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ON A THEOREM OF YEN 

THOMAS P. KEZLAN 

Abstract. In [5] Yen showed that if R is an associative ring with unity and m > 1 is a fixed 
integer such that m = 2(mod 4) and (x + y)m = xm + ym for all x, y in R, then R must be 
commutative. In the present paper it is shown that commutativity is achieved even in the case 
where m is dependent on x and y. 

In [1] Berstein showed that if Risa ring in which for some fixed integer m > 1, (x+y)m = 
xm + ym for all, x, yin R, then the commutator ideal of R is nil. In [5] Yen pursued this 
further and proved, under additional assumptions on m, that if R has a unity, then R 
has not only nil commutator ideal but is in fact commutative. More precisely, if R has 
a unity, then R is commutative if either m = 2(mod 4) or m is odd and satisfies a rather 
technical condition concerning its prime divisors. The purpose of this paper is to prove 
that if R has a unity, then R is commutative when m 2(mod4) even if mis allowed to 
depend on x and y. We do not investigate the case of odd m here. 

All rings are assumed associative. The commutator ideal of R will be denoted C(R) 
and the center Z(R). 

Theorem. Let R be a ring with unity satisfying (*) given x, y in R there exists a 
positive integer m = m(x,y) = 2(mod4) such that (x + y)m = xm + ym. Then R is 
commutative. 

Proof. We shall make use of the following well-known result of Streb [4]: 
A noncommutative ring has a noncommutative factorsubring of one of the following 

types: 

( 
GF(p) GF(p) ) ( GF(p) 0 ) . . 

(a) 0 0 or GF(p) 0 where p 1s a pnme; 

(b) Mu(GF(qr)) = { ( ~ a(a) ) la,,B in GF(qr)} where a is a nontrivial automor- 

phism of GF(qr) with fixed field GF(q); 
( c) a division ring; 
( d) a simple radical domain; 
(e) a finite nilpotent subdirectly irreducible ring S such that C(S) is the heart of Sand 

SC(S) = C(S)S = (O); 
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(f) a subdirectly irreducible ring S generated by two elements of finite additive order 
such that C(S) is the heart of S, SC(S) = C(S)S = (0), and the nilpotent elements 
of S form a commutative nilpotent ideal. 

Suppose that R is a ring with unity satisfying (*) and that R is not commutative. 
Then R has a noncommutative factorsubring of one of the types (a)-(f) and of course S 
inherits (*). The proof will be achieved by showing that each type leads to a contradiction. 

First we note that if m = m(l, -1), then O = (1 - l)m = 1 + (-l)m = 2 since mis 
even, and hence the characteristic of R, and therefore of S, is 2. 

Now let x ER and m = m(x, 1). Then (x + l)m = xm + 1 implies 

(1) 

Thus every element of R, and therefore of S, satisfies an equation of the form (1) with 
m depending on x. Writing m = 2 + 4k, we have m = O in Sand (7;1') = <2+4k)p+4k) = 
(1 + 2k)(l + 4k), an odd integer. Hence (7;1') = 1 in Sand so (1) becomes 

x2 = x3 f(x) for some polynomial f with integer coefficients. (2) 

We now eliminate types (a) and (c)-(f), leaving the more difficult type (b) for last. 
Type (a)-: If x = en and y = e12, then (x + y)m = en + e12 whereas xm + ym = 

en. Thus S cannot be of type ( G~(p) G~(p) ) , and similarly it cannot be of type 

( 
GF(p) O) 
GF(p) 0 . 
Type (c): If S is a division ring, then (2) shows that S is algebraic over the finite 

subfield GF(2), whence S must be commutative by a theorem of Jacobson [3]. 
Type (d): Let xi- 0 be in S. Since xis not nilpotent, we obtain from (2) a nonzero 

idempotent e = x2(f(x))2 in Sas in [2, p.22], an impossibility in a simple radical ring. 
Type (e): Let x i- 0 be in S. Then xk = 0 i- xk-I for some k ~ 2. If k > 2, then 

from (2) we have xk-I = xk-3(x3 f(x)) = xk f(x) = O; hence k = 2, that is, x2 = 0 for 
all x E S. Now for all x, y in S we have O = ( x + y) 2 = x2 + xy + yx + y2 = xy + yx and 
hence xy = -yx = yx since S has characteristic 2. 

Type (f): If Sis nil, then we are done, as in Type(e). Hence there is a nonnilpotent 
element in S, from which we obtain as in Type (d) a nonzero idempotent e. For all x ES 
we have e(xe - ex) E SC(S) = (0), so exe = ex. Similarly exe = xe and hence e E Z(S). 
Thus the set I = { x E SJ ex = x} is an ideal of S and is nonzero since it contains e. 
Hence C(S) ~ I. But now for all x, yin S we have [x, yJ = e[x, yJ E SC(S) = (0). 

This leaves Type (b) and for this case we need the following 

Lemma. Let t and r be positive integers with r > l and let q = 2t. Then there exists 
a prime which divides qr - 1 but not q - l. 
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Proof. First we establish the result when r = 2n for n 2: 1 by induction on n. 
Suppose that n = l and that every prime dividing q2 - 1 also divides q - l. Let p be 
any prime dividing q + l; p must be odd since q is even. But p divides q2 - 1 and so 
by assumption p divides q - 1, whence p divides (q + 1) - (q ~ 1) = 2, a contradiction 
which proves the case n = l. Now assume inductively that n > l and that there is 
a prime dividing q2n-i - 1 which does not divide q - l. Clearly this prime divides 
q2n - 1 = (q2n-i - I)(q2n-i + 1), which completes the induction for the case in which r 
is a power of 2. 

Now suppose r is divisible by an odd prime p. We first show that there is a prime 
which divides qP - l but not q - l. Suppose to the contrary that every prime which 
divides qP - I also divides q - l. Writing 

qP _ l = ( q _ l) ( qP-l + qP-2 + ... + q + l), (3) 

we let p' be any prime dividing qP-I + qP-2 + · · · + q + l. Then p' divides qP - l and 
so by assumption q - l. But now p' divides qP-i - l for i = 1, 2, · · · , p - l and since 
qP-I + qP-2 + ... + q + l = (qP-1 -1) + (qP-2 -1) + ... + (q-1) + p, we see that p' must 
divide p. Since p and p' are both prime, we must have p = p' and hence pis the only prime 
dividing qP-I + qP-2 + · · · + q + l. Moreover it is clear that qP-1 + qP-2 + ... + q + l > p, 
so we may write 

qP-1 + qP-2 + ... + q + l = pc for some c 2: 2. (4) 

Let q- l = pdk where p does.not divide k. From (3) and (4) we have qP -1 = pc+dk. 
Since pd divides qP-i - l for i = 1, 2, · · · ,P - I, letting qP-i - I= pdsi, we have 

pc= (qP-l - 1) + (qP-2 - 1) + · · · + (q - 1) + p = pd(s1 + S2 +···+Sp-I)+ p. 

If d > 1, then pc-I = pd-I ( s1 + s2 + · · ·+Sp-I) + 1 with c - 1 and d - I both positive, 
a contradiction. Thus d = 1, q - l = pk and qP - 1 = pc+I k. Hence I + pc+I k = qP = 
(1 +pk)P = I:f=o (f)(pk)i, whence pc+Ik = p(pk) + (~) (pk)2 + ... + (/~

1
) (pk)P-I + (pk)P. 

Every term has p2 as a factor, so dividing by p2 yields pc-Ik = k+ (~)k2 + (~)pk3 + ... + 
(P~1)pP-3kP-I + pP-2kP, a contradiction since all terms but k are divisible by p. This 
shows that there is a prime which divides qP - 1 but not q - l. 

For the general case in which r is divisible by an odd prime p we let r = pk and 
observe that since qr - l = (qk)p - I, the preceding argument yields a prime which 
divides qr - l but not qk - 1, and clearly this prime cannot divide q-1. This proves the 
lemma. 

Getting back to Type (b), we assume that S = Mu(GF(qr)) where er has fixed field 
GF(q) and that S satisfies (*). Since S has characteristic 2, q is a power of 2. By the 
lemma there exists a prime p which divides qr - I but not q - l. Since p divides qr - 1, 
there is an element a of multiplicative order p in GF(qr), and since p does not divide 
q - l, aq-I =I= l and hence a ff_ GF(q), that is ,cr(a) =I= a. Let 

( 
a O ) ( -1 x= 0 cr(a) ,y= 0 ~I ) , m = m(x, y). Then 
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(oe-l)m-u((a:-l)m) ) 
oe-u(a:) and 

a((a - l)m) 

( 
am - 1 -m ) ( am - 1 0 ) xm+ m - - 

y - 0 a(am - 1) - 0 a(am - 1) · 

Equating these, we obtain am-1 = (a-l)m = O'((a-l)m) = O"(am-1) = a(am)-1, 
where O"(am) = am. Thus am is in the fixed field GF(q) and so am(q-l) = 1. But now 
p, being the multiplicative order of a, must divide m(q - 1), and since p does not divide 
q - 1, p must divide m. Therefore (a - l)m = am - 1 = 1 - 1 = 0 and so a = 1, a 
contradiction which completes the proof of the theorem. 

In closing we point out that there are examples [6] of noncommutative rings with 
unity satisfying (x + y)4k = x4k + y4k for all x, y and any positive integer k, so for even 
m the condition m = 2(mod4) is essential in the above theorem. As for odd m, Yen also 
gave an example [6] of a noncommutative ring with unity of odd prime characteristic p 
satisfying ( x + y )Pk = xPk + yPk for all x, y and any positive integer k and also showed 
in [5] that commutativity is achieved for fixed odd m provided that for every prime p 
dividing m we have m = pin where n > 1, p does not divide n, and p - 1 does not divide 
n - 1. It is not clear at this point whether making this further assumption on variable 
odd m(x, y) will yield commutativity, so this question remains open. 
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