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ON A THEOREM OF YEN

THOMAS P. KEZLAN

Abstract. In [5] Yen showed that if R is an associative ring with unity and m > 1 is a fixed
integer such that m = 2(mod4) and (z + )™ = 2™ + y™ for all z, y in R, then R must be
commutative. In the present paper it is shown that commutativity is achieved even in the case
where m is dependent on z and y.

In [1] Herstein showed that if R is a ring in which for some fixed integer m > 1, (z+y)™ =
z™ +y™ for all, z, y in R, then the commutator ideal of R is nil. In [5] Yen pursued this
further and proved, under additional assumptions on m, that if R has a unity, then R
has not only nil commutator ideal but is in fact commutative. More precisely, if R has
a unity, then R is commutative if either'mn = 2(mod 4) or m is odd and satisfies a rather
technical condition concerning its prime divisors. The purpose of this paper is to prove
that if R has a unity, then R is commutative when m = 2(mod 4) even if m is allowed to
depend on z and y. We do not investigate the case of odd m here.

All rings are assumed associative. The commutator ideal of R will be denoted C (R)
and the center Z(R).

Theorem. Let R be a ring with unity satisfying (*) given x, y in R there erists a
positive integer m = m(z,y) = 2(mod4) such that (x + y)™ = =™ + y™. Then R is
commutative.

Proof. We shall make use of the following well-known result of Streb [4]:
A noncommutative ring has a noncommutative factorsubring of one of the following
types:
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) where p is a prime;

a

0 o(a)
phism of GF(q") with fixed field GF(q);

(c) a division ring;

(d) a simple radical domain;

(e) a finite nilpotent subdirectly irreducible ring S such that C (S) is the heart of S and
SC(S5) = C(8)S = (0);
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(f) a subdirectly irreducible ring S generated by two elements of finite additive order
such that C(S) is the heart of S, SC(S) = C(S)S = (0), and the nilpotent elements
of S form a commutative nilpotent ideal.

Suppose that R is a ring with unity satisfying (*) and that R is not commutative.
Then R has a noncommutative factorsubring of one of the types (a)-(f) and of course S
inherits (*). The proof will be achieved by showing that each type leads to a contradiction.

First we note that if m = m(1,~1), then 0 = (1 —1)™ = 1+ (—1)™ = 2 since m is
even, and hence the characteristic of R, and therefore of 3, is 2.

Now let z € R and m = m(z,1). Then (z + 1)™ = z™ + 1 implies

n.z—l (T)x =0. (1)

=1

Thus every element of R, and therefore of S, satisfies an equation of the form (1) with
m depending on z. Writing m = 2 + 4k, we have m = 0 in S and ('g) = MM =
(14 2k)(1 + 4k), an odd integer. Hence (3) =1in S and so (1) becomes

z? = 23 f(z) for some polynomial f with integer coefficients. (2)

We now eliminate types (a) and (c)-(f), leaving the more difficult type (b) for last.
Type (a): If z = e;; and y = ey9, then (z + y)™ = e11 + e;2 whereas z™ + y™ =
GF(p) GF(p)

e11. Thus S cannot be of type ( 0 0

GF(p) 0
( GF(p) 0 ) '

Type (c): If S is a division ring, then (2) shows that § is algebraic over the finite
subfield GF(2), whence S must be commutative by a theorem of Jacobson 3]

Type (d): Let z # 0 be in S. Since z is not nilpotent, we obtain from (2) a nonzero
idempotent e = z*(f(z))? in S as in [2, p.22], an impossibility in a simple radical ring.

Type (e): Let  # 0 be in S. Then z* = 0 # 2%~ for some % > 2. If k > 2, then
from (2) we have 2*~1 = z¥=3(2%f(z)) = z* f(z) = 0; hence k = 2, that is, 22 = 0 for
allz € 5. Now for all z, y in S we have 0 = (z+y)? = 2% + 2y + yz + y% = zy + yz and
hence xy = —yx = yx since S has characteristic 2.

Type (f): If S is nil, then we are done, as in Type(e). Hence there is a nonnilpotent
element in S, from which we obtain as in Type (d) a nonzero idempotent e. Forallz € S
we have e(ze —ez) € SC(S) = (0), so eze = ex. Similarly exe = ze and hence e € Z(S).
Thus the set I = {z € Slez = z} is an ideal of S and is nonzero since it contains e.
Hence C(S) C I. But now for all z, y in S we have [z,y] = e[z,y] € SC(S) = (0).

This leaves Type (b) and for this case we need the following

), and similarly it cannot be of type

Lemma. Lett and r be positive integers with r > 1 and let q = 2¢. Then there exists
a prime which divides q" — 1 but not qg—1.
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Proof. First we establish the result when r = 2" for n > 1 by induction on n.
Suppose that n = 1 and that every prime dividing ¢ — 1 also divides ¢ — 1. Let p be
any prime dividing g + 1; p must be odd since ¢ is even. But p divides ¢2 — 1 and so
by assumption p divides ¢ — 1, whence p divides (g + 1) — (¢ = 1) = 2, a contradiction
which proves the case n = 1. Now assume inductively that n > 1 and that there is
a prime dividing ¢2"~ — 1 which does not divide g — 1. Clearly this prime divides
¢ —-1=(¢>"" 1) + 1), which completes the induction for the case in which r
is a power of 2.

Now suppose r is divisible by an odd prime p. We first show that there is a prime
which divides ¢ — 1 but not ¢ — 1. Suppose to the contrary that every prime which
divides ¢ — 1 also divides ¢ — 1. Writing

¢ —1=(q—1)(@ " +¢" 2+ +q+1), (3)

we let p' be any prime dividing ¢P~1 + ¢P~2 + ... + g+ 1. Then p’ divides ¢ — 1 and
so by assumption ¢ — 1. But now p’ divides ¢P~* — 1 for ¢ = 1,2,---,p — 1 and since
Pl +gP 24 b g +1=(¢P 1 —1)+(¢P2 - 1)+---+(g—1)+p, we see that p’ must
divide p. Since p and p’ are both prime, we must have p = p' and hence p is the only prime
dividing ¢?~* +¢?~2 4. -+ ¢+ 1. Moreover it is clear that g?~! + @2+ +qg+1>p,
SO we may write

qp'1+qp_2+---+q+l=pcforsomecz2. (4)

Let ¢ — 1 = p?k where p does not divide k. From (3) and (4) we have gP — 1 = pe+dk.
Since p? divides gP~* —1fori=1,2,---,p—1, letting gP~% — 1 = p%s;, we have

= - D)+ (@ -+ +(g-1)+p=p*(s1+ 82+ + 5p_1) +p.

Ifd > 1, then p*~! = pd"l(sl +82+---+8p_1)+1 withc—1 and d— 1 both positive,
a contradiction. Thus d =1, ¢ — 1 = pk and ¢P — 1 = p°*1k. Hence 1 + p°*+1k = q? =
(1+pk)? = 3774 (§) (0k)*, whence p°*1k = p(pk) + () (pk)2 +- - - + (521) (F)P~ + (pK)P.
Every term has p? as a factor, so dividing by p? yields p*~1k = k + BVE2+ (B)pk3+-- -+
(pf )PP 3kP~1 4 pP=2kP 4 contradiction since all terms but k are divisible by p. This
shows that there is a prime which divides ¢ — 1 but not qg—1.

For the general case in which r is divisible by an odd prime p we let r = pk and
observe that since ¢" — 1 = (¢*)? — 1, the preceding argument yields a prime which
divides ¢" — 1 but not ¢* — 1, and clearly this prime cannot divide ¢ — 1. This proves the
lemma.

Getting back to Type (b), we assume that S = M, (GF(q")) where o has fixed field
GF(g) and that S satisfies (*). Since S has characteristic 2, q is a power of 2. By the
lemma there exists a prime p which divides q" — 1 but not ¢ — 1. Since p divides ¢" — 1,
there is an element o of multiplicative order p in GF(q"), and since p does not divide
g—1,a? ' # 1 and hence a ¢ GF(q), that is ,0(a) # a. Let

z= ( . a(Oa) ),y= ( " ),mzm(m,y). Then
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_aym  (@=1"—a((a—1)™)
(z+y)™ = ( = p—plex] ) and

0 o((@a—-1)")

g™ +y" = ( amo_l o*(cv:"ni 1) ) N ( amo_l C’(a"?“l) )

Equating these, we obtain a™ -1 = (a—1)™ = o((a—1)™) = o(a™—-1) = o(a™) -1,
where o(a™) = a™. Thus o™ is in the fixed field GF(q) and so o™~ = 1. But now
p, being the multiplicative order of o, must divide m(gq — 1), and since p does not divide
g — 1, p must divide m. Therefore (a —1)™ =a™~1=1—-1=0andsoa=1,a
contradiction which completes the proof of the theorem.

In closing we point out that there are examples [6] of noncommutative rings with
unity satisfying (z + y)** = z** 4 y** for all z, y and any positive integer k, so for even
m the condition m = 2(mod 4) is essential in the above theorem. As for odd m, Yen also
gave an example [6] of a noncommutative ring with unity of odd prime characteristic p
satisfying (z + y)Pk =z + y]”’c for all z, y and any positive integer k and also showed
in [5] that commutativity is achieved for fixed odd m provided that for every prime p
dividing m we have m = p'n where n > 1, p does not divide n, and p — 1 does not divide
n — 1. It is not clear at this point whether making this further assumption on variable
odd m(z,y) will yield commutativity, so this question remains open.
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