 2, we get 

3 - a{3 
,::::;4-a-{3 

The result is sharp. 
Equality is attained for f(z) = z - 1=~z2 and g(z) = z - ;::~z2. 

Corollary 3.2. Let f(z), g(z) and h(z) E SpT(a). Then f(z) * g(z) * h(z) E SpT(/3) 
where {3 = 12-9et+et~ . 

13-12et+et2 

Proof. From Theorem 3.1 we get that 

3- a:2 
f(z) * g(z) E SpT( ). 

4-2a 

Therefore 

3 - a( 3-et
2
) 12 - 9a + a:3 

f(z) * g(z) * h(z) E SpT[ -4~] = SpT[13 - 12a + a2l· 
4 - a 4-2et 

Now we draw our attention to the class UCT(a). 

Theorem 3.3. Let f(z) = z- I::=2 anzn, an ~ 0 and g(z) = z- I::=2 bnzn, bn ~ 0 
be elements of UCT(a) then f(z) * g(z) = h(z) = z - I::=2 anbnzn E UCT(/3) where 
{3 = {3( a) ::::; 2(~~C;r~_); . The result is sharp. 

Proof. From Theorem 2.2 we have, for f(z) E UCT(a) 

= L n(2n - 1 - a)an ~ 1 - a 
n=2 

(3.8) 

and g(z) E UCT(a) implies 

= L n(2n - 1 - a)bn :S 1 - a. 
n=2 

(3.9) 

Therefore by proceeding as in Theorem 3.1 we want to get a {3 satisfying the condition 

~ n(2n - 1 - {3) 
Lt 1 _ {3 an bn ::::; 1. 
n=2 
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Using the same techniques we get that 

1 ( 1-a )2 1+/3 < - 2n-l-a 
2 - 1 _ .! ( 1-a )2 · 

n 2n-l-a 
(3.10) 

Right hand side of (3.10) is an increasing function of n(n = 2, 3, ···).Therefore by setting 
n = 2 we get that 

/3 
24 - ( a + 3) 2 

< ( . - a - 5)2 - 8 
The result is sharp with equality when 

1-a 
f(z) = g(z) = z - ( , z2 23-a 

Remark. For f(z) and g(z) E UCT(O) we get that 

15 f(z)*g(z)E UCT(
17
). 

where 
Theorem 3.4. Let f(z) E UCT(a) and g(z) E UCT(/3) then f(z) * g(z) E UCT(,) 

_ ( /3) 24-(3+a)(3+/3) 1 - 1 a, ' :S (5 - a)(5 - /3) - 8 · 
The result is sharp. 

Proof. Proceeding as in Theorem 3.3 we get that 

1 ( 1-a )( 1-/j ) 1 + / - 2n-l-a:- 2n-l-,B ~-< . 
2 - 1 1 ( 1-a )( 1-/j ) 

- ~ 2n-l-a 2n-l-/j 
(3.11) 

Right hand side of (3.11) is an increasing function for n = 2, 3, · - ·. Therefore setting 
n = 2 we get that 

1 = ,(a, /3) :S 2~ - (3 ~ a)(3 + /3) 

which is the required result. The result is sharp. Equality is attained when f(z) = 
1-a 2 d ( ) _ 1-/j 2 z - 2(3-a) z an g z - z - 2(3-.B) z . 

Theorem 3.5. Let f(z) = z- L~2 anzn, an 2 0 and g(z) = Z- L:=2 bnzn, bn 2". 0 
be in SpT(a, /3). Then (f * g)(z) = h(z) = z - L:=2 anbnzn E SpT(A, B) where 

a+ /3 A= A(a, /3) = 2[1- --] 
l+a 

a-/3 a+/3 B = B(a,/3) = --[2- --]. 
l+a l+a 
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The result is sharp. 

Proof. From Theorem 2.6 we get that f(z) E (a,(3) give 
00 

I)n(l + a) - (a+ (])]an :S 1 - f3 
n=2 

(3.12) 

and g(z) E SpT(a,(3) gives 
00 

L[n(l + a) - (a+ f3)]bn :S 1 - (3. 
n=2 

(3.13) 

We like to find the largest c and 8 such that 
(X) 

L[n(l + c) - (c + 8)]anbn :S 1 - 8. 
n=2 

(3.14) 

By using the same techniques as in previous theorems we get that, it is enough if we 
show 

1-(3 [n(l+a)-(a+f3)][ l-8 ]foralln . [ l < 1 t') - /1 ' - \ / - ' ('\ _ { 1 1 -~ \ / ~ 1 /J\ - 

which is equivalent to show that 

l [ 1-/3 ]2 c + 8 - n n(l+a)-(a+.B) 
--<-----7""--- 1 + c - 1 _ [ 1-/3 ]2 

n(l+a)-(a+.B) 

Right hand side of the above expression is an increasing function for n = 2, 3, · · ·. 
Therefore by setting n = 2, we get 

c + 8 < 2[1- (~)] + (~)[2- (~)] 
1 + c - 1 + 2[1 - a+.Bj 

l+a 

which gives the required result. The result is sharp with equality when 

f(z) = g(z) = z - ( l - f3 ,Jz2. 
2+a- 

Now we show that the class PT(a) is not closed under convolution. 
Let f(z) = z - I:::=2 anzn, an 2 0 E PT(a) and g(z) = z - I::=2 bnzn, bn 2 0 E 

PT(a). 
Now we are interested to find if h(z) = z - I::=2 anbnzn is possible to be in PT((]) 

for some (3. 
Equivalently by using Theorem 2.9 we are interested in finding the existence of the 

condition 
00 

L(n + f3 - l)anbn :S (3 
n=2 

(3.15) 
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for 
00 I) n + a - 1 )an ::::; a 

n=2 
(3.16) 

and 

(3.17) 
n=2 

(3.16) and (3.17) together imply with Cauchy Schwarz inequality that 
00 

I)n -1 + a)va:,;: ~ 1. 
n=2 

Then by using the same techniques we are able to get 
a:2 

/3::::; ,_ "- 

Right hand side of the above expression is an increasing function for n = 2, 3, · · ·. There­ 
fore by setting n = 2, gives 

for all n. 

/3::::; ~ -a2 (3.18) 

Since, 0 < a < oo for f(z) E PT(a) we get that /3 in (3.18) satisfies the condition 
-oo < {-J < 0 which gives that f(z) * g(z) ~ P(/3) for any /3. 
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