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AN ACCELERATION PROCEDURE OF REGULA FALSI METHOD 

M.A. HERNANDEZ AND M.A. SALANOVA 

Abstract. From the Regula Falsi method a family of iterative processes is defined. A family 
of accelerations is obtained, by means of a geometric procedure. From this, a family of new 
iterative processes with, at least, quadratic convergence is derived. A study of their convergence 
and optimization is done in JR and in the complex plane. All of them are better than Newton 

method. 

1. Introduction 

Regula Falsi method for solving a nonlinear equation 

f(x) = 0 (1.1) 

is well know [4]. It is given by the expression 

( ) A - Xn-1 
Xn = Xn-1 - f Xn-l J(>.) _ f(Xn-l). 

If f E c<2)([a, bl), satisfying Fourier's conditions, i.e. f(a)f(b) < 0, f' =J. 0, the sign of 
f" is constant in [a, b], and x0, >. E [a, b] such that J(>.)J"(>.) > 0 and f(xo)f"(xo) < 0, 
then the sequence {xn}, given by (1.2) converges to the unique roots of (1.1) in [a, b]. 
This procedure has linear convergence. 

In this paper, first we study the family of iterative processes, generalization of Regula 
Falsi method, given by 

(1.2) 

A - Xn-1 
Xn = Fµ(Xn-1) = Xn-1 - f(xn_i) µ - f(Xn-1 (1.3) 

where >. E [a, b] and µ is a variable real parameter. Let us note that when µ = f (>.), we 
obtain Regula Falsi method. 

We give theorems on convergence and optimization for this family and prove that 
all of these processes have linear convergence. As a consequence of these results we 

Received January 5, 1996. 
1991 Mathematics Subject Classification. 65H05, 26A51. 
Key words and phrases Nonlinear equation, Regula Falsi method, Kantorovich assumptions, 
iterative processes, error bounds. 
Supported in part by a grant of the University of La Rioja. 

67 



68 M. A. HERNANDEZ AND M. A. SALANOVA 

derive a new theorem of convergence for Regula Falsi method. :Besides, by means of an 
optimization study, we get some new iterative processes with linear convergence better 
than Regula Falsi method and with the same efficiency index [4]. 

Then, a new family of accelerations with quadratic convergence is derived using a 
geometric procedure to accelerate (1.3). As a particular case an acceleration of the 
Regula Falsi method is given. 

As these accelerations are in the form Yn = Gµ(Xn-i), they define a new family of 
iterative processes tn = Gµ(tn-i)- A Theorem of convergence and optimization for them 
is given. All of them have, at least, quadratic order of convergence and are better than 
Newton's method, as we show with an example. 

Finally we extend this family to the Complex plane and derive some convergence and 
uniqueness results. 

2. A Family of New Iterative Processes with Linear Convergence 

In this Section we find the values ofµ for which the sequence {xn}, given by (1.3), 
converges to the root of ( 1.1). 

From now, let f: [a,b] ~IR.--+ IR be a function f E c<2)([a,b]), such that f'(x) > 0, 
f"(x) 2: 0, for x E [a, b] and f(a)f(b) < 0. Let .\ E [a, b] such that f(.\) > 0. Notice 
that if f verifies Fourier's conditions and the above hypothesis are not satisfied we can 
replace f(x) by J(-x), - f(x) or - f(-x). 

Theorem 2.1. Let f and.\ like in the above conditions, x0 E (a, bl, f(xo) > 0 and 
.\ > x0. Fixed µ such that µ 2: f ( x0) + f' ( x0) ( >.. - x0) then, the sequence { Xn} given by 
( 1. 3) is decreasing to s. 

Proof. As f(x0) > 0, we obtain that F~(x) > 0 in (s, x0] since that 

F~ ( x) = ~ ( ) [ 1 - J' ( X) ,\ ~ ~ J . µ- X µ- X 

On the other hand, as 

f" ( 0) f(xo) = J(x) + J'(x)(xo - x) + -2-(xo - x)2, 

we have !" ( 0) 
11, - f(x) 2: J'(x)(.\ - x) + (xo - x)2-

2
- > J'(x)(.\ - x) 

with O E (x, xo). 
Therefore applying induction and the Mean Value Theorem, we have Xn > s for 

n E N. Besides, as 
,\ - Xn-1 < Q 

- -j(Xn-1) j( ) - Xn - Xn-1 - µ - Xn-1 

for n E N, the result holds. 
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Corollary 2.2. In the previous conditions, let 

µ1 > µ2 2:: f (xo) + !' (xo)(>.. - xo), 

{xn,d and {xn,2} the sequences given by (1.3) forµ= µ1 andµ= µ2 respectively, with 
xo = xo,1 = xo,2 < >.. and f(xo) > 0. Then, the sequence {xn,2} converges to s faster 
than {xn,1}. 

Proof. Taking into account that f (x0) > 0 we have 

1 1 
x1,2 - x1,1 = f(xo)(>.. - xo) [ f( ) - !( J < 0. µ1 - xo µ2 - xo 

Then, as Fµ
2 
is an increasing function in (s, b] we derive by induction Xn,2 < Xn,l for 

n EN. 
Observe that for µ = f (>..) we obtain Regula Falsi method. Besides the iterative 

processes of the family (1.3) have linear convergence and they converge to the root of 
(1.1) faster than Regula Falsi method forµ E [f(xo) + f'(x0)(>..- x0), J(>..)). Notice that 

J(>..) = f(xo) + J'(xo)(>.. - xo) + 1!''(0)(>.. - xo)2 

with () E (xo, >..). 
Now, we are going to apply a geometric procedure of acceleration to the family given 

by (1.3). In the same conditions.of Theorem 2.1 the sequence {xn} is decreasing to s. 
Now we get an acceleration {Yn} from {xn}. Fixedµ 2:: f(xo) + f'(xo)(>.. - xo), consider 

).. - Xn-l 
Yn = Xn-l - f(Xn-l) µn-l - f(Xn-1) (2.1) 

where the values of µn-l are obtained in the following way: µ0 = µ and for each i E N, 
µi is given by the point P = (>.., µi) E IR2, intersection of the straight lines, 

and 

( see Figure 1). Thus 
(2.2) 

The problem is that sis unknown. If we substitute in (2.2), Xi - s for its equivalent 
express10n 

Xi - S ~ f'(xi)(J... - Xi) 
Xi-·l - X· i 
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s 
Xo 

Figure 1. 

we obtain 
. _ f( ·) + !'(xi)(µ - f(xi))(>. - xi) 

µi - Xi . µ 
From ( 2. l) we derive an acceleration for { Xn} given by the expression 

f(xn-1)µ 
Yn = Gµ(Xn-1) = Xn-1 - .r,rXn_i)(µ - f(xn-1 (2.3) 

Theorem 2.3. The sequence {Yn}, given by (2.3), is an acceleration of {xn} with, 
at least, quadratic convergence. 

Proof. We can prove immediately that limn--+oo Yn 
F~ =J. 0 and G~(s) = 0 we get 

1. IYn - sl 
lffi = 0. 

n--+oo lxn - sj 

s and since 

3. A Family of New Iterative Processes of Second Order 

Let f be as in the last Section. From the accelerations (2.3) we can define a family 
of new iterative processes as follows 

f ( tn-1,µ)JL 
tn,µ = Gµ(tn-I,µ) = tn-1,µ - J'(tn-l,µ)(µ - f(tn-1,µ)). (3.1) 

where µ > 0 is a variable real parameter. In the next result we give conditions about the 
convergence of (3.1). For this, we consider the degree of logarithmic convexity of f, a 
punctual measure of the convexity, introduced in [1]. Let f : [a, b] ~ IR-+ IR be a convex, 
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twice differentiable function on an interval [ a, b] and t0 E [ a, b] such that f' ( t0) =/::. 0. The 
degree of logarithmic convexity of f at t0 is 

L (t ) = f(to)f"(to). 
f o f'(to)2 

Denote J"(c) 
U[J](c) = f'(cf 

the degree of logarithmic convexity of the function T[f](t) = J(t) - f(c) + 1 in the point 
c. Notice that Lt(c) = f(c)U[J](c). Denote m = min{U[f](t)it E [a, bl}, and consider 
to E [a, b] with f (to) > 0. 

Theorem 3.1. Ifµ 2: f ( t0) + ,! , the iterative process given by ( 3.1) for to,µ = to is 
decreasing to s. 

Proof. We derive from the hypothesis that Gµ is an increasing function in (s, b] since 
that 

G~(t) = µ2 Lt(t) - 2µf(t) - µLt (t)J(t) + j(t)2 
[µ - f (t)]2 

The induction procedure assure that the sequence { tn,µ} is bounded by s. 
On the other hand, we have 

t - t = µ f (to) > 0 
0 l,µ !'(to)(µ - f(to)) - ' 

since µ - f(to) 2: ,! > 0. In a similar way we obtain tn,µ - tn-1,µ 2: 0. Thus, { tn,µ} 
converges to u E [a, b]. Making n--+ oo in (3.1), we have f( u) = 0. As f has unique root 
in [a, bl, we conclude u = s. 

Now, we give an optimization result. 

Corollary 3.2. Under the assumptions of the last theorem, let µ1 and µ2 such that, 
f(to) + ,! :s; µ1 < µ2, to= to,1 = to,2 and {tn,1}, { tn,2} the respective sequences obtained 
by (3.1) for these values ofµ. Then, tn,1 < tn,2 for all n E N. 

Proof. As G µ is an increasing function, the proof is analogous to the one of Corollary 
2.2. 

As a consequence of the previous results, the best sequence { tn,µ} in (3.1) is obtained 
forµ= f(t0) + ,! . Furthermore, as Gµ(s) = s and G~(s) = 0 the processes (3.1) have, 
at least, quadratic convergence. 

Finally, we compare the iterative processes (3.1) with Newton method by means the 
asymptotic error constants [2). We denote 
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the Newton asymptotic error constant and 

= IG~(s)I = \ f"(s) _ f'(s)\ 
C2 2 2f'(s) µ ' 

the asymptotic error constant for the iterative processes (3.1). Then, derive C2 < C1 
sinceµ 2:: ! . Thus, all the iterative processes (3.1) converge to the root of (1.1) faster 
than Newton method. Notice that we obtain Newton method whenµ - oo. 

Now we are going to realize a practical comparative study between Newton's method 
and the family given by (3.1). For this, we consider the nonlinear equation 

xP - r = 0, for p > 1, r, x E IR, r > 0 and x 2:: 0. 

Table 1. Error bounds 
n t* - tn t* - Xn 
0 0.1448177147 0.1448177147 
1 0.0895581894 0.0651290799 
2 0.0434378457 0.0234392078 
3 0.0129149572 0.0039386555 
4 0.0013624215 -0.0001264288 
5 0.0000162942 1.336710-7 

6 2.35072 10-9 1.4954710-13 

Then, for f(x) = xP - r, and x > 0 it follows that U[f](x) = ~:; is a decreasing 
function. 

Therefore, if we consider, for example, p = 25, r = 1995 and apply the Theorem 3.1 
for [1, 1.5], x0 = 1.5 and 

µ = f(xo) + 2/m = f(l.5) + 2/U[f](l.5) = 75862.8, 
thus from (3.1) we have the sequence { Xn}· 

On the other hand, let { tn} the sequence obtained by Newton's method to the same 
equation, with t0 = x0 = 1.5. Then we have the results of the Table 1. It shows the error 
between the exact value and the respective sequences. The calculations were made with 
20 decimal places and 

t* = l.355182285290081946. 
This shows us the increment in the velocity of convergence taking into account the 

simplicity of the equation considered. 

4. Convergence Under Kantorovich Type Conditions in the Complex Plane 

Let h : 0 - C be an holomorphic function in an open convex domain O <;;;; C. For 
solving the equation 

h(z) = 0 (4.1) 
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we can use the generalization of (3.1) given by 

Zn,µ= Zn-I,µ - h'(Zn-l,µ)(µ - h(Zn-l,µ)) 
h(zn-1,µ)µ ( 4.2) 

where zo,µ E S1 and µ > 0. 
We assume throughout this Sections that 

[I] jh(zo)I :s; a, and J h'(;o,µ) J :s; b. 
[II] There exist k > 0 such that the equation 

k 2 t 
p(t) = 2t - b + a, (4.3) 

has two positive roots t* and t**(t* :s; t**). Equivalently, 2kab2 :s; 1, where the equality 
holds if and only if t* = t**. 

Let us define the scalar sequence { tn,µ} by 

p(tn-I,µ)µ 
to,µ= 0, tn,µ = Pµ(tn-1,µ) = tn-1,µ - p'(tn-1,µ)(µ - p(tn-1,µ)), ( 4.4) 

and for each µ ~ a+ f, where p(t) is the polynomial defined by (4.3). Notice that 
k = min{U[p](t)lt E [to,µ, t*]}. 

Under assumptions of Kantorovich type we are going to prove that the sequences 
{ tn,µ} and {Zn,µ}, are well defined, converge tot* and to a solution z* of ( 4.1) respectively, 
and 

jz* - Zn,µI ~ t* - tn,µ, n ~ 0. 

That is, for each µ ~ a + f, { tn,µ} is a rnajorizing sequence of {Zn,µ} [5], [3]. 
First, we give a general result on convergence of scalar sequences { tn,µ} from Theorem 

3.1. 

Lemma 4.1. Let p(t) be the polynomial defined in (4.3) with two positive roots 
t* < t**. Then, the sequences { tn,µ} given by (4.4) converge to t*. Moreover these 
sequences are increasing to t*. 

Proof. As in the Theorem 3.1, under the previous assumptions for p(t), we have that 
P~(t) ~ 0 in [to,µ, t*]. Therefore, tn,µ :s; t* for n ~ 0. Then, as 

t - t - - p(tn-1,µ)µ > 0 
n+l,µ n,µ - '(t )( _ (t )) _ , P n-1,µ µ P n-1,µ 

it follows that { tn,µ} are increasing sequences and therefore, converge. On the other 
hand, as t* is the unique root of p(t) = 0 in [O, t*], we derive that limn--+oo tn,µ = t*. 



74 M.A. HERNANDEZ AND M. A. SALANOVA 

Furthermore, the convergence of the sequences { tn,µ} has, at least, quadratic conver 
gence. Notice that if t* = t** the convergence result holds, but the sequences { tn,µ} have 
linear convergence. 

Now, we center the study in obtaining error expressions for the sequences (4.4). So, 
following Ostrowski [4], derive the following error bounds. 

Lemma 4.2. Let p(t) be polynomial defined in (4.3). We assume that p(t) has two 
positive roots t* :s; t**. Let { tn,µ} be the sequence defined by ( 4.4) 
[i] If t* < t**, denote O = /:. < 1 and d = t** - t*. Then we have 

where 
H(t) = bµ - (t** - t)(l - kbt) 

bµ - (t* - t)(l - kbt) . 
(4.5) 

[ii] If t* = t**, we have 
ao,,1,iI(o)2n-1 < t* - t < ao,µ 

- n ~ 22n' 

where 
k(t* - t)2 

iI(t) = 1 - 2µ _ k(t* - t)2. (4.6) 

Proof. Let us write an,µ = t* - tn,µ, bn,µ = t** - tn,µ, n 2: 0. Thus 

Then, by (4.4), 

2 kb2 * - an,µ [1 - n,µ ] . 
an+l,µ = t - tn+l,µ - an,µ + bn,µ 2µ - kan,µbn,µ 

(4.7) 

and similarly, 

b2 ka2 
b t** t n,µ [1 n,µ ] 
n+l,µ = - n+l,µ = a + b - 2 - ka b . n,µ n,µ µ n,µ n,µ 

If t* < t** denote w - an,µ. to obtain ' n,µ - bn,µ. 

2 2µ - kan,µ bn,µ - kb~,µ 2 
Wn+l,µ = wn,µ ">µ - ka b - ka2 = wn,µH(tn,µ) n,µ n,µ n,µ 

where His given by (4.5). Taking into account that H(t) is increasing when t E [O, t*] 
the first part follows. 
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If t* = t**, then an,µ = bn,µ. Therefore, from ( 4. 7), we deduce 

an µ ( ka~ µ ) an µ ~ a - -'- - ' - -'-H t n+l,µ - 2 l 2a - ka~ .. - 2 ( n,µ), 

where H(t) is given by (4.6). Then, as H(t) is increasing in [O, t*], by recurrence, the 
second part holds. 

Now we center the study on the sequences {zn,µ}, for µ 2:: a+ f, defined in the 
Complex plane. 

From now, we denote 

B ( zo, r) = { z E q I z - zo I < r} 

and 
B ( zo, r) = { z E q I z - zo I ~ r}. 

Lemma 4.3. Letµ 2:: a+ f and we assume (I], (II] and 
(III] If lh(z)I ~ p(t) when lz - zo,µI ~ t - to,µ < t*, 
then we have 
[i] lh(z)I ~µfor z E B(zo,µ, t*) n n. 
[ii] 1 n-~fz) I ~ µ-~(t) when lz - zo,µI ~ t - to,w 

Proof. As p(t) is a decreasing function in [O, t*], given z E B(zo,µ, t*) n O we have 
that there exist t E [O, t*] such that lz - zo,µI ~ t - to,µ < t* and we obtain 

2 2 
µ 2:: p(O) + k 2:: p(t) + k 2:: lh(z)I- 

Then the first part holds. 
To prove [ii] notice that, as lh(z)I ~µfor z E B(zo,µ, t*) n 0, we have 

Iµ - h(z)I 2:: Iµ - lh(z)II = µ - lh(z)I 2:: µ - p(t), 

when lz - zo,µI ~ t ~ t - to,µ 

Theorem 4.4. Let us assume that k 2:: I h" ( z) I for z E O and the conditions [I], (II] 
and [III] hold. Then, 
[i] The sequences { Zn,µ} given by ( 4.2) are well defined for µ 2:: a+ 2/k and n ~ 0. 
Besides, they converge to z*, solution of (4.1) in B(zo,µ, t*) n O and 

lzn+l,µ - Zn,µI 2:: tn+l,µ - tn,µ < t*, 
lz* - Zn,µI ~ t* - tn,µ- 

[ii] The solution z* is unique in B(zo,µ, lb) nn if t** < t* or in B(zo,µ, t*)nO if t** = t*. 
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[iii] Besides, we have the following error bounds If t* < t**, 

where H(t) is given by (4.5) . 
. If t* = t**, we have 

lz* - znl < ao,µ 
- 22n • 

Proof. For n 2: 0, using induction, we prove 
[in] I h'(L,µ) I s; - p'(L,µ)' 
[iin] lzn+l,µ - Zn,1.tl s; tn+l,µ - tn,µ- 

Notice that in our conditions [io] holds. Furthermore, from previous Lemma and [I], 
[II] we derive [ii0]. 

To prove [in], using [in-1] and [iin-1] we have 

lh' (zn,µ) - h' (zn-1,µ) I = , 1::·:µ h" (z )dzl 

rtn,µ 
s; }tn-l,µ p"(t)dt = p'(tn,µ) - p'(tn-1,µ), 

and therefore 

jl - h'(zn,µ) - 1 ' 
h'(zn-l,J.t) I - I h'(zn-I,µ) llh (zn-1,µ) - h' (zn,µ)I 

< -1 (p' ( ) ' p' (t ) - p'(t ) tn,µ - p (tn-l µ)] = 1 - n.µ < 1 n-1,µ ' '(t ) . P n~.l,µ 

Then, 
I h'(zn,µ) I = ll _ (l _ h'(zn,µ) ) I > p'(tn,µ) . 
h'(zn-Iµ) h'(zn-1,µ) - p'(tn-I,µ) 

So, we have 

I 
1 l=I 1 llh'(zn-1,µ)l<--l . 

h'(zn,µ) h'(zn-1,µ) h'(zn,µ) - p'(tn-1,µ) 
To prove [iin] from Lemma 4.3 and [in] we derive 

lh(zn,µ)11 µ I < _ p(tn,µ) µ = tn+l,µ - tn,µ, 
!zn+l,µ - Zn,µI s; jh'(zn,µ)I µ - h(zn,µ) - p'(tn,µ) µ - p(tn,µ) 

then, [iin] happens and { tn,µ} maJonzes {zn,µ} (see[3]). The convergence of { tn,µ} 
(Lemma 4.1) implies the convergence of { Zn,µ} to a limit z*. When n -t oo in ( 4.2), we 
derive h(z*) = 0. 

Finally, for p 2: 0, 
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and taking limits when p --+ oo, we obtain that 

To prove the uniqueness, notice that, t* is the unique fixed point of Pµ(t) in [O, t'] and 
Pµ ( t') S t', ( t* :s; t' < l /kb). The equality holds if and only if t' = t*. The result 
now, follows from the well known classical theorem on the existence and uniqueness of 
solutions of equation ( 4.1) via majorizing sequences given by Kantorovich [3]. 

Finally, [iii] follows from Lemma 4.2. 

References 

[1] M. A. Hernandez, and M. A. Salanova, " A family of Newton type iterative processes," 
Intern. J. Computer. Math., 51(1994), 205-214. 

[2] A. S. Householder, The Numerical Treatment of a Single Nonlinear Equation, Mc Graw-Hill, 
1970. 

[3] L. V. Kantorovich and G. P. Akilov, Functional Analysis, Pergamon Press, 1982. 
[4] A. M. Ostrowski, Solution of Equations in Euclidean and Banach Space, Academic Press, 

1973. 
[5] W. C. Rheinholdt, " A Unifed convergence theory for a Class of Iterative Process," SIAM 

J. Numer. Anal., 5(1968), 42-.63. 

Universidad de La Rioja, Dpto. de Matematicas y Computaci6n C/Luis de Ulloa s/n, 26004, 
Logrono, Spain. 


