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NONEXISTENCE OF POSITIVE SOLUTIONS OF 
A NONLINEAR PARTIAL DIFFERENCE EQUATION 

SHU TANG LIU AND SUI SUN CHENG 

Abstract. Necessary conditions are derived for the existence of positive solutions of a class of 
nonlinear partiai' difference equations. The technique used to derive these conditions is based on 
the nonexistence of positive roots of an associated characteristic equation. 

1. Introduction 

This paper is concerned with a class of nonlinear partial difference equations of the 
form 

k 

(um+l,n + Um,n+1)2 - u!in + LPi(m, n)u~-ui,n-Ti = 0 
i=l 

(1) 

defined form, n = 0, 1, 2, ···,where p1(m, n), · · · ,Pk(m, n) are positive functions defined 
form, n 2 0, and the "delays" a1, · · ·, ak, r1, · · ·, Tk are nonnegative integers. Since (1) 
can be written as 

k 

Um,n+l =±,I U~n - LPi(m, n)u~-ai,m-Ti - Um+l,n, 
i=l 

it is clear that given initial conditions Umn = </Jmn for each (m, n) in 

{(m,n)lm 2 -CJ,n 2 -r}"' {(m,n)lm 2 O,n 21}, 

where 
17 = max{ CJ1, · · ·, 17k}, and r = max{ r1, · · ·, Tk}, 

we may calculate a double sequence uo1; un, uo2; u21, u12, uo3; U31, u22,, u13, uo4; 
· · · successively. This double sequence may be complex valued and its terms depend on 
the sign of a square root which we choose at each step of computation. Nevertheless, a 
double sequence u = { Umn} defined for m 2 -CJ and n 2 -Twill be called a solution of 
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(1) if (1) is satisfied by u. Here we are concerned with the question as to when (1) does 
not have an eventually positive solution u = { Urnn}, i.e. Um.n > 0 for all large m and n. 

This study is motivated by [2,3] in which linear partial difference inequalities of the 
form 

Vm.+l,n +.vm.,n+l - Vm.n + p(m, n)Vm.-u,n--r ~ 0, (2) 

is investigated. An immediate connection between our nonlinear equation (1) and (2) is 
clear from rewriting (1) as 

k 

U~+l,n + u;,,,n+l - u;,_n + LPi(m, n)u;,__u;,n--r; = -2Um.+I,nUm.,n+I· (3) 
i=l 

Therefore, if u = { Umn} is an eventually positive solution of (3), then v = { u~n} will be 
an eventually positive solution of (2). 

We remark further that equation (1) may also be regarded as a discrete analog of 
partial differential equations of the form 

k 

(ux +Uy+ 2u)2 - u2 + LPi(x, y)u2(x - O"i, y - Ti)= 0. 
i=l 

Therefore, qualitative properties of (1) may yield useful information for this companion 
partial differential equation. 

We first give an example to show that eventually positive solutions may exist under 
appropriate conditions. 

Example 1. Assume either one of the nonnegative integers a and Tis not zero, that 
p > 0 and that 

(4) 

Then the equation 

( )
2 2 2 Um.+l,n + Um.,n+l - Um.n + pUm-u,n--r = 0, m, n 2: 0. (5) 

has an eventually positive solution. 

Indeed, we look for a positive solution of the form 

U _ ,m+n mn - A 

Substituting this function into (5), we obtain 

r(>.) - 4),2 - 1 + p>,-2(u+-r) = o. 

Note that r( +oo) = +oo and 

minr(>.) = (4u+-r(a + T)p)l/(u+-r+l) O" + T + l - 1 ~ 0. 
>..>0 O" + T 
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Thus, r(>.) has a positive root, which shows that our guess is valid. 
Although general conditions for the existence of eventually positive solutions of (1) 

are not clear at this point, however, we are able to find several sets of necessary conditions 
in the next section. 

In the sequel, we will adopt the convention that an empty product equals one. 

2. Nonexistence Criteria 

As we have remarked before, if u :::; { Umn} is an eventually positive solution of (3), 
then v = { u;,m} will be an eventually positive solution of (2). Thus necessary conditions 
for the existence of eventually positive solutions of (2) are also necessary conditions for 
(3). We will therefore pay attention to nonexistence criteria which are different from 
those obtained in (2,3]. We first note the following decreasing nature of an eventually 
positive solution of (1). 

Lemma 1. An eventually positive solution u = {umn} of (1) is also eventually 
decreasing with respect to both of its independent variables. 

This follows from 

{ 2 2 2 2 } max Um+l,n - Umn' um,n+l - Umn 
k 

~ u~+l,n + u~,n+l - u~n + LPi(m, n)u~_ <1"i,n--r. 
i=l 

for all large m and n. 
For the sake of convenience, we will set 

liminf Pi(m, n) = Pi, 1 ~ i ~ k, 
m,n----?OO 

and 
limsuppi(m,n) = Pi, l ~ i ~ k. 
m,n--+oo 

Theorem 1. Assume that O"i, Ti ~ 1 and that Pi > 0 for 1 ~ i ~ k. If (1) has an 
eventually positive solution, then 

k k 

4 L Pi + L pi ~ 1. 
i=l i=l 

(6) 

Proof. Assume that u = { Umn} is an eventually positive solution of (1). Let Ebe an 
arbitrary number which satisfies O < E < min{pi, · · ·, Pk}- Then there exist integers M 
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and N such that Unm > 0 and Pi(m, n) 2 Pi - c form 2 M, n 2 N and 1 :S i :S k. In 
view of (1), we have 

k 

LPi(m, n)u~-ui,n-Ti < u~n· 
i=l 

Thus by means of the decreasing nature of u, and by means of CJi, Ti 2 1 for 1 :s; i :S k, 
we see that 

k k 

u~n > LPi(m, n)u!i-1,n-1 > L(Pi - c)u!i-1,n 
i=l 

for all large m and n. Similarly, we have 
i=l 

k 

U~n > L(Pi - c)u;n,n-1 
i=l 

for all large m and n. In view of (1) again, we now see that 

k 

0 = (um+l,n + Um,n+1)
2 
- u!in + LPi(m, n)u~-O'i,m-Ti 

i=l 
k k 

> 4 L(Pi - c)u~n - u!in + LPi(m, n)u!in 
i=l i=l 

k k 

= u!in { 4 L(Pi - €) - 1 + LPi(m, n) }, 
i=l i=l 

which implies 
k k 

4 L(Pi - c) + LPi(m, n) < 1. 
i=l i=l 

By taking the superior limits on both sides of the above inequality as m, n tend to infinity, 
and then the limits as E tends to zero, we will arrive at (6). The proof is complete. 

As an example, consider the equation 

2 2 ( m 2 + 2m) ( m - 2) 2 2 ) 
( Um+l,n + Um,n+1) - Umn + .. ? 1 , ., \') Um-2,n-1 = 0 (7 

Since 

1. (m2 + 2m)(m - 2)2 
1m -1 

m,n-+oo rn2(m + 1)2 - ' 

condition (6) cannot hold. Thus (7) cannot have any eventually positive solutions. It is 
interesting to note that u = {( -1 r / m} is an "oscillating" solution of (7). 

The proof of Theorem 1 will not work if CJ= 0 or r = 0. In case CJ= 0 or T = 0 but 
one of CJ or r is not zero, we have the following result. 
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Theorem 2. Assume that max{ a1, · · ·, O"k, T1, · · ·, Tk} 2: 1. If (1) has an eventually 
positive solution, then 

k ( 1)7·+1 
LPi4'Yi 'Yi+ 'Yi ' ~ 1, 
i=l 'Yi 

where 'Yi = min{ ai, Ti} for i = l, 2, · · ·, k. 

(8) 

Proof. Assume that u = {umn} is an eventually positive solution of (1). By (1) and 
the decreasing nature of u, we see that 

( 2um+l,n+l) 2 _ l ~ ( Um+l,n + Um,n+l) 2 _ l 
Umn Umn 

k 2 k 2 
= - LPi(m, n) um-~;,n--r; ~ - LPi(m, n) um-7;,m-7;. 

i=l umn i=l Umn 

Note that 
Um-'Yi,n-"{i Um-7;,n-7; Um-7;+l,m-7i+l 

Um-7;+l,n-7i+l Um-7;+2,m-7;+2 

Um-1,m-l 
Umn 

thus, by letting 
Umn 

Wmn- 
Un+l,n+l 

we see that Wmn > 1 and 

2 k 'Yi 

(-)
2 + LPi(m,n)( II Wm-j,n-j)2 ~ 1 

Wmn i=l j=l 
(9) 

for all large m and n. Therefore, { Wmn} is bounded in view of the assumption that 
max{o-1, · · · ,ak,T1, · · · ,Tk} 2: 1. Furthermore, letting 

'W = lim inf Wmn, 
m,n---..oo 

(10) 

we see that w 2: 1, and from (9) that 

( 2 2 . ( 2 )2 -) = hmsup -- 
w m,n-->oo Wmn 

k 'Yi 

~ 1- ~ liminf {Pi(m,n)(fiwm-j,n-j)
2
} 6 m,n-->oo 

i=l j=l 
k 

~ 1 - LPi'W27;. 
i=l 

Therefore, w cannot belong to the close interval [1,2], and we may then rewrite the above 
inequality as 

k PiW2-y;+2 
<I>(w)=~ 2 ~1, w>2. 6 w -4 

i=l 
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Note that 
. w2,;+2 

mm-- 
w>2 w2 - 4 

4,;(,i + 1p;+1 
,7' 

thus 

The proof is complete. 
As an example, consider the equation 

2 2 n2 - 1 2 
(um+l,n + tlm,n+1) - Umn + (n _ 2)2 Um-2,n-1 = 0. 

Here, O" = 1, T = 2 and 

(11) 

n2 -1 
lim = 1 

m,n--+oo (n - 2)2 
Therefore, the left hand side of (8) is 16, which is greater than 1. We may now conclude 
that (11) does not have any eventually positive solutions. It is interesting to note that 
{(-1)=n} is an "oscillating" solution of (11). 

There are two variants of the above Theorem. The first one is a 1-norm type inequality 
condition [1] for the existence of an eventually positive solution of (1). 

Theorem 3. Suppose 1J = min{0"1,···,0"k,Ti,···,Tk} ~ 1. IJ(l) has an eventually 
positive solution, then 

k 

LPi ~ (~)71-( 1- 
i=l 1J 

As seen in the proof of Theorem 2, if u = { Umn} is an eventually positive solution of 
(1), then the lower limit w defined by (10) will satisfy w > 2 and 

(12) 

Thus 
k w2 - 4 w2 - 4 'f/ T/ l 
~ p· < < max - (-) -- L i - w2(71+1) - w>2 w2(r,+1) - 4 (1J + l)TT+l' 
i=l 

as required. 

We remark that in the above Theorem, the condition 'T/ ~ 1 is used in deriving the 
maximum of (w2 - 4)/w2(r,+l) over (w, oo). 

Theorem 4. Assume that max{ 0"1, · · · , O"k, T1, · · · , Tk} ~ l. If (l) has an eventually 
positive solution, then 

k 
k(II ·)1/k < ~(c- 2)<(-2)12 

. Pi _ 2(( ( , 
i=l 
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where 
1 k 

( = k L 2('yi + 1) > 2, ii= min{ l7i, ri}. 
i=l 

As seen in the proof of Theorem 2, if u = { Umn} is an eventually positive solution of 
(1), then the lower limit w defined by (10) will satisfy w > 2 and 

k ~ Piw2'Yi+2 
~ 2 < 1 
i=l w - 4 - . 

By mans of the arithmetic-geometric inequality, we then see that 

Ilk 1/k wC:- k 1/k wC:- 
1 ~ k( Pi) 2 2 k( flpi) min -- w -4 w>2 

i=l i=l 
k 

= k(Il ·)1/kf(_(_)((-2)/22( 
Pi 8 ( - 2 , 

i=l 

as required. 
As an example, let us consider the following equation 

2 2 m2 - 1 2 
(um+I,n + Um,n+l) - Umn + 2 Um n-1 = 0 

m ' 
(13) 

Here, the right hand side of the inequality condition in Theorem 3 is equal to 1/16, and 
the left hand side is 1. Thus (13) cannot have an eventually positive solution. Note that 
{(-l)nm} is an oscillating solution of (13). 

3. Dual Equation 

Consider the following equation 

k 

(um-1,n + Um,n-1)
2 
- u~n + LPi(m, n)u~+ai,n+Ti = 0 

i=l 

(14) 

defined form, n = 0, 1, 2, ... , where p1 (m, n), ... , Pk(m, n) are positive functions defined 
for m, n ~ 0, and advancements 171, ... , Clk, T1, ... , Tk are nonnegative integers. This 
equation may be regarded as a dual of the equation (1). Indeed, dual results parallel 
to those obtained in the last Section hold. We will state these results as follow. Their 
proofs, however, will not be given. 

Lemma 2. An eventually positive solution u = { Uij} of (14) is also eventually 
increasing with respect to both of its independent variables. 
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Theorem 5. Let liminfpi(m, n) = Pi for 1 ~ i ~ k. Assume that ai, Ti 2: 1 and that 
Pi > 0 for 1 ~ i ~ k. If (14} has an eventually positive solution, then 

k k 

4LPi+ Lpi ~ 1, 
i=l i=l 

where P = limsupPi(m,n) for 1 ~ i ~ k. 

Theorem 6. Assume thatmax{a1, ... ,ak,T1, ... ,Tk} 2: 1. If(14) has an eventually 
positive solution, then 

where µi = min{ O"i, Ti} for 1 :::::; i :::::; k. 

Theorem 7. Suppose rJ = min{a1, ... , O"k, T1, ... , Tk} 2: 1. If (14) has an eventually 
positive solution, then 

Theorem 8. Assume that max{a1, ... ,ak,T1, ... ,Tk} 2: 1. If (14} has an eventually 
positive solution, then 

k 
k(fI ·)1/k < ~((-2)((-2)/2 

i=l Pi - (2<" ( ' 

where 
. 1 k 
( = k L2(µi + 1) > 2, µi = min{o-i,Ti}, 1:::::; i:::::; k. 

i=l 
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