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ON THE FOURTH MOMENT OF THE MAXIMUM OF PARTTAL
SUMS OF n-EXCHANGEABLE RANDOM VARIABLES
WITH APPLICATIONS

M. GHARIB

Abstract. A general formula is obtained for the fourth moment of the maximum
of partial sums of n-exchangeable random variables derived from a result of Spitzer.
The formula is applied in particular to obtain the fourth moment of the maximum of
adjusted partial sums of normal summands. This is of direct relevance to reservoir
design and the analysis of the structure of stochastic processes and time series.

I. Introduction
Let Y1,Y5,...,Y, be n-exchangeable random varibles. Define
S,="1+Ye+ ---4+Y, r=12,...,n

and M, = max(0, S1, Sa, . ..,S,) = maxi<k<a(Sy), where S = max(0, Si).
Spitzer [9] investigated aspects of the distribution of M,, and proved that the ex-
pected value of any integrable complex valued function f(M,) satisfies:

Blf(M,)] = — 3 BTGV}, (1

where 7Y is any one of the n! permutations of 1,Y3,...,Y,, T(7Y) = ZL(;) Ckea, Ye)+
and 7 = (a1)(@2)...(an(r)) is a permutation represented as a product of cycles a;
including the one-cycle and with no index contained in more than one cycle.

Using (1.1), selecting f(M,,) to be exp(¢AM,) and considering the case when Y7,Y5,

..., Y, are independent identically distributed (for the exchangeability of Y7,Y5, ..., Y,
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in this case see [4]) Spitzer derived an expression (Theorem 3.5 in [9]) relating the char-
acteristic function of M, to that of S,': from which, in turn, he deduced the first moment
of M,. Solari and Dunnage [7] showed, explicitly, that this formula for E(M,,) is also
valid for the general case of exchangeable random variables.

After that, on the basis of (1.1), and following Spitzer’s approach, Ains and Gharib
[2] and Gharib [6] derived, respetively, formulas for E(M2) and E(M3) for the general
case of exchangeable random variables.

In the present work this process is carried out one step forward by obtaining the
fourth moment E(M}) in the general case of exchangeable summands Y7, Yz,...,Y,. We
show that, for n > 4,

- +4) n—1 r E(4S+3(S +1— Sk)+ =+ 3S+2(S +1 — Sk)+2}
Z o+ ZZ — 5

B(M3) kr+1-k)

k=1 r=1 k=1
n—2 r k
E[SF (Sk41 = Se) T (Srs2 — Se41) 17
+62 2.2 kA 1—0r+1—F)

r=1 k=1 t=1

n—3 r

& E[Sf (Sta1 — Si) T (Ska2 = Ser1)t (Sria — Skqz)?]
+ZMZI;§ ST iy i s e gy v (15

Due to the fact that the problem of obtaining the exact formula of the probabil-
ity distribution of the maximum M, is of unmanageable complexity (see [3]), formula
(1.2) besides that of E(M2) and E(M}2) enables us to study the characteristics (such as
skewness and kurtosis) of the distribution of M,, for the cases of practical importance.

As a special case, let Y7,Ys,...,Y,, be n-independent standard normal variates. We
show in this case that

n—1ln-—r n—1r-1

3 (n—r)
E(M“)—— (Bn+1)+4+/2/x r/k+ —
Rt 22 w;;,/k(r %)

r=1 k=1

n—-3 r

+(@2m)2Y N Z Z[l(t +1-Dk+1-t)(r+1-k)]"Y2. (13)

r=1 k=1 t=1 I=1

In this particular case a recurrence relation (equation (3.10)) is obtained for the
moments E(M?), j =1,2... which makes possible their numerical calculations.

A second application is also given to the exchangeable random variables Y;, Y5,
., Y, defined by
Yi=X;-X, i=12,...,n

where X, X5, ..., X, are n-independent standard normal variates and nX = }:?:1 X

2. Proof of (1.2)
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Putting f(z) = z* in (1.1) we obtain

1
E(Mp) = — > E{[T(rY)}} (2.1)
Now, if a permutation 7 consists of K, cycles of length v, v = 1,2,...,n with ZZ=1 vK,
= n, then
E{[T(TY)]4} =T, + 4T + 3T3 + 674 + Ts, (2.2)
where

= Z:l {kvE(SJ“) + ko (ky, — 1)[4E[S}3(S2, — Su)*] + 3E[SF?(S2v — Su)+?]

+ ﬁkV(kV - 1)(ku - 2)E[Sj_2(52u - Su)+(531/ - S?u)+}
+ k,,(k'u - 1)(kV - 2)(kl/ - 3)E[Sj(52u - SU)+(SBU - S2v)+(S4u - S3u)+]}’ (23)

=YY {k,,kuE[S,T3(Su+u ~8,) ] +3kuky (ky — 1) E[SF?(S2, = 50) " (S2u4 = S20) ]
p#v

+ kuk, (K, — 1)(ky — 2)E[S} (S2 — Su)*(S3u — S2u) T (Ssutu — Ssu)ﬂ}, (2.4)

Iz = Z Z {k#kuE[Sj2(S“+,,—S,,)+2] +k‘,,k,,(k,, - 1)E[S;‘—(S2u ’“Su)+(su+2u “S2V)+2]
p#v
5 kvkp.(ku - 1)E[S;F(S,u+u - SV)+(S2;L+V - u+U)+]

+ ky ko (ky —1)(ku—1)E[SF (S20 — 50) (S2v 41— S20) T (S2v42u— 52u+n)+]}» (2.5)
T =3 3 3 {BkukaBISEA(Surs = S0)* (Suuer = Sva)*]

vERFEN
+ k,,k“k)‘(k,, - 1)E[Sj(5’2v - Su)+(52!/+u - S2u)+(52u+u+>\ - 52u+u)+} (2-6)

and

Ts :Z Z Z Z ka#k)\ka[Sj(SﬂJru“Su)+(5/\+y+:/" IL+U)+(SP+/\+,U-+V_S)\+#+V)+]
vERFEIFEP
(2.7)

Now, the number of permutations on n objects which when decomposed into disjoint
cycles exhibit the above structure is exactly

! [T v (&)™ (2.8)
v=1
Therefore, from (2.1), (2.2) and (2.8) we have

E(MY) =2 [ v (KT + 4T + 3T + 614 + Ts], (2.9)

v=1
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where the summation X* -extends over all n-tuples (K, Ko, ..., K,) of non-negative
integers with the property Y -, iK; = n.

Finally , from (2.3)-(2.7) and (2.9) on reordering the summations and making use
of the following set of identities, we get (1.2).

v~ (r 1) <n

ko (ky—1) - - (ki — —kv (1)1 = =0,1,2,3 (2.
Sk, (ky—1) - (k r)l;[;[luy (k) {0 P i (2.10)

Sk (ky = 1)+ (kb = Tk (ky — 1) - - (Ky — 8) ﬁ R (k1)

v=1

:{V_(TH)“_(SH) L I e r=01,25=0,1;74+s<2
0 pF v, T+ v+ (s+1)p>n, T o _(- )
2.11

S kakuk, (b — 1) (k, =) [] v (k1)
v=1

_ Apr™ )™ AN£pu#v, (r+ v+ A+u<n r=01 (2.12)

0 AFpFZv, P+ Dv+A+p>n, T ‘

St kpkakuky, [[ v (k1) =

v=1

Identities (2.10)-(2.13) can be proved using mathematical induction (see (2], [6] and [8]).

{(zf»\uv)"1 PENFpFvpEALptrSn o)
0 PEAEpEV, D+ A+pu+r>n

3. First Application to the Normal Case

We now apply formula (1.2) to the case where Y;,Ys,...,Y, are n-independent
standard normal variates. In this case, it is easy to see that:
(i) Sk ~ N(0,K). Hence,

3
E(S ) = 5K2 (3.1)

(i1) Sk, Sr+1(k < 7) have a bivariate normal distribution with zero means, variances k

and (r + 1), repectively, and correlation coefficient (k/(r + 1))!/2.

It follows that

BIS{(Sra1 ~ Si)*] = gk(r +1 k) (3.2)
and

BIS{(Sr41 = 5)¥] = ZIB(r + 1~ K)]? (33)
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iii) Sy, Sk+1, Sre2(t < k < 1) have a trivariate normal distribution with zero means and
’ + +

dispersion matrix:
t t t
t k+1 k+1

t k+1 r+2

Hence, it is easy to see that:
1
E[S}(Sk41 — Se) T (Srp2 — Sk41) ] = E(T +1-k)tk+1-8)]"Y3,  (3.4)

and
(iv) Si, St+1,Sk+2,Sr43 (I <t < k < r) have a four-variate normal distribution with
zero means and dispersion matrix

l l l l

I t+1 t+1 t+1
Il t+1 k+2 k+2
I t+1 k+2 r+43

Consequently, on integrating, we get:

E[S}(Se41 — S1)F (Sk42 — Ser1) T (Srts — Se42)T]
=(2m) M +1 -k +1—-t)(r+1-K)]/? (3.5)

Finally, on substituting from (3.1)-(3.5) into (1.2) we get, after some simple algebra,

that
n—1ln—r 3n11‘1 (TL-—’[‘)
E[m?] ~-n(3n+1 )+ 42/ DD (r/k)V? +
rzlkl 27rr2k1vk(r_k

n—-3 7 k t

+(@2m2Y N NN+ 1Dk + 1)+ 1- k)72 (3.6)

r=1 k=1 t=1 l=1

A Recurrence Relation for the moments of M,:
If we define

M} = max (Sk),
1<k<n

then it is easy to see that
M:=M, 1+ X,

OR, for a sample of size (n + 1),

M, =M+ Xoa (3.7)
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Consequently, (since X, 11 is a standard normal variate, independent of M,),

E(M;:—i—l) = E(Mn)s
E(M}2,) = E(M2) +1,

E(M;3,) = E(M}) + 3E(M,),
E(M}4)) = E(M}) +6E(M2) +3,... etc.

(3.8)

Comparing our (3.8) with (2.7) of [1], we may conclude easily that the moments of M,
in the standard normal case are, in fact, the functions M;(n + 1) defined by (2.5) in [1].
Viz.

E(M?) = Mj(n + 1), i=12,... (3.9)
Therefore E(M;) must satisfy the recurrence relation of M;(n + 1) given by (6.3) in [1].
Hence

= : . 1 =t .
E(M;) = ;@m)—”ﬁE(Mi:i) +n(j - DEM) - 3G - 1) ; E(M]™*), j 22

(3.10)
If we put 7 = 4 in (3.10) we can get (3.6) on using the results of [2] and [6] concerning,
respectively, the second and the third moments of M, in this case. The recurrence
relation (3.10) gives the ability for the numerical computations of the moments of M,.

4. Second Application to the Normal Case

LetV;=X;,-X, i=12,...,n,
where X1, Xs,..., X, are n-independent standard normal variates. For the exchange-
ability of the ¥;’s in this case see [4].
Since S, = Z::l Y; = 0, relation (1.2) remains valid but with n replaced by (n —1).
Because X1, Xs, ..., X, are independent standard normal variates, it is not difficult

to verify that:
(i) Sk is normal with mean zero and variance k(n — k)/n, and thus

B(S{*) = Slk(n ~ K)/n)? (1)
(ii) Sk, Sr+1 (k < r) have a bivariate normal distribution with zero means, variances
k(n —k)/n, and (r + 1)(n — r — 1)/n, respectively, and correlation coefficient
[k(n —r = 1)/(r + 1)(n — k)]*/2.
Hence, routine integration, gives

E[SF3(Sr41 = Sk)t] _ 3 k(n—k) [[n(n—r— 1)]1/2 g [n(n—T— 1)}112]
k(r+1-k) T2 n? k(r+1-k) k(r+1-k)
1 (n-r-1) [k(n—r—l)]1/2
2r(n+k—-r—-1'nlr+1-k)

(4.2)
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and,

E[SF*(Sry1 = 86)? _ 1

n(n —1r— 1)}1/2
k(r+1—k) "~ 27n?

k(r+1-k)
- %[k(r +1—k)(n—r—1)/n%/? (4.3)

[a(n—7 —1)+3k(r + 1 —k)] tan™" |

(iii) St, Sk+1.Sr42. (¢t < k < 7) have a trivariate normal distribution with zero means
and dispersion matrix

1 tn—1) ttn—k—1) tn —r —2)
~ltln—k-1) (k+1)n—-k—-1) (k+1)(n—7-2)
"ltn—r-2) (k+1)n-7-2) (r+2)n—r—2)

Consequently, on integrating, we get

E[Sj(5k+l - St)+(sr+2 - Sk+1)+2]
tk+1—t)(r+1—k)

=£7;[n3(n-'r~2)2]_1/2{[n(n—'r——2)+2(k+ D(r+1-k)[t(k+1—-t)(n—k—1)]"1/2

—[r+1-k)2n—k-1)/(n—t)n+t—k—1)]tk+1—1t)/(n—k—1)]"/?
—[(2n=3t)/(n = D)][(r + 1 —k)(n+k—7—t—1)/t]*/?
—[2n-3(k+1-t)/(n+t—k-1))[(r+1=-k)n+t—7r—2)/(k+1-1)/?
—[ln - 3(r +1-K)]/(Vr){tan  [n(n+t -1 —2)/(k+1—t)(r +1— k)]}/?
+tan Mn(n+k—r—t—1)/t(r +1-k)/?

— (r —tan"n(n — k — 1)/t(k + 1 - 1)]'/%)}} (4.4)

and
(iv) Si,S¢x1, Skwz, Sras, (I <t < k < r) have a four-variate normal distribution with
zero means and dispersion matrix

(n—1) n—t—1) n—k—2) {n—7r-3)
11in—-t-1) (t+)(n—-t—-1) (t+1){n—k—-2) (E+1)n—r-3)

nllin—-k-2) t+1)n—-k-2) (k+2)n—-k—-2) (k+2)(n—-r—=23)
ln-7r-3) (¢t+1)n-r-3) (k+2)(n—-r=3) (r+3)(n—-r—-23)

Hence, it is easy to see that

E[S (St41 = S1)T (Sk42 = Se41) T (Sr43 — Skt2)*] (4.5)
_(r+1—=k)n—r-23) 2n(r +1—k) /2, ,
I = [l bk - w9 Bn.L.t.k.r)].

where

nl/2
C= —4—7?2—[l(t +1-Dk+1-t)(r+1—k)(n—r—3)]"12 (4.6)
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I il il 1 (t+1) 2
L(n,1,t,k,7) —/Fo/y:x /zzyx(y-x>(2“y)e"*’[“§z(t+1_z>"”2' tri-0"

(k+2—1 \ 2 (n+k—r—t—2)
tErionri=)? Gl T k+i-tn-r-9

22] dzdydzx, (4.7)

and

Iz(n,l,t,k,r)=/:o /:/z:oyxz(y*x)(z“y)¢(“Z\/(n—kr—j;)l(;fw:a))

1. (t+1) 2 (k+2-1)
e"p[‘i[z(tu—z)xz” Gri-n¥t (k+1—t)(t+1-l)y2
(n—t-1)
(k+1-t)(n—k-2

yz + )22]] dzdydz, (4.8)

C(k+1-1)
and ¢(-) is the standard normal distribution function.
Now, the integral I>(n,l,t,k,7) has no exact value, however, using a well known
result (see [5]) concerning the function ¢(-) we get that

n—k—2)(n—r-—23)
(r+1-k)

L(n,1,t,k,7) ~ {( 1" L(n,1,t,k,7) (4.9)

1

Hence, from (4.5) and (4.9), we get

E[S} (Se+1 — S1) T (Ska2 — Ser1) T (Sras — Ska2)*]

. 1(7:_16);511_2; —3) (1 - v2m)Ii(n,1,t,k,7) (4.10)

~C

Now, using routine integration we get that

Li(n, 1t k,7)
_[l(t+1~l)(k+1—t)(n——r——3)
(n+k—1—-1)>2
W(t+1-1) /2 _rn—-r=-3)(n+t—1—2)71/2
[(n-r—B)(n—l—t—r—Z)] tan [ t+1-1) ]
l(k+1-t 1/2
(n—r—3)('n+k+l-—r—t——2)]
(n—r—3)(n+k+l—r—t—2)]1/2
k+1-1)

(t+1-1)(k+1-t) ]1/2
(n—r=3)(n+k—-r—1-1)
(n~r~3)(n+k—f—l—1)]1/2}

(t+1-0)(k+1-t)

]{(n+k-r—-1)—[(n+k—T—1)—2(k+1—t)]

- [(n+k—r—1)—2(t+1—l)][

x tan™! [

- [(n+k-—r—1)—-2l][

(4.11)

x tan™?! [
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Therefore, from (4.6), (4.10) and (4.11) we get

B[S (St41 — S0) T (Skt2 — Se41)T(Srt3 — Sey2)?]

GE+1-Dk+ 10 +1-F = (1= V2r/4n*Cn(l, .k, ),

(4.12)

where,

Cn(l,t, k,T)
_ (n—7r-23) n(n —7r — 3) 1/2
~[(n—~lc~2)(n+k-r—1)2’][l(1t+1—l)(/k+1—t)(r+1~lc)]

{(n-{-k——r—1)*[("+k“r_1)_2(k+1—t)][(n——r—l(;;nln:t“—?‘—2)]1/2

(n—r=3)n+t-1r-2)
(t+1-1)
I(k+1-1) 72 _rn—r=3)n+k+l-—1—t—2)71/2
[(n~r——3)(n+k+l-r—-t——2)] uan 1[ k+1-1) ]
t+1-0k+1-1) 1/2

~[(n‘*—k-(’._1)~21][(n—r—3)(n+k—r——l——l)]
(n—r—-3)n+k—r—1-1)71/2

t+1-Dk+1-1¢) } }
Finally, from (1.2) (with n replaced by (n — 1)), (4.1)-(4.4), and (4.12) we get

tan_l[ ]1/2—[(n+k—r—1)—2(t+1—l)]

tan™! [ (4.13)

1 n—1r-1 n—2r—1 k

E(M2) :g(n -1)2+ - SN Anlk,r) + %n-3/2 >3 Balt k)

=2 k=1 r=2 k=1 t=1

n—4 r k i

+[(1=v2m)/4an®] Y YN SN Cult k), (4.14)

r=1 k=1 t=1 I=1
where,
An(k,7) =[(n +k — 7)(8n — 9r + 6k) — 4k(r — k)][nk(n —1)/(r — k)(n + k —1)?]}/?
— 3[nr + k(4n‘—- 3r — k)] tan"[n(n — 7)/k(r — k)}/2,
(n—r—1)B,(t, k,7)
Hn(n—r—1)+2(k+1)(r—k)][t(k+1—t)(n—k—1)]~*/2
_[ (r—k)(2n—k-1) ] [t(k +1- t)]1/2_ [(2n—3t)] [(r—k)(n+k~1'~t)]1/2
(n—t)(n+t—k-1)ll(n-k-1) (n—1) t
B [(2n~—3(k+1—t)] [(r—k)(nth—r— 1)]1/2
(n+t—k—1) (E+1-1)
(n—3(r—k)) - n(n+k—r—1)71/2
- [ NG H an »[(r—k)(k+1——t)]
n(n+k—r—t)y1/2
t(r —k) ]

n(n—-lc—l)]l/2 }

={F=tan [ t(k+1—t)

+ tan~! [
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and Cn(l,t,k,r) is given by (4.13).

The following table gives for n = 5(1)15 the moments about the mean u2, p3, p4 of
M, and the moment ratios v3 = ug/,ug/z, v2 = (ua/p2) — 3, by using (4.14) and the
formulate of E(M,), E(M?) and E(M3) given, respectively, in (7], [2] and [6].

M2 M3 H4 ii! Y2

0.5270 —1.5098 5.9107 | —3.9468 | 18.2854
0.6377 —2.4470 10.5024 | —4.8056 | 22.8294
0.7473 —3.5385 16.6132 | —5.4778 | 26.7515
0.8562 —4.7702 24.2961 | —6.0210 | 30.1419
0.9647 —-6.1314 33.5894 | —6.4707 | 33.0904
10 | 1.0730 —7.6133 44.5223 | —6.8501 | 35.6732
11 | 1.1810 —9.2090 57.1181 | —7.1754 | 37.9529
12 | 1.2889 | —10.9125 71.3960 | —7.4578 | 39.9795
13 | 1.3966 | —12.7185 87.3717 | —7.7058 | 41.7930
14 | 1.5043 | —14.6227 | 105.0590 | —7.9254 | 43.4260
15 | 1.6119 | —16.6211 | 124.4695 | —8.1217 | 44.9046

© 00~ o w3

It will be seen that as n increases, the distribution of M, becomes increasingly
asymmetrical and leptokurtic.
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