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RINGS WITH A JORDAN DERIVATION WHOSE IMAGE IS 
CONTAINED IN THE NUCLEI OR COMMUTATIVE CENTER 

CHEN-TE YEN 

Abstract Let R be a nonassociative ring, N, L and G the left nucleus, 
right nucleus and m~cleus respectively. It is shown that if R is a prime 
ring with a Jordan derivation d such that d(R) <;:; G. and (d2(R), R) <;:; N or 
(d2(R), R) <;:; L then either R is associative or 2d2 = 0. Moreover. if (d(R), R) = 0 
then either R is associative and commutative. or 2d = 0. We also prove that if 
R is a prime ring with a derivation d and there exists a fixed positive integer n 
such that dn(R) <;:; G and (dn(R), R) = 0 then R is associative and dn = 0, or R 
is associative and commutati;,e, or d2n = ( (2~)! )dn = 0. This partially generalize n. 
the results of [3). We also obtain some results on prime rings with a derivation 
satisfying other hypotheses. 

1. Introduction 

Let R be a nonassociative ring. We adopt the usual notations for associators and 
commutators : (x, y, z) = (xy)z - x(yz) and (x, y) = xy - yx. We shall denote the 
left nucleus, middle nucleus, right nucleus and nucleus by N, M, L and G respectively. 
Thus N, M, L and G consists of all elements n such that (n, R, R) = 0, (R, n, R) = 0, 
(R,R,n) = 0 and (n,R,R) = (R,n,R) = (R,R,n) = 0 respectively. An additive 
mapping d from R to R is called a Jordan derivation if d(x2) = d(x)x+xd(x) holds for all 
x in R. An additive mapping d from R to R is called a derivation if d(xy) = d(x)y+xd(y) 
holds for all x, y in R. Obviously, every derivation is a Jordan derivation. The converse 
is in general not true. R is called semiprime if the only ideal of R which squares to 
zero is the zero ideal. R is called prime if the product of any two nonzero ideals of R is 
nonzero. Clearly, a prime ring is a semiprime ring. Herstein [1] proved that every Jordan 
derivation on a prime associative ring of characteristic not two is a derivation. Recently, 
Yen [3] showed the 
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Theorem 1. If R is a prime ring with a derivation d such that d(R) ~ N n L 
or d(R) ~ N n M or d(R) ~Mn L, then either R is associative or d2 = 2d = O. 

In Theorem 1, if the derivation is replaced by the Jordan derivation then what can 
we say about Rand d? In fact, we prove that if Risa prime ring with a Jordan derivation 
d such that d(R) ~ G, and (d2(R), R) ~Nor (d2(R), R) ~ L then either R is associative 
or 2d2 = 0. Moreover, if (d(R), R) = 0 then either R is associative and commutative, or 
2d = 0. We also prove that if R is a prime ring with a derivation d and there exists a 
fixed positive integer n such that dn(R) ~ G and (dn(R), R) = 0 then R is associative 
and dn = 0, or R is associative and commutative, or d2n = ( <2n~)! )dn = 0. This partially 
generalize Theorem 1. We also obtain some results on prime rings with a derivation 
satisfying some hypotheses. 

Assume that R has a Jordan derivation d. Thus we have 

d(x2) = d(x)x + xd(x) for all x in R. (1) 

2. Results 

Let R be a nonassociative ring. In every ring one may verify the Teichmiiller identity 

(wx,y,z)- (w,xy,z) + (w,x,yz) = w(x,y,z) + (w,x,y)z. 

Suppose that n EN. Then with w = n in (2) we obtain 

(nx, y, z) = n(x, y, z) for all n in N. 

Assume that m EL. Then with z =min (2) we get 

(w,x,ym) = (w,x,y)m for all min L. 

(2) 

(3) 

(4) 

As consequences of (2), (3) and ( 4), we have that N, M, L, N n M, Mn L, N n L and G 
are associative subrings of R. 

We assume that R has a Jordan derivation d which satisfies 

(*) d(R) ~ A, where A= N, or M. or L. 

Using ( *) and a linearization of (1) gives 

d(xy + yx) = d(x)y + xd(y) + d(y)x + yd(x) EA for all x, y, in R. (5) 

Then with x E d(R) in (5), and using ( *) and noting that A is an associative subring of 
R, we get 

d2(x)y + yd2(x) EA for all x, yin R. (6) 
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Definition. Let I be the associator ideal of R. I consists of the smallest ideal 
which contains all associators. 

Note that I may be characterized as all finite sums of associators and right (or left) 
multiples of associators, as a consequence of (2). Hence we have 

I= (R, R, R) + (R, R, R)R = (R, R, R) + R(R, R, R). (7) 

We assume that R satisfies 

(**) (d2(R),R) <:;;: B, where B = N, or L. 

Note that if B is a Lie ideal of R i.e., (B, R) <:;;: B, and if d2(R) <:;;: B, then we obtain 
(d2(R),R) <:;;: (B,R) <:;;: B. Assume that A= B =Nor L. Using(**), we get (d2(x),y) E 
A for all x, y in R. Combining this with (6) yields 2d2(x)y E A and 2yd2(x) E A. Thus 
we have 

2d2(R)R <:;;: A and 2Rd2(R) <:;;: A if A = B = N or L. (8) 

Applying (8), (*), (3) and (4), and with n E 2d2(R) in (3), and with m E 2d2(R) in (4) 
respectively, we obtain 

2d2(R)(R, R, R) = 0 if A= B = N and 2(R, R, R)d2(R) = 0 if A = B = L. (9) 

Combining (9) with ( *) yields 

2d2(R)((R, R, R)R) = 0 if A= B = N and 2(R(R, R, R))d2(R) = 0 if A= B = L. (10) 

Using (7), (9) and (10) , we get 

2d2(R) ·I= 0 if A= B = N and I· 2d2(R) = 0 if A= B = L. (11) 

Lemma 1. If R is a ring with a Jordan. derivation d such that d( R) <:;;: N n M 
and (d2(R), R) <:;;: N (resp. d(R) <:;;: MnL and (d2(R), R) <:;;: L), then 2d2(R)R <:;;: NnM 
and 2Rd2(R) <:;;: N n M (resp. 2d2(R)R <:;;:Mn L and 2Rd2(R) <:;;:Mn L). 

Proof. By symmetry, we only prove the lemma in case d(R) <:;;: N n M and 
(d2(R), R) ~· N. By (8), 2d2(R)R <:;;: N. Using these, (6) and (2), for all x, y, z, w ER we 
obtain O = 2(d2(x)y,z,w) = -2(yd2(x),z,w) = -2(y,d2(x)z,w). Thus (y,2d2(x)z,w) = 
O. Hence 2d2(R)R ~ M. By (6) , 2d2(x)y + 2yd2(x) EN n M. Since 2d2(x)y EM, this 
implies 2yd2(x) EM. By (8), 2yd2(x) EN, as desired. 

Lemma 2. If R is a ring with a Jordan derivation d such that d(R) <:;;: G, 
and (d2(R), R) <:;;: N or (d2(R), R) c L, then the ideal C of R generated by 2d2(R) 
is C = 2{d2(R) + d2(R)R + Rd2(R) + R · d2(R)R}. 
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Proof. By symmetry, we only prove the lemma in case d(R) ~ G and (d2(R), R) ~ 
N. Then by Lemma 1, we have 2d2(R)R ~ N n Mand 2Rd2(R) ~ N n M. We see that 
C is an additive subgroup of (R, + ). Thus we have 

2(R · d2(R)R)R = 2R(d2(R)R · R) = 2R · d2(R)(R2) ~ 2R · d2(R)R 

and 
2R(R · d2(R)R) = 2R(Rd2(R) · R) = 2(R · Rd2(R))R 

= 2(R2)d2(R) · R ~ 2Rd2(R) · R = 2R · d2(R)R. 

Hence C is an ideal of R. 

Theorem 2. If R is a prime ring with a Jordan derivation d such that 
d(R) ~ G, and (d2(R),R) ~ N or (d2(R),R) ~ L then either R is associative or 
2d2(x) = 4d(x)d(x) = 4d(:i:)d(y) + 4d(y)d(x) = 0 for all x,y in R. 

Proof. By symmetry, we only prove the theorem in case d(R) ~ G and (d2(R), R) ~ 
N. By (11), 2d2(R) ·I= 0. Using Lemma L we have 2d2(R)R ~ N n Mand 2Rd2(R) ~ 
N n M. Applying these and d(R) ~ G, we obtain that 2{d2(R) + d2(R)R + Rd2(R) + 
R · d2(R)R} · I = 0. If I= 0, then R is associative. Assume that I -1- 0. 

Thus by Lemma 2 and the primeness of R, C.J = 0 implies C = 0. Hence 2d2(R) = 0. 
Assume that x, y ER. Using this, (1) and (5), we get 

0 = 2d2(x2) = 2d(d(x)x + xd(x)) = 2d2(x)x + 4d(x)d(x) + 2xd2(x) = 4d(x)d(x). 

A linearization of this gives 4d(x)d(y) + 4d(y)d(x) = 0, as desired. 
Lemma 3. If R is a ring and (n, R) = 0, and n E N n M or n E Mn L or 

n EN n L then n E G. 

Proof. We only prove the lemma in case (n, R) = 0, and n E N n M. Then for all 
x, y in R, we have 

(xy)n = n(xy) = (nx)y = (xn)y = x(ny) = x(yn). 

as desired. 

Theorem 3. If R is a prime ring with a Jordan derivation d such that 
(d(R), R) = 0, and d(R) ~ N n M or d(R) ~Mn L or d(R) ~ N n L, then either R 
is associative and commutative, or 2d = 0. 

Proof. By Lemma 3, d(R) ~ G. Assume that R is associative. Since (d(R), R) = 0, 
for all x, yin R we have O = (d(x2), y) = 2(d(x)x, y) = 2d(x)(x, y). Thus 2d(x)R(x, y) = 
0. By the primeness of R, this implies 2d(x) = 0 or (x,y) = 0 for all x,y in R. It is well 
known that the additive group (R, +) can not be the union of two proper subgroups. 
Hence we obtain 2d(R) = 0 or R is commutative. Assume that R is not associative. 
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Using Theorem 2, we have (2d(x))2 = 0 for all x in R. Thus 2d(x)R is an ideal of Rand 
(2d(x)R)2 = 0. By the semiprimeness of R, this implies 2d(x)R = 0. Hence 2d(R)R = 0. 
Thus we see that the ideal of R generated by 2d(R) is 2d(R). By the primeness of R, 
2d(R)R = 0 implies 2d(R) = 0, as desired. 

Note that if R is commutative then by (5), 2d(xy) = 2{ d(x )y + xd(y)} for all x, y in 
R. Combining this with Theorem 3 yields the 

Corollary 1. If R is a prime ring of characteristic not two with a Jordan 
derivation d such that (d(R), R) = 0, and d(R) ~ N n M or d(R) ~ Mn L or 
d(R) ~ NnL, then dis a derivation, and either R is associative and commutative, 
or d = 0. 

In the course of the proofs of Theorems 2 and 3, we obtain the 

Corollary 2. If R is a semiprime ring with a Jordan derivation d such that 
d(R) ~ Gnl and (d2(R),R) ~Nor (d2(R),R) ~ L, then 2d2 = 0. 

Corollary 3. If R is a semiprime ring with a Jordan derivation d such that 
(d(R), R) = o and d(R) ~ G n I, then 2d = 0. 

Corollary 4. If R is a semiprime ring such that the Abelian group (R, +) 
has no elements of order 2 and with a Jordan derivation d such that (d(R), R) = O 
and d(R) ~ G n I, then d = 0. 

Recall that R is a simple ring if R is the only nonzero ideal of R. In [3], we proved 
that if R is a simple ring with a derivation d such that d(R) ~ N n L then either R is 
associative or d2 = 2d = 0. For the prime ring case, we obtain the 

Theorem 4. If R is a prime ring with a derivation d such that d(R) ~ NnM 
or d(R) ~ M n L or d(R) ~ N n L , and there exists an ideal T of R such that 
d(T) = 0, then either T = 0 or d = 0. 

Proof. By symmetry, we only prove the theorem in case d(R) ~ N n L and 
d(T) = 0. For all t E T and x E R, using d(T) = 0 we have O = d(tx) = d(t)x + 
td(x) = td(x). Thus Td(R) = 0. Because of d(R) ~ N n L. this implies T(Rd(R)) = 
(TR)d(R) ~ Td(R) = 0. Hence T(d(R) + Rd(R)) = 0. Since dis a derivation, we get 
d(R) + d(R)R = d(R) + Rd(R). By Lemma 1 of[3], or it is easy to see that d(R) + Rd(R) 
is an ideal of R. Thus by the primeness of R, T(d(R) + Rd(R)) = 0 implies T = 0 or 
d(R) + Rd(R) = 0, as desired. 

Corollary 5. If R is a prime ring with a derivation d such that d(I) = 0, 
and d(R) ~ N n M or d(R) ~ Mn L or d(R) ~ N n L, then either R is associative 
or d = 0. 

Theorem 5. If R is a prime ring with a derivation d and there exists an 
ideal T of R such that d(T) = 0, and T ~ N or T ~ L, then either T = 0 or d = 0. 
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Proof. By symmetry, we only prove the theorem in case d(T) = 0 and T ~ N. As 
in the proof of Theorem 4, we obtain that Td(R) = 0, and we see that the ideal E of R 
generated by d(R) is 

E =d(R) + d(R)R + d(R)R · R + R · d(R)R + (d(R)R · R)R 
+ R(d(R)R · R) + (R · d(R)R)R + R(R · d(R)R) + · · ·. 

Because of T <:;;: N and Td(R) = 0, we have that 
T(d(R)R · R) =, (T · d(R)R)R = (Td(R) · R)R = 0, 

T · (d(R)R · R)R = T(d(R)R · R) · R = 0, 
T(R · d(R)R) =TR· d(R)R ~ T · d(R)R = Td(R) · R = 0 

and 
T(R · (R · d(R)R)) =TR· (R · d(R)R) <:;;: T(R · d(R)R) = 0. 

Thus by induction we can show that T · E = 0. By the primeness of R, this implies T = 0 
or E = 0. Hence, either T = 0 or d = 0, as desired. 

We have a very easy consequence of Theorem 5. 

Corollary 6. If R is a prime associative ring and there exists an ideal T of 
R such that d(T) = 0, then either T = 0 or d = 0. 

Theorem 6. If R is a prime ring with a derivation d and there exists an 
ideal T of R such that T <:;;: G and d(T) <:;;: G, then R is associative, or T = 0, or 
d= 0. 

Proof. By the hypotheses, for all t E T, x E R , we have d( tx) = d( t )x + td(x) E G 
and so d(t)x E G. Thus d(T)R <:;;: G. Hence by (3), we get d(T)(R, R, R) = 0 and so 
d(T)((R, R, R)R) = 0. Thus by (7), d(T) ·I= 0. Using d(T) <:;;: G and d(T)R ~ G, we 
see that the ideal W of R generated by d(T) is 

W = d(T) + d(T)R + Rd(T) + R · d(T)R. 

Applying d(T) · I = 0, d(T) <:;;: G and d(T)R <:;;: G, we obtain W · I = 0. By the primeness 
of R, this implies W = 0 or I = 0. If I = 0, then R is associative. Assume that W = 0. 
Then d(T) = 0. By Theorem 5, we have that T = 0 or d = 0. This completes the proof 
of Theorem 6. 

Proposition. If R is a ring with a derivation d, then the associative subrings 
N, M and L of R are invariant under d, i.e., d(A) <:;;: A, where A = N or M or L. 

Proof. Assume that m EM, x, y ER. Then by the definition of d, we obtain 

(x, d(m), y) =(xd(m))y - x(d(m)y) = (d(xm) - d(x)m)y - x(d(my) - md(y)) 
=d(xm)y - d(x)(my) - xd(my) + (xm)d(y) = d((xm)y) - d(x(my)) 
=d((x, m, y)) = d(O) = 0. 
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Thus d(m) E M. Hence d(M) ~ M. The proofs of other cases are similar. 

Theorem 7. If R is a prime ring with a derivation d and there exists a fixed 
positive integer n such that dn(R) ~ G and (dn(R), R) = 0, then R is associative 
and dn = 0, or R is associative and commutative, or d2n = ( (2~)! )dn = 0. 

Proof. Note that d2n(R) ~ d2n-I(R) ~ · · · ~ dn+2(R) ~ dn+l(R) ~ dn(R) ~ G, 
or by the Proposition we have di(R) ~ G for all integers i 2'.: n. Since (dn(R), R) = O, 
we obtain (di(R), R) = 0, i 2'.: n. Assume that x, y, z E R. Using dn(R) ~ G, we get 
dn(dn(x)dn-I(y)) E G. Expanding this by Leibniz's formula, and applying di(R) ~ G, 
i 2'.: n and noting that G is an associative subring of R, we have d2n(x)dn-1(y) E G. 
Thus d2n(R)dn-1(R) ~ G. Using this and (di(R), R) = 0, i 2'.: n, and argue as above, 
we get d2n(x)dn-1(dn(y)dn-2(z)) E G and so d2n(x)(d2n-1(y)dn-2(z)) E G. Hence 
(d2n(R)d2n-1(R))dn-2(R) ~ G. Continuing in this manner, and applying di(R) ~ G 
and (di(R), R) = 0, i 2'.: n, we finally obtain 

Argue as above, we have (d2n(R)d2n-1(R) · · · dn+2(R))d(dn(x)y) ~ G and so 
(d2n(R)d2n-1(R) · · · dn+2(R))dn+I(x)y ~ G. Therefore we get 

(12) 

Using di(R) ~ G, i 2'.: n, we have 

(13) 

By (3), combining (12) with (13) yields 

(d2n(R)d2n-1(R) ... dn+I(R))(R, R, R) = 0. 
Using (13) and (14), we get 

(d2n(R)d2n-l(R) ... dn+l(R)). (R, R, R)R = 0. 

By (7), combining (14) with (15) yields 

(14) 

(15) 

(16) 

Applying (13), (di(R), R) = 0 and di(R) ~ G, i 2'.: n, we see that the ideal U of R 
generated by (d2n(R)d2n-1(R) · · · dn+l(R)) is 

U = (d2n(R)d2n-l (R) · · · dn+l (R)) + (d2n(R)d2n-I (R) · · · dn+l (R) )R. (17) 

Using (13), (16) and (17), we obtain U ·I= 0. By the primeness of R, U = 0 or I= 0. 
If I = 0, then R is associative. By Theorem 1 of [2], either dn = 0 or R is commutative. 
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Assume that U = 0. Thus we have 
(18) 

As above, we see that the ideal V of R generated by (d2n(R)d2n-1(R) ... dn+2(R)) is 

Applying di(R) ~ G and (di(R),R) = O,i 2: n, (18) and (19), we get V2 = 0. By the 
semiprimeness of R, this implies V = 0. Hence we obtain 

(20) 

Continuing in this way, we can finally show that d2n(R) = 0. Thus we get O = 
d2n(d2n-2(x)y) = (2n)d2n-1(x)d2n-l(y). Using this, (di(R), R) = 0 and di(R) ~ G, 
i 2: n, we have that (2n)d2n-1(x)R is an ideal of Rand ((2n)d2n-1(x)R)2 = 0. By the 
semiprimeness of R, this implies (2n)d2n-1(x)R = 0. Hence (2n)d2n-1(R)R = 0. Thus 
the ideal of R generated by (2n)d2n-1(R) is (2n)d2n-1(R). Therefore (2n)d2n-1(R) = 0. 
Continuing in this manner, and applying di(R) ~ G and (di(R), R) = 0, i 2: n, we finally 

(2n)! . 
obtain (2n)(2n - 1) · · · (2n - (n - l))dn(R) = 0. Thus (-1-)dn = 0. This completes n. 
the proof of Theorem 7. 

Corollary 7. If R is a prime ring with a derivation d and there exists a 
fixed positive integer n such that dn(R) ~ G and (dn(R), R) = 0, and char R does 
not divide ( (2~)!) then either R is associative and commutative, or dn = 0. 

n. . 
Corollary 8. If R is a semiprime ring with a derivation d and there exists 

a fixed positive integer n such that dn(R) ~ G n I and (dn(R),R) = 0, then d2n = 
( (2n)! )dn = O. 
n! 
Theorem 7 partially generalizes Theorem 1. 
In [4], we extended Theorem 7 to s-derivation d with sd = ds. 

References 

[l] I. N. Herstein, "Jordan derivations of prime rings," Proc. Amer. Math. Soc., 8(1957), 1104-1110. 
[2] P.H. Lee and T. K. Lee, "Note on nilpotent derivations," Proc. Amer. Math. Soc.; 98(1986), 31-32. 
(3] C. T. Yen, "Rings with a derivation whose image is contained in the nuclei," Tamkang J. Math., 

25(1994), 301-307. 
[4] C .. T. Yen, Nonassociative rings with skew derivations and rings with associators in the nuclei, 

Ph.D thesis, Taiwan University, 1995. 

Department of Mathematics, Chung Yuan University, Chung Li, Taiwan, 320, Republic of China. 


