TAMKANG JOURNAL OF MATHEMATICS
Volume 27, Number 3, Autumn 1996

RINGS WITH A JORDAN DERIVATION WHOSE IMAGE IS
CONTAINED IN THE NUCLEI OR COMMUTATIVE CENTER

CHEN-TE YEN

Abstract Let R be a nonassociative ring, N, L and G the left nucleus,
right nucleus and nucleus respectively. It is shown that if R is a prime
ring with a Jordan derivation d such that d(R) C G, and (d*(R),R) C N or
(d2(R), R) C L then either R is associative or 2d? = 0. Moreover, if (d(R), R) =0
then either R is associative and commutative, or 2d = 0. We also prove that if
R is a prime ring with a derivation d and there exists a fixed positive integer n
such that d*(R) C G and (d"(R),R) = 0 then R is associative and d™ =0, or R
is associative and commutative, or d?® = (ﬁ-zn—"!n)d"' = 0. This partially generalize
the results of [3]. We also obtain some results on prime rings with a derivation

satisfying other hypotheses.

1. Introduction

Let R be a nonassociative ring. We adopt the usual notations for associators and
commutators : (z,y,2) = (zy)z — z(yz) and (z,y) = zy — yz. We shall denote the
left nucleus, middle nucleus, right nucleus and nucleus by N,M,L and G respectively.
Thus N, M,L and G consists of all elements n such that (n,R,R) =0, (R,n,R) =0,
(R,R.n) = 0 and (n,R,R) = (R,n,R) = (R.R.n) = 0O respectively. An additive
mapping d from R to R is called a Jordan derivation if d(z?) = d(z)z+zd(z) holds for all
zin R. An additive mapping d from R to R is called a derivation if d(zy) = d(z)y+zd(y)
holds for all z,y in R. Obviously, every derivation is a Jordan derivation. The converse
is in general not true. R is called semiprime if the only ideal of R which squares to
zero is the zero ideal. R is called prime if the product of any two nonzero ideals of R is
nonzero. Clearly, a prime ring is a semiprime ring. Herstein [1] proved that every Jordan
derivation on a prime associative ring of characteristic not two is a derivation. Recently,
Yen [3] showed the
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Theorem 1. If R is a prime ring with a derivation d such that d(R) C NNnL
or d(R) C NNM or d(R) C M nNL, then either R is associative or d* = 2d = 0.

In Theorem 1, if the derivation is replaced by the Jordan derivation then what can
we say about R and d? In fact, we prove that if R is a prime ring with a Jordan derivation
d such that d(R) C G, and (d?(R), R) C N or (d*(R), R) C L then either R is associative
or 2d*> = 0. Moreover, if (d(R), R) = 0 then either R is associative and commutative, or
2d = 0. We also prove that if R is a prime ring with a derivation d and there exists a
fixed positive integer n such that d*(R) C G and (d"(R), R) = 0 then R is associative
and d™ = 0, or R is associative and commutative, or d?" = (%)—!)d" = 0. This partially
generalize Theorem 1. We also obtain some results on prime rings with a derivation
satisfying some hypotheses.

Assume that R has a Jordan derivation d. Thus we have

d(z?) = d(z)z + zd(z) for all z in R. (1)

2. Results

Let R be a nonassociative ring. In every ring one may verify the Teichmiiller identity
(wz,y,2) — (w, 2y, 2) + (w, z,y2) = w(z, 9, 2) + (W, z,9)2. (2)
Suppose that n € N. Then with w = n in (2) we obtain
(nz,y,z) = n(z,y,2) for all n in N. (3)
Assume that m € L. Then with z =m in (2) we get
(w,z,ym) = (w,z,y)m for all m in L. (4)

As consequences of (2), (3) and (4), we have that NM,LNNM,MNL,NNL and G
are associative subrings of R.
We assume that R has a Jordan derivation d which satisfies

(%) d(R) C A, where A= N, or M, or L.
Using (*) and a linearization of (1) gives
d(zy + yz) = d(z)y + zd(y) + d(y)x + yd(z) € A for all z,y, in R. (5)
Then with € d(R) in (5), and using () and noting that A is an associative subring of

R, we get
d*(z)y + yd*(x) € A for all z,y in R. (6)
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Definition. Let I be the associator ideal of R. I consists of the smallest ideal
which contains all associators.

Note that I may be characterized as all finite sums of associators and right (or left)
multiples of associators, as a consequence of (2). Hence we have

I=(R,R,R)+(R,R,R)R=(R,R,R)+ R(R,R,R). (7)
We assume that R satisfies
(%) (d*(R),R) C B, where B= N, or L.

Note that if B is a Lie ideal of R i.e., (B,R) C B, and if d*(R) C B, then we obtain
(d*(R),R) C (B,R) C B. Assume that A = B = N or L. Using (), we get (d%(z),y) €
A for all z,y in R. Combining this with (6) yields 2d?(z)y € A and 2yd®*(z) € A. Thus

we have
2d?(R)R C A and 2Rd*(R)C Aif A=B=Nor L. (8)

Applying (8), (%), (3) and (4), and with n € 2d?(R) in (3), and with m € 2d*(R) in (4)
respectively, we obtain
2d*(R)(R,R,R)=0if A=B =N and 2(R,R,R)d*(R)=0if A=B=L. (9)
Combining (9) with (%) yields
2d*(R)((R,R,R)R) =0if A= B = N and 2(R(R,R,R))d*(R) =0if A= B = L. (10)
Using (7), (9) and (10) , we get

2d?(R)-I=0if A=B=Nand I-2d*(R)=0if A=B=1L. (11)

Lemma 1. If R is a ring with a Jordan derivation d such that d(R) C NNM
and (d*(R),R) C N (resp. d(R) € MNL and (d*(R),R) C L), then 2d*(R)R C NNM
and 2Rd*(R) C NN M (resp. 2d>(R)RC M NL and 2RA*(R) C M N L).

Proof. By symmetry, we only prove the lemma in case d(R) C N N M and
(d*(R),R) C N. By (8), 2d?(R)R C N. Using these, (6) and (2), for all z,y,z,w € R we
obtain 0 = 2(d?(z)y, z,w) = —2(yd*(z), z,w) = —2(y,d?(z)z,w). Thus (y,2d*(z)z,w) =
0. Hence 2d*(R)R C M. By (6) , 2d*(z)y + 2yd?(z) € N N M. Since 2d*(z)y € M, this
implies 2yd?(z) € M. By (8), 2yd*(z) € N, as desired.

Lemma 2. If R is a ring with a Jordan derivation d such that d(R) C G,
and (d*(R),R) C N or (d*(R),R) C L, then the ideal C of R generated by 2d*(R)
is C = 2{d*(R) + d*(R)R + Rd*(R) + R - d>(R)R}.
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Proof. By symmetry, we only prove the lemma in case d(R) C G and (d*(R),R) C
N. Then by Lemma 1, we have 2d>(R)R C NN M and 2Rd*(R) C NN M. We see that
C is an additive subgroup of (R, +). Thus we have

2R - d*(R)R)R = 2R(d*(R)R - R) = 2R - d*(R)(R®) C 2R - d*(R)R

d
“ 2R(R-d*(R)R) = 2R(Rd*(R) - R) = 2(R - Rd*(R))R

= 2(R?*)d*(R) - R C 2Rd*(R)- R = 2R - d*(R)R.
Hence C is an ideal of R.

Theorem 2. If R is a prime ring with a Jordan derivation d such that
d(R) C G, and (d*(R),R) C N or (d*(R),R) C L then either R 1s associative or
2d%(z) = 4d(z)d(z) = 4d(2)d(y) + 4d(y)d(z) = O for all z,y in R.

Proof. By symmetry, we only prove the theorem in case d(R) C G and (d*(R), R) C
N. By (11), 2d*(R) - I = 0. Using Lemma 1, we have 2d*(R)R C NN M and 2Rd*(R) C
N N M. Applying these and d(R) C G, we obtain that 2{d*(R) + d*(R)R + Rd*(R) +
R-d*(R)R}-I=0.If I =0, then R is associative. Assume that I # 0.

Thus by Lemma 2 and the primeness of R, C-I = 0implies C = 0. Hence 2d%*(R) = 0.
Assume that z,y € R. Using this, (1) and (5), we get

0 = 2d%(2?) = 2d(d(z)z + zd(z)) = 2d*(z)z + 4d(z)d(z) + 22d*(z) = 4d(z)d(z).

A linearization of this gives 4d(z)d(y) + 4d(y)d(z) = 0, as desired.

Lemma 3. If R is a ring and (n,R) =0, andn € NNM orne MNL or
ne€ NNL thenneG.

Proof. We only prove the lemma in case (n,R) =0, and n € N N M. Then for all
z,y in R, we have

(zy)n = n(zy) = (nz)y = (zn)y = z(ny) = z(yn)

as desired.

Theorem 3. If R is a prime ring with a Jordan derivation d such that
(d(R),R) =0, and d(R)C NNM ord(R)CMNL ord(R)CNNL. then either R
18 associative and commutative, or 2d = 0.

Proof. By Lemma 3, d(R) C G. Assume that R is associative. Since (d(R), R) = 0,
for all z,y in R we have 0 = (d(2?),y) = 2(d(z)z,y) = 2d(z)(z,y). Thus 2d(z)R(z,y) =
0. By the primeness of R, this implies 2d(z) = 0 or (z,y) = 0 for all z,y in R. It is well
known that the additive group (R, +) can not be the union of two proper subgroups.
Hence we obtain 2d(R) = 0 or R is commutative. Assume that R is not associative.
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Using Theorem 2, we have (2d(z))? = 0 for all z in R. Thus 2d(z)R is an ideal of R and
(2d(z)R)? = 0. By the semiprimeness of R, this implies 2d(z)R = 0. Hence 2d(R)R = 0.
Thus we see that the ideal of R generated by 2d(R) is 2d(R). By the primeness of R,
2d(R)R = 0 implies 2d(R) = 0, as desired.

Note that if R is commutative then by (5), 2d(zy) = 2{d(z)y + zd(y)} for all z,y in-
R. Combining this with Theorem 3 yields the

Corollary 1. If R is a prime ring of characteristic not two with a Jordan
derivation d such that (d(R),R) = 0, and d(R) C NN M or d(R) C MnL or
d(R) C NNL, then d is a derivation , and either R 1s associative and commutative,
ord=20.

In the course of the proofs of Theorems 2 and 3, we obtain the

Corollary 2. If R is a semiprime ring with a Jordan derwation d such that
d(R) C G NI and (d*(R).R) C N or (d*(R),R) C L, then 2d* = 0.

Corollary 3. If R is a semiprime ring with a Jordan derivation d such that
(d(R),R) =0 and d(R) C GNI, then 2d =0.

Corollary 4. If R is a semiprime ring such that the Abelian group (R,+)
has no elements of order 2 and with a Jordan derivation d such that (d(R),R) = 0
and d(R) C GNI, then d =0.

Recall that R is a simple ring if R is the only nonzero ideal of R. In [3], we proved
that if R is a simple ring with a derivation d such that d(R) € N N L then either R is
associative or d? = 2d = 0. For the prime ring case, we obtain the

Theorem 4. If R is a prime ring with a derwation d such that d(R) C NNM
or d(R) C MNL or d(R) C NNL, and there exists an ideal T of R such that
d(T) =0, then either T =0 or d=0.

Proof. By symmetry, we only prove the theorem in case d(R) € N N L and
d(T) = 0. Forallt € T and z € R, using d(T') = 0 we have 0 = d(tz) = d(t)z +
td(z) = td(z). Thus Td(R) = 0. Because of d(R) C N N L. this implies T(Rd(R)) =
(TR)d(R) C Td(R) = 0. Hence T(d(R) + Rd(R)) = 0. Since d is a derivation , we get
d(R)+d(R)R = d(R) + Rd(R). By Lemma 1 of [3], or it is easy to see that d(R) + Rd(R)
is an ideal of R. Thus by the primeness of R, T(d(R) + Rd(R)) = 0 implies 7" = 0 or
d(R) + Rd(R) = 0, as desired.

Corollary 5. If R is a prime ring with a deriwation d such that d(I) = 0,
and d(R) C NN M or d(R) C MNnL or d(R) C NNL, then either R 1s associative
ord=0.

Theorem 5. If R is a prime ring with a derivation d and there ezists an
ideal T of R such that d(T) =0, and T C N or T C L, then either T =0 or d =0.
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Proof. By symmetry, we only prove the theorem in case d(T) =0and T'C N. As
in the proof of Theorem 4, we obtain that Td(R) = 0, and we see that the ideal E of R

generated by d(R) is
E =d(R) + d(R)R+d(R)R-R+ R-d(R)R+ (d(R)R- R)R
+ R(d(R)R-R)+ (R-d(R)R)R+ R(R-d(R)R) + ---.
Because of T C N and Td(R) = 0, we have that
T(d(R)R-R)= (T -d(R)R)R= (Td(R)-R)R=0,
T -(d(R)R-R)R=T(d(R)R-R)-R =0,
T(R-d(R)R)=TR-d(R)RCT -d(R)R = Td(R) -R=0
and
T(R-(R-d(R)R))=TR-(R-d(R)R) CT(R-d(R)R) =0.
Thus by induction we can show that T-E = 0. By the primeness of R, this implies T = 0
or E = 0. Hence, either T =0 or d = 0, as desired.

We have a very easy consequence of Theorem 5.

Corollary 6. If R is a prime associative ring and there ezxists an ideal T of
R such that d(T') = 0, then either T =0 or d =0.

Theorem 6. If R is a prime ring with a derivation d and there exists an
ideal T of R such that T C G and d(T) C G, then R is assoctative, or T =0, or
d=0.

Proof. By the hypotheses, for allt € T,z € R, we have d(tz) = d(t)z + td(z) € G
and so d(t)r € G. Thus d(T)R C G. Hence by (3), we get d(T)(R,R,R) = 0 and so
d(T)((R,R,R)R) = 0. Thus by (7), d(T)-I = 0. Using d(T') € G and d(T)R C G, we
see that the ideal W of R generated by d(T') is

W = d(T) + d(T)R + Rd(T) + R - d(T)R.

Applying d(T)-I =0, d(T) C G and d(T)R C G, we obtain W -1 = 0. By the primeness
of R, this implies W = 0 or I = 0. If I = 0, then R is associative. Assume that W = 0.
Then d(T') = 0. By Theorem 5, we have that 7" = 0 or d = 0. This completes the proof
of Theorem 6.

Proposition. If R is a ring with a derivation d, then the associative subrings
N,M and L of R are invariant under d, i.e., d(A) C A, where A= N or M or L.

Proof. Assume that m € M, z,y € R. Then by the definition of d, we obtain

(z,d(m),y) =(zd(m))y — z(d(m)y) = (d(zm) — d(z)m)y — z(d(my) — md(y))
=d(zm)y — d(z)(my) — zd(my) + (zm)d(y) = d((zm)y) — d(z(my))
=d((z,m,y)) =’d(0) =0
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Thus d(m) € M. Hence d(M) C M. The proofs of other cases are similar.

Theorem 7. If R is a prime ring with a derivation d and there exists a fized
positive integer n such that d*(R) C G and (d"(R),R) = 0, then R is associative
and d™ =0, or R ts associative and commutative, or d°™ = (%’?—’)dn =0.

Proof. Note that d**(R) C d>*"}(R) C --- C d"*?(R) C d"*!(R) C d™(R) C G,
or by the Proposition we have d*(R) C G for all integers i > n. Since (d*(R),R) = 0,
we obtain (d*(R),R) = 0, i > n. Assume that z,y,z € R. Using d*(R) C G, we get
d™(d™(z)d""'(y)) € G. Expanding this by Leibniz’s formula , and applying d*(R) C G,
¢ > n and noting that G is an associative subring of R, we have d*"(z)d""!(y) € G.
Thus d?>*(R)d"~*(R) C G. Using this and (d*(R),R) = 0, i > n, and argue as above,
we get d®™(z)d""1(d"(y)d"2(z)) € G and so d*"(z)(d*" (y)d"%(z)) € G. Hence
(d*™(R)d**~*(R))d"~%(R) C G. Continuing in this manner, and applying d‘(R) C G
and (d*(R),R) =0, i > n, we finally obtain

(d*(R)d**'(R)---d"**(R))d(R) C G.

Argue as above, we have (d**(R)d®>"!(R)---d"*t%(R))d(d"(z)y) € G and so
(d®(R)d®>"1(R)---d"t?(R))d"t!(z)y C G. Therefore we get

(d*™(R)d**Y(R)---d"*'(R))R C G. (12)
Using d*(R) C G, i > n, we have
(d**(R)d>~*(R)---d"*'(R)) C G. (13)
By (3), combining (12) with (13) yields
(d®**(R)d®>"Y(R)---d"*'(R))(R.R,R) = 0. (14)
Using (13) and (14), we get
(d**(R)d**~Y(R)---d"*'(R)) - (R,R,R)R = 0. (15)
By (7), combining (14) with (15) yields
(d**(R)d*™ Y(R)---d™**(R))- I = 0. (16)

Applying (13), (d*(R),R) = 0 and d*(R) C G,i > n, we see that the ideal U of R
generated by (d*"(R)d?>"~'(R)---d"*'(R)) is

U= (@ (R)d* " (R) - d"*(R)) + (®*(R)d>* " (R) .- " (R)R.  (17)

Using (13), (16) and (17), we obtain U - I = 0. By the primeness of R, U =0 or [ = 0.
If I =0, then R is associative. By Theorem 1 of [2], either d® = 0 or R is commutative.



208 CHEN-TE YEN
Assume that U = 0. Thus we have
d?™(R)d**Y(R)---d"*?(R)d"*'(R) = 0. (18)
As above, we see that the ideal V (;f R generated by (d*"(R)d*"~!}(R)---d"*?(R)) is
V = (@®(R)d®*(R)---d"*}(R)) + (d®"(R)>*'(R)---d"**(R))R.  (19)

Applying d*(R) C G and (d*(R),R) = 0,5 > n, (18) and (19), we get V? = 0. By the
semiprimeness of R, this implies V = 0. Hence we obtain

&"(R)d**Y(R)---d"**(R) = 0. (20)

Continuing in this way, we can finally show that d>*(R) = 0. Thus we get 0 =
a2 (d2"2(z)y) = (2n)d?*~(z)d*>"~'(y). Using this, (d*(R),R) = 0 and d*(R) C G,
i > n, we have that (2n)d*™~!(z)R is an ideal of R and ((2n)d®>"~'(z)R)?> = 0. By the
semiprimeness of R, this implies (2n)d**~*(z)R = 0. Hence (2n)d*"~'(R)R = 0. Thus
the ideal of R generated by (2n)d?"~!(R) is (2n)d?>"~!(R). Therefore (2n)d*"~!(R) = 0.
Continuing in this manner, and applying d*(R) C G and (d*(R), R) = 0,1 > n, we finally

1
obtain (2n)(2n —1)---(2n — (n — 1))d™(R) = 0. Thus ((Z—T:L'll)d’l = 0. This completes

the proof of Theorem 7.

Corollary 7. If R is a prime ring with a derivation d and there exists a
fized positive integer n such that d*(R) C G and (d"(R),R) =0, and char R does
. (2n)!
not divide (~—
n!
Corollary 8. If R is a semiprime ring with a derivation d and there exists
a fized positive integer n such that d*(R) C GN1I and (d*(R),R) =0, then d*" =
(2n)t\ o _
Theorem 7 partially generalizes Theorem 1.
In [4], we extended Theorem 7 to s-derivation d with sd = ds.

) then either R is associative and commutative, or d* = 0.
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