ON A THEOREM OF YEN

THOMAS P. KEZLAN

Abstract

In [5] Yen showed that if R is an associative ring with unity and $m>1$ is a fixed integer such that $m \equiv 2(\bmod 4)$ and $(x+y)^{m}=x^{m}+y^{m}$ for all x, y in R, then R must be commutative. In the present paper it is shown that commutativity is achieved even in the case where m is dependent on x and y.

In [1] Herstein showed that if R is a ring in which for some fixed integer $m>1,(x+y)^{m}=$ $x^{m}+y^{m}$ for all, x, y in R, then the commutator ideal of R is nil. In [5] Yen pursued this further and proved, under additional assumptions on m, that if R has a unity, then R has not only nil commutator ideal but is in fact commutative. More precisely, if R has a unity, then R is commutative if either $m \equiv 2(\bmod 4)$ or m is odd and satisfies a rather technical condition concerning its prime divisors. The purpose of this paper is to prove that if R has a unity, then R is commutative when $m \equiv 2(\bmod 4)$ even if m is allowed to depend on x and y. We do not investigate the case of odd m here.

All rings are assumed associative. The commutator ideal of R will be denoted $C(R)$ and the center $Z(R)$.

Theorem. Let R be a ring with unity satisfying (*) given x, y in R there exists a positive integer $m=m(x, y) \equiv 2(\bmod 4)$ such that $(x+y)^{m}=x^{m}+y^{m}$. Then R is commutative.

Proof. We shall make use of the following well-known result of Streb [4]:
A noncommutative ring has a noncommutative factorsubring of one of the following types:
(a) $\left(\begin{array}{cc}G F(p) & G F(p) \\ 0 & 0\end{array}\right)$ or $\left(\begin{array}{cc}G F(p) & 0 \\ G F(p) & 0\end{array}\right)$ where p is a prime;
(b) $M_{\sigma}\left(G F\left(q^{r}\right)\right)=\left\{\left.\left(\begin{array}{cc}\alpha & \beta \\ 0 & \sigma(\alpha)\end{array}\right) \right\rvert\, \alpha, \beta\right.$ in $\left.G F\left(q^{r}\right)\right\}$ where σ is a nontrivial automorphism of $G F\left(q^{r}\right)$ with fixed field $G F(q)$;
(c) a division ring;
(d) a simple radical domain;
(e) a finite nilpotent subdirectly irreducible ring S such that $C(S)$ is the heart of S and $S C(S)=C(S) S=(0) ;$

Key words and phrases. Commutativity, polynomial constraints.
(f) a subdirectly irreducible ring S generated by two elements of finite additive order such that $C(S)$ is the heart of $S, S C(S)=C(S) S=(0)$, and the nilpotent elements of S form a commutative nilpotent ideal.

Suppose that R is a ring with unity satisfying $\left({ }^{*}\right)$ and that R is not commutative. Then R has a noncommutative factorsubring of one of the types (a)-(f) and of course S inherits (*). The proof will be achieved by showing that each type leads to a contradiction.

First we note that if $m=m(1,-1)$, then $0=(1-1)^{m}=1+(-1)^{m}=2$ since m is even, and hence the characteristic of R, and therefore of S, is 2 .

Now let $x \in R$ and $m=m(x, 1)$. Then $(x+1)^{m}=x^{m}+1$ implies

$$
\begin{equation*}
\sum_{i=1}^{m-1}\binom{m}{i} x^{i}=0 \tag{1}
\end{equation*}
$$

Thus every element of R, and therefore of S, satisfies an equation of the form (1) with m depending on x. Writing $m=2+4 k$, we have $m=0$ in S and $\binom{m}{2}=\frac{(2+4 k)(1+4 k)}{2}=$ $(1+2 k)(1+4 k)$, an odd integer. Hence $\binom{m}{2}=1$ in S and so (1) becomes

$$
\begin{equation*}
x^{2}=x^{3} f(x) \text { for some polynomial } f \text { with integer coefficients. } \tag{2}
\end{equation*}
$$

We now eliminate types (a) and (c)-(f), leaving the more difficult type (b) for last.
Type (a): If $x=e_{11}$ and $y=e_{12}$, then $(x+y)^{m}=e_{11}+e_{12}$ whereas $x^{m}+y^{m}=$ e_{11}. Thus S cannot be of type $\left(\begin{array}{cc}G F(p) & G F(p) \\ 0 & 0\end{array}\right)$, and similarly it cannot be of type $\left(\begin{array}{ll}G F(p) & 0 \\ G F(p) & 0\end{array}\right)$.

Type (c): If S is a division ring, then (2) shows that S is algebraic over the finite subfield $G F(2)$, whence S must be commutative by a theorem of Jacobson [3].

Type (d): Let $x \neq 0$ be in S. Since x is not nilpotent, we obtain from (2) a nonzero idempotent $e=x^{2}(f(x))^{2}$ in S as in [2, p.22], an impossibility in a simple radical ring.

Type (e): Let $x \neq 0$ be in S. Then $x^{k}=0 \neq x^{k-1}$ for some $k \geq 2$. If $k>2$, then from (2) we have $x^{k-1}=x^{k-3}\left(x^{3} f(x)\right)=x^{k} f(x)=0$; hence $k=2$, that is, $x^{2}=0$ for all $x \in S$. Now for all x, y in S we have $0=(x+y)^{2}=x^{2}+x y+y x+y^{2}=x y+y x$ and hence $x y=-y x=y x$ since S has characteristic 2 .

Type (f): If S is nil, then we are done, as in Type(e). Hence there is a nonnilpotent element in S, from which we obtain as in Type (d) a nonzero idempotent e. For all $x \in S$ we have $e(x e-e x) \in S C(S)=(0)$, so exe $=e x$. Similarly exe $=x e$ and hence $e \in Z(S)$. Thus the set $I=\{x \in S \mid e x=x\}$ is an ideal of S and is nonzero since it contains e. Hence $C(S) \subseteq I$. But now for all x, y in S we have $[x, y]=e[x, y] \in S C(S)=(0)$.

This leaves Type (b) and for this case we need the following
Lemma. Let t and r be positive integers with $r>1$ and let $q=2^{t}$. Then there exists a prime which divides $q^{r}-1$ but not $q-1$.

Proof. First we establish the result when $r=2^{n}$ for $n \geq 1$ by induction on n. Suppose that $n=1$ and that every prime dividing $q^{2}-1$ also divides $q-1$. Let p be any prime dividing $q+1 ; p$ must be odd since q is even. But p divides $q^{2}-1$ and so by assumption p divides $q-1$, whence p divides $(q+1)-(q-1)=2$, a contradiction which proves the case $n=1$. Now assume inductively that $n>1$ and that there is a prime dividing $q^{2^{n-1}}-1$ which does not divide $q-1$. Clearly this prime divides $q^{2^{n}}-1=\left(q^{2^{n-1}}-1\right)\left(q^{2^{n-1}}+1\right)$, which completes the induction for the case in which r is a power of 2 .

Now suppose r is divisible by an odd prime p. We first show that there is a prime which divides $q^{p}-1$ but not $q-1$. Suppose to the contrary that every prime which divides $q^{p}-1$ also divides $q-1$. Writing

$$
\begin{equation*}
q^{p}-1=(q-1)\left(q^{p-1}+q^{p-2}+\cdots+q+1\right) \tag{3}
\end{equation*}
$$

we let p^{\prime} be any prime dividing $q^{p-1}+q^{p-2}+\cdots+q+1$. Then p^{\prime} divides $q^{p}-1$ and so by assumption $q-1$. But now p^{\prime} divides $q^{p-i}-1$ for $i=1,2, \cdots, p-1$ and since $q^{p-1}+q^{p-2}+\cdots+q+1=\left(q^{p-1}-1\right)+\left(q^{p-2}-1\right)+\cdots+(q-1)+p$, we see that p^{\prime} must divide p. Since p and p^{\prime} are both prime, we must have $p=p^{\prime}$ and hence p is the only prime dividing $q^{p-1}+q^{p-2}+\cdots+q+1$. Moreover it is clear that $q^{p-1}+q^{p-2}+\cdots+q+1>p$, so we may write

$$
\begin{equation*}
q^{p-1}+q^{p-2}+\cdots+q+1=p^{c} \text { for some } c \geq 2 \tag{4}
\end{equation*}
$$

Let $q-1=p^{d} k$ where p does not divide k. From (3) and (4) we have $q^{p}-1=p^{c+d} k$. Since p^{d} divides $q^{p-i}-1$ for $i=1,2, \cdots, p-1$, letting $q^{p-i}-1=p^{d} s_{i}$, we have

$$
p^{c}=\left(q^{p-1}-1\right)+\left(q^{p-2}-1\right)+\cdots+(q-1)+p=p^{d}\left(s_{1}+s_{2}+\cdots+s_{p-1}\right)+p
$$

If $d>1$, then $p^{c-1}=p^{d-1}\left(s_{1}+s_{2}+\cdots+s_{p-1}\right)+1$ with $c-1$ and $d-1$ both positive, a contradiction. Thus $d=1, q-1=p k$ and $q^{p}-1=p^{c+1} k$. Hence $1+p^{c+1} k=q^{p}=$ $(1+p k)^{p}=\sum_{i=0}^{p}\binom{p}{i}(p k)^{i}$, whence $p^{c+1} k=p(p k)+\binom{p}{2}(p k)^{2}+\cdots+\binom{p}{p-1}(p k)^{p-1}+(p k)^{p}$. Every term has p^{2} as a factor, so dividing by p^{2} yields $p^{c-1} k=k+\binom{p}{2} k^{2}+\binom{p}{3} p k^{3}+\cdots+$ $\binom{p}{p-1} p^{p-3} k^{p-1}+p^{p-2} k^{p}$, a contradiction since all terms but k are divisible by p. This shows that there is a prime which divides $q^{p}-1$ but not $q-1$.

For the general case in which r is divisible by an odd prime p we let $r=p k$ and observe that since $q^{r}-1=\left(q^{k}\right)^{p}-1$, the preceding argument yields a prime which divides $q^{r}-1$ but not $q^{k}-1$, and clearly this prime cannot divide $q-1$. This proves the lemma.

Getting back to Type (b), we assume that $S=M_{\sigma}\left(G F\left(q^{r}\right)\right)$ where σ has fixed field $G F(q)$ and that S satisfies $\left({ }^{*}\right)$. Since S has characteristic $2, q$ is a power of 2. By the lemma there exists a prime p which divides $q^{r}-1$ but not $q-1$. Since p divides $q^{r}-1$, there is an element α of multiplicative order p in $G F\left(q^{r}\right)$, and since p does not divide $q-1, \alpha^{q-1} \neq 1$ and hence $\alpha \notin G F(q)$, that is , $\sigma(\alpha) \neq \alpha$. Let

$$
x=\left(\begin{array}{cc}
\alpha & 0 \\
0 & \sigma(\alpha)
\end{array}\right), y=\left(\begin{array}{cc}
-1 & 1 \\
0 & -1
\end{array}\right), m=m(x, y) . \text { Then }
$$

$$
\begin{gathered}
(x+y)^{m}=\left(\begin{array}{cc}
(\alpha-1)^{m} & \frac{(\alpha-1)^{m}-\sigma\left((\alpha-1)^{m}\right)}{\alpha-\sigma(\alpha)} \\
0 & \sigma\left((\alpha-1)^{m}\right)
\end{array}\right) \text { and } \\
x^{m}+y^{m}=\left(\begin{array}{cc}
\alpha^{m}-1 & -m \\
0 & \sigma\left(\alpha^{m}-1\right)
\end{array}\right)=\left(\begin{array}{cc}
\alpha^{m}-1 & 0 \\
0 & \sigma\left(\alpha^{m}-1\right)
\end{array}\right) .
\end{gathered}
$$

Equating these, we obtain $\alpha^{m}-1=(\alpha-1)^{m}=\sigma\left((\alpha-1)^{m}\right)=\sigma\left(\alpha^{m}-1\right)=\sigma\left(\alpha^{m}\right)-1$, where $\sigma\left(\alpha^{m}\right)=\alpha^{m}$. Thus α^{m} is in the fixed field $G F(q)$ and so $\alpha^{m(q-1)}=1$. But now p, being the multiplicative order of α, must divide $m(q-1)$, and since p does not divide $q-1, p$ must divide m. Therefore $(\alpha-1)^{m}=\alpha^{m}-1=1-1=0$ and so $\alpha=1$, a contradiction which completes the proof of the theorem.

In closing we point out that there are examples [6] of noncommutative rings with unity satisfying $(x+y)^{4 k}=x^{4 k}+y^{4 k}$ for all x, y and any positive integer k, so for even m the condition $m \equiv 2(\bmod 4)$ is essential in the above theorem. As for odd m, Yen also gave an example [6] of a noncommutative ring with unity of odd prime characteristic p satisfying $(x+y)^{p^{k}}=x^{p^{k}}+y^{p^{k}}$ for all x, y and any positive integer k and also showed in [5] that commutativity is achieved for fixed odd m provided that for every prime p dividing m we have $m=p^{i} n$ where $n>1, p$ does not divide n, and $p-1$ does not divide $n-1$. It is not clear at this point whether making this further assumption on variable odd $m(x, y)$ will yield commutativity, so this question remains open.

References

[1] I. N. Herstein, "Power maps in rings," Mich. Math. J., 8 (1961), 29-32.
[2] I. N. Herstein, Noncommutative Rings, Carus Math. Monograph No.15, Math. Assoc. Amer., Wiley, 1968.
[3] N. Jacobson, "Structure theory for algebraic algebras of bounded degree," Ann. Math., 46 (1947), 695-707.
[4] W. Streb, "Zur Struktur nichtcommutativer Ringe," Math. J. Okayama Univ., 31 (1989), 135-140.
[5] C. T. Yen, "On a theorem of Herstein," Tamkang J. Math., 21 (1990), 123-130.
[6] C. T. Yen, "A commutativity theorem for rings," Tamkang J. Math., 13 (1982), 243-246.

Department of Mathematics and Statistics, University of Missouri-Kansas City, 5100 Rockhill Road, Kansas City, MO 64110, U.S.A.

