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ON THE PROJECTIVE GREEN RING 

SALAH EL DINS. HUSSEIN AND ABDEL AZIZ A. RADWAN 

0. Introduction 

A natural strategy for studying the representation of a finite group G is to consider 
a subgroup H of G whose representation is presumably simpler and try to use represen­ 
tations of H to construct representations of G. The projective representations of finite 
groups arise naturally when one studies the relations between the representations of the 
group and representations of certain subgroups. The role played by the group rings in 
the linear representation theory is taken by the twisted group rings when one considers 
projective representations. 

It was really J. A. Green who first introduced the notion of the representation ring 
A( G) of a finite group G, in his paper [4], with the aim of studying the modular represen­ 
tations of G. The representation ring A(G) is also called the Green ring. For a subgroup 
Hof G: the relation between the Green rings A(G) and A(H) has been established by 
D. J. Benson and R. A. Parker in [2], [3]. In an attempt to generalize the notion of 
the character of a representation of G the concept of a species of the representation ring 
A( G) has been introduced in [3]. 

Continuing this clue we define and investigate the projective Green ring AT ( G) of a 
finite group G, where T is any abelian group. Our definition is a generalization of the 
definition suggested by H. Opolka in [7]. After defining the projective Green ring AT(G) 
we examine its general structure. We prove in Theorems (2.3) and (2.4) that if His any 
subgroup of G, then AT ( G) is the direct sum of the kernel of the restriction map and the 
image of the induction map while AT ( H) is the direct sum of the image of the restriction 
map and the kernel of the induction map. We round off this note by associating to each 
species S of AT ( G) an important conjugacy class of subgroups of G called the origins of 
S. In order to define the origins of S we need Theorem (2.6) which states that AT(H) is 
integral over the image of the restriction map. 

1. Preliminaries 

In this section we recall some basic definitions and results on modules over twisted 
group algebras, full detail and proofs may be found in [5]. Throughout G is a finite group 
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with identity element e, His a subgroup of G, and Risa commutative ring with identity. 
The group of units of R will be denoted by R·. All modules in this paper are left modules 
unless otherwise specified. Let Z2(G, R") be the group of 2-cocycles, B2(G, R") be the 
group of 2-coboundaries and H2(G, R") be the second cohomology group of G over R. 
For every 2-cocycle a E Z2(G, R"), the twisted group ring R0G is a free R-module with 
basis { Ag : g E G} and multiplication defined by: 

a,\i: · bAy = aba(x, y)Axy, for all a, b ER; x, y E G. 

If a: : G x G --t R' is a 2-cocycle then the restriction of a to H x H is a 2-cocycle which will 
be also denoted by a. If Vis an R0G-module, then we shall denote by ra,H(V), orVH, 
the restriction of V to R0 H; thus as an R-module VH equals V but only action of R0 H 
is defined on VH. For every R0H-module W we write iH,a(W), or w0, for the induced 
R0G-module (R0G ®R°'H W). We restrict our attention to finitely generated RaG - 
modules which are R-free. If Vis an Ro:G-module and Wis an Rf3G -module then the 
module V 0R W is an R0.8G-module where the action of the elements Ag, g E G, is 
defined by: 

A9(v 0 w) = A9v 0 A9w, for all v EV, w E W, 

and then extended to V 0R W and R0f3 G by R-linearity,[5]. For every g E G and 
every R0H-module V we define the module V(g) to be the R0(gHg-1)-module whose 
underlying abelian group is Vandon which the elements Ax, x E gHg-1, act according 
to the rule: 

Ax* V = A;1 AxAgV, VE V, [5]. 
For every g E G, we shall write H9 to denote the subgroup gH g-1 of G. 

Proposition 1.1. Suppose H and K are subgroup of G, V is an R0G-module, and 
W is an R0 H-module. If w is a set of double coset representatives for (H, K) in G then 
there are natural isomorphisms: 

(i) V 0 W0 
rv (VH 0 W)0 (as R0f3G-modules) 

(ii) (W0)K rv ©gEw [( wC9))HgnK]K (as R° K-rnodules). 

Proof. (i) Cf.[5], p. 218, Theorem (5.1). 
(ii) Cf. [5], p. 227, Theorem (7.1). 

2. The Projective Green Ring. 

Throughout this section R will be a field. For every a E Z2(G, R·), all R0G-modules 
will be finitely generated R0G-modules. For simplicity we shall write H :S G to denote 
a subgroup H of G and H < G to denote a proper subgroup H of G. 

Definition 2.1. Let T be an abelian group with identity element e' and cp : T --t 
H2(G, R") be a group homomorphism. For every t ET let at(G) be the free abelian group 
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generated by elements (M), one for each isomorphism class of RaG-modules, where O:'. is 
any representative of the cohomology class cp(t). If Zand Care, respectively, the integers 
and the complex numbers then we write At(G) for the tensor product C ©z at(G). Let 
AT(G) = EBtETAt(G) and define addition and multiplication on the generators of AT(G) 
as follows: 

(M) + (N) = (M EB N) , (M) · (N) = (M @RN). 

If we extend those operations to AT ( G) by C-linearity then clearly AT ( G) becomes a 
commutative ring. We call the thing ring AT (G) the projective Green ring of G over R. 

Remarks 2.2. (1) It follows from the definition that AT(G) is a commutative C­ 
algebra which is T-graded, i.e. At(G) · A8

( G) C Ats( G) for every t, s ET, [6]. Moreover, 
if a: E <p(e') and Ro denotes the trivial RaG-module R then (Ro) is the identity element 
of AT(G). 
(2) The projective representation ring AT (H) of H over R is defined in a similar way 
with the understanding that for every t E T the cocycle a: E cp(t) is the restriction of a: 
to H x H. Clearly, the restriction map ra,H: AT(G) --t AT(H) is a ring homomorphism 
while the induction map iH,G: AT(H) --t AT(G) is a linear map which is not in general 
a ring homomorphism. 

Theorem 2.3. For any subgroup H of G, AT(G) is a direct sum of ideals: 

Proof. The fact that Im( i H,G) is an ideal is a direct consequence of Proposition 
(1.1) (i). We shall prove our assertion using mathematical induction on IHI. If IHI = 1 
then Ra H ,.-..., R for every a: E Z2(G, .R) It follows that Im(iH,G) and Im(ra,H) are freely 
generated by their identity elements. Hence, 

CodimKer(ra,H) = dimAT(G) - dimKer(ra,H) 
= dimlm(ra,H) 
= dimim(iH,a) 
= 1. 

Since iH,G(l)] ~ Ker(ra,H) then Jm(iH,G) nKer(ra,H) = 0. Now assume that IHI> 1 
and for every proper subgroup K of H, 

Using mathematical induction on the number of proper subgroups of H, one can easily 
obatin that 

AT(G) = L Im(iK,G) + n Ker(ra,K)• 
k<H K<H 
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Thus 
Im(ra,H) = ra,H[ L Im(iK,a)] + ra,H[ n Ker(rc,K)]- 

K<H K<H 
Elementary calculations show that, 

ra,H[ n Ker(ra,K)] = [ n Ker(rH,K)] nfm(ra,H), 
K<H K<H 

Therefore, 

k<H K<H 

If follows that there are elements b E [nK<H Ker(rH,k)] n1m(rc,H ), a E rc,H[LK<H 
-1 Im(iK,c] such that a+b = l. If Nc(H) is the normalize of Hin G then Hg n H < H for 

every g (;j. Nc(H). Since b E nK <Ii K er(rH,K) then bHg-1 n H = 0 for every g (;j. Nc(H). 
If w is a set of double coset representatives of (H, H) in G then, by Proposition (1.1), we 
have that 

(bG)H rv EB[(b(Y)) HY n H ]H rv EB[(bHg-1 n H )Cg)]H) 

where the sum is taken over all g E w n N c ( H). Thus 

(bG)H = [Na(H) : H]b, 

showing that Im(rc,H) = rc,H(ImiH,c). It follows that for every x E AT(G) there 
exists y E Im(iH, G) such that XH = YH· Therefore, 

x = y + (x - y) E 1-m(iH,G) + Ker(rc,H), 

proving that AT(G) = Im(iH,c) + Ker(rc,H)- Write 1 E AT(G) as 1 =cc+ d, where 
CE AT(H), d E Ker(rc,H), If XE Im(iH,c)nKer(rc,H) then there exists y E AT(H) 
such that x = ye and Proposition (1.1) entails that 

This completes the proof of the theorem. 

Theorem 2.4. For every subgroup H of G, AT(H) is a direct sum of vector spaces: 

Proof. For simplicity we shall write E = Im(rc,H) +Ker(iH,c).· Let K be a 
subgroup of H. If /Kl = 1 and a E Z2(G, R) then for every R° K-module M we have 
from Proposition (1.1) that, 
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. where A is a set of representatives of the left cosets of H in G. Thus (M0)H = [G : 
H]MH. Hence (MH) EE. 

Suppose that, for every subgroup K1 of H such that IK11 < !Kl, if a E Z2(G,R) 
and M be any R°'K1-module then (MH) EE. 

Now let a E Z2(G < R) and M be any R° K-module. We have from Proposition 
(1.1) that 

(M0)H rv ffigEw[(Af(g))Kg n H]H, 

where w is a set of double coset representatives of (H, K) in G. Let w1 = {g E w: K9 '1:. 
H} and w2 = {g E w : K9 :S H} 

For every g E w2 we have that, 

[(M(g))Kg nHlH = l(M(g))KgJH = (M(g))H 

= (M(g))H - MH + MH 

If g E W1 then IK9 n HI < IKI and it follows from the induction hypothesis that 
([(m(9))K9nH]H) EE. 

Since (Af(9))H - MH) E Ker(iH,G) and ((M0)H) E Im(ra,H) then there exists a 
positive integer p such that p(MH) E E. Hence (MH) E E for every R° K-module M. 
Therefore E = AT ( H). 

Finally, if y E Im(ra,H) n K er(iH,G) then there exists u E AT(G) such that y = UH· 
By Theorem (2.3) we can write the unite element 1 of AT(G) as 1 = e1 +e2, where e1 and 
e2 are two orthogonal idempotent generators of Im(iH,a) and Ker(ra,H), respectively. 
Thus e1 = x0 for some x E AT(H). Moreover, using the first part of the proof we may 
write x as x = x1 + x2, where x1 = VH, for some v E AT(G), and x2 E Ker(iH,a). 
Invoking Proposition (1.1) we obtain, 

Y =UH= (u · e1)H = (u · x0)H = (uH · x)0 

= (y · VH)0 + (uH · x2)0 

= y0 · v + u · x~ = 0. 
Therefore 

AT(H) = Im(ra,H) EB Ker(iH,a). 

Corollary 2.5. For every a E Z2(G,R) and every subgroup Hof G we have: 

(i) If Vi, Vi are R0 H-modules such that (Vi°)H rv (V2°)H then 

TTG rv TTG 
Vl = V2 l 
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Proof. (i) The proof is a direct consequence of Theorem (2.3) since (V?) - (VP) E 
Im(iH,G) n Ker(ra,H) 

(ii)Since (W1H) - (W2H) E Im(ra,H) nKer(iH,c), then by Theorem (2.4) we have 
that Hl1H rv W2H. 

Definition 2.6.([3]) Let B be a subalgebra of AT(G). A species s of Bis a non-zero 
algebra homomorphism s:B --t C. 

In order to define the origin of a species we need the following integrality theorem. 
For definitions and properties of integral extensions of rings we refer to [l]. 

Theorem 2.7. For every subgroup H ofG, AT(H) is integral overlrn(ra,H), 

Proof. By Proposition (5.3) of [3] we have that the Green ring A(H) is integral 
over the image of the restriction map rc,H: A(G) --t A(H). Let Q be the kernel of the 
homomorphism <p: T --t H2 ( G, R"). It is well known that Ra G ,....., RG for every q E Q, 
a: E <p( q), [5]. Thus for every q E Q we have that 

I 

lm(ra,H),....., rc,H(Ae (G)), Aq(H) ,.-..., A(H). 

Therefore AQ(H) = EBqEQAq(H) is integral over A1 = ra,H(Ae' (G)), [l]. According 
to Theorem (3.2), Ch.2., of [5], if a: E Z2(G, R") then there exists a positive integer P 
such that a_P E B2(G, R"). Thus, if M is any Ra H-module and (M)(P) is the product 
in AT ( H) of p copies of ( M) then (1\lf) (p) E A Q ( H). It follow that ( M) (p) is integral 
over A1. Hence (M)(P) is integral over Im(rc,H ). This shows that (M) is integral over 
Im(rc,H ). 

Proposition 2.8. Let H be a subgroup of G and s be a species of AT ( G). The 
following conditions are equivalent: 

(i) Ker(rc,H) ~ Ker(s), 
(ii) Jm(iH,G) i Ker(s), 
(iii) There is a species t of AT(H) such that s(x) = t(xH) for all x E AT(G). 

Proof. (i):::}(ii). This is an easy consequence of Theorem (2.3) and the fact that s is 
a non-zero homomorphism. 

(ii)*(i). Suppose that K er(ra,H) i K er(s ). Let x E Ker(rc,H) - K er(s) condition 
(ii) implies the existence of an element y E Im(iH,c) - Ker(s). Since s(x) and s(y) are 
non-zero elements of C then s(x, y) = s(x)s(y) =/=- 0. Thus (x · y) is a non-zero element of 
Ker(ra,H) n1m(iH,G), This contradicts Theorem (2.3). 

(i):::}(iii). Write K = K er(ra,H ). Since K C K er(s ), the species s induces a non­ 
zero homomorphism s : AT ( G) / K --t C. Thus s induces a non-zero homomorphism 
t : Im(rc,H) --t C, given by t(xH) = s(x) for every x E AT(G). Since AT(H) is 
integral over Im(rc,H) then, by Proposition (1.8.1) of [2], There exists a non-zero algebra 
homomorphism t: AT(H) --t C such that t(:cH) = t(xH) = s(x) for every x E AT(G). 
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( iii) =? ( i). Obvious 

Definition 2.9. A species s of AT ( G) factors through H if and only if the equivalent 
conditions of Proposition (2.8) are satisfied. An origin of s is a subgroup of G which is 
minimal among those through which s factors. 

Proposition 2.10. Lets be a species of AT(G). Then the origins of s from a single 
conjugacy class of subgroups. 

Proof. Let Hand£ be two origins of s. Since fl= ugEG H n L9 then 

Since s is a C-valued homomorphism then Ker ( s) is a prime ideal. Thus 

Ker(s) l Irn(iH,c) · Im(iL,c). 

If follows that Im(iHnLg,c) "i Ker(s) for some g E G. Hence by minimality of H we 
have that H = HnLg = £9. 
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