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A NOTE ON HADAMARD'’S INEQUALITY

GOU-SHENG YANG AND MIN-CHUNG HONG

Abstract. In the present note we establish a new convex function related to the well known
Hadamard’s inequality by using a fairly elementary analysis.

1. Introduction

The following inequalities

b
D < 5 [ fwye < L9, (1)

2

which hold for all convex mappings f : [a,b] — R, are known in the literature as
Hadamard’s inequalities [3]. We note that J. Hadamard was not first who discovered
them. As is pointed out by D. S. Mitrinovic and I. B. Lackovic [4] the inequalities (1)
are due to C. Hermite who obtained them in 1883, ten years before J. Hadamard.

In [2], S. S. Dragomir proved that there is a convex monotonically increasing function
between (%) and 31— f: f(z)dz. In this note, we shall establish that there is a convex

monotonically increasing function between ﬁ fab f(z)dz and &)—%L-—L@. As for other
inequalities in connection with Hadamard’s result see [1, 5, 6], and the references therein.
2. The Main Result

Now, for a given convex mapping f : [a,b] — R, Let F : [0,1] — R be defined by

1+ 1 1+% 1-

F) = g [ U130+ (500 + b+ (g sbds. @)

The following theorem holds:

Theorem 1. Let fla,b] = R and F : [0,1] — R be as above. Then

(i) F is convez on [0,1],
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(ii) F is monotonically increasing on [0,1], and

(i)

inf F(t) = g —/ f(z)dz,

te[0,1]

sup Flt)=F(l)= fla) + 7(b)

te[0,1] 2

Proof. (i) Let a,3 > 0 with e+ 3 =1 and t;,t2 € [0,1]. Then

1+ (Oétl +,3t2)a+ 1-— (at1 +ﬂt2)x

F(at1+[3t2) = 2(b1 ) > ]
! b (A+t)ea+(Q—-t)r _(14+t)a+(1—t2)z
s [pplilet Gda Gfivtias
+le (1+t1)b—+2-(1-t1):c +ﬁ(1+tg)b;(1—t2)m]}dx
< 2(b / {1 (1 +t1)a—;~ (1-1t)z ] n f[(l + t1)b—{2— (1- tl)w]}dm
(1+tz)a+(1— )3:] +f[(1—t2)b; (1 —tz)m]}dm
= aF(t1) + BF(t2), ‘

so that F' is convex on [0, 1].
(ii) Let 0 <t < 1. Then

b
F(t) = 2(b1_& /{f[(l-i-t)a,-l—(l—t):z:]+f[(1+t)b+(1—t):1:]}d$

2 2
1——t) —a) [/

a+b —t( b—a

b
f(z)dz + /ﬂ+t(b~_a) f(z)dz].

Thus
’ 1 ofb —g(232) b
PO = gl fet [, @
e e Gl ) e B O )
1 a4t _g(23%) b
- ==l f@yz+ [ e

1 a-+b b—a a+b b—a

~2(1—t)[f( 2 _t( 2 ))+f( ( 2 ))]
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atb_g(bze ) b
(1—t {(b—a / )dm+/a_;r_b+t(b_7a)f(a:)da:]

(1-¢t),,,a+b b— a—l—b

b—a
R e s R (e R

Let G(t) = 517 "7 fl@)de + [oun,yome, F(2)da] — CFR[F(25E — £(252)) +

G()———[f(‘””’ () + 12 O+ A — 15 )
+f(“j"+t(b—;—“)>1—“‘”f’ Dip 22+ 22 Y)
PR (20
= M0 af 3)

where ¢ is a number between 22 — t(252) and ‘”‘b - t(b 222,
Sinee f is convex and t € [0 1), the last term of (3) is not greater than zero for all
t € [0,1), so that G is monotonically decreasing on [0, 1].
Consequently, F'(t) = (—lzl—th(t) > (I—_It)—zG(l“) = (1—_17)—2—6’(1) =0, i<t}
which shows that F' is monotonically increasing on [0, 1).
(iii) We shall prove the following inequalities:

b B " Y
/ f(z)dz < F(t) < (1.2“:) f(a)-gf(b)+(1 t) —1-a_/ fa)de < L )-zl—f(b)
(4)

b—aJ,

for all ¢ in [0, 1].
Because F(t) is monotonically increasing, we have

b
F(t) > F(0) = 2(b—1)/ FCEE) + 1 E e = o [ f(e)da

for all ¢ € [0, 1].
Now, using the convexity of f, we have

1+t Lif 1+1

5 "ya] + f[(—)b+(

F(t) = t):v]}d:c

<s5=a /. [(1 - t)(f(a) +50) + (1 - )f (@))da

_(a+t)f (a)+f(b) 1-t) 1
Sl 5 + b—a/ f(z)dx

and the second inequality in (4) is proved.
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Finally, by the Hadamard’s inequalities, we have
(1+1) f(a)+£(b)  (A-t) 1 /f Viz < (1+¢t) fla)+50) (-1 f(a) + £(b)
2 2 2 2 2 2 2

f(a) + £(b)
2

This completes the proof.

Corollary. Under the assumptions of Theorem 1, we have
1 3a+ 1 3b + z 1 [

— de — —— d

ﬂwwjm )+ 1Nt - = [ f(a)a

s“Q?@‘ml@/m““ﬁfﬁ+ﬁm ®)

Proof. Since F is convex on [0,1], we have

b a T i
%£5/w3j»wﬁjnm:ﬂ§

:F(%-H%-O)
1 1
S—F(1)+"F(0)

1 f(a) + £(b)
i1 — 2b— /f(“’

Hence (5) follows immediately.

3. Applications

(1) Let p>1,0<a<band f(z)=zP. Then

a4 bP pptl — g+l 1 a+b . pibl
(F )2 o9 = (1—t)(p+1)(b—a){[ g~ i e
1 a+b b—a pt1
I A P!
<cﬂ"+lﬂ’J
58—

for all ¢ in [0,1).
(2) Let 0 < a < band f(x) = \/—,ur>0 Then

2 2 a+b a‘l‘b b—a. 1
IR Rl o L SN = va+ VB - (2 4 e

. 1Va+ Vb
<35
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for all t in [0, 1).
(3) Let 0 < a<band f(z) =%,  >0. Then

Inb—1Ina _ ' ng[a—;—b — t(552)]
b—a ~ (1-t)b—a) a[ztd4t(552)]
<a+b
— 2ab

for all £ € [0,1).

Remark. The following inequalities can be found in (7, p.130],

1 B b—a Inb—1na
et b = —_—)b—a N S S O
2(a+ 1> e (a“) >lnb—lna>\/@>ab( b—a )

ab 2ab

—a

be Yy

> e

Consequently, our result from application (3) gives a refinement of this classic fact.
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