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PRIMARY ELEMENTS AND PRIME POWER ELEMENTS 
IN MULTIPLICATIVE LATTICES 

C. JAYARAM AND E.W. JOHNSON 

Throughout, we assume that L is a C-lattice. For any prime element p of L, LP 
denotes the localization at {x E Clx 1. p}, where C is a multiplicative closed subset of 
compact elements of L which generates L under joint. For details see (7]. 

We shall begin with the following definitions. 

Definition 1. L is said to satisfy the conditon (a) if every primary element is a 
power of its radical. 

Definition 2. Lis said to satisfy the condition (8) if every element is a finite meet 
of prime power elements. 

Let R be a commutative ring with identity. If every primary ideal of R is a power 
of its radical, then L(R) ( the lattice of ideals of R) is an r-lattice satisfying the conditon 
(a). If every ideal of R is a finite intersection of prime power ideals, then L(R) is an 
r-lattice whcih satisfies the condition (8). If Lis a principally generated M-lattice (for 
definition see (6]), then L satisfies the condition (a) (see Lemma 4.4 of [2]). If L is a 
principal element lattice, then L satisfies the condition (8) (see Theorem 5 of (8]). 

Craig A. Wood, H. S. Butts and R. W. Gilmer have studied these conditions in the 
case of commutative rings (see [3] and (4]). 

We need some more definitions to prove the main results. 

Defintion 3. A prime element p of L is said to be an a-prime if every primary 
element q :$ p, is a power of its radical. 

Definition 4. A prime element p of L is called a weak 8-prime if every element 
a :$ p is a finite meet of prime power elements. 

Definition 5. A prime element p of L is called a 8-prime if every element a :$ p 
is a finite meet of powers of a-prime elements. 
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Note that L satisfies the condition (a) if and only if every prime is an a-prime. 
Obviously, every «5-prime element is a weak «5-prime element. 

We prove some lemmas that we need. 

Lemma 1. If p is a weak 8-prime element, then p is an a-prime element. 

Proof. The proof of the lemma is similar to the proof of Theorem 8 of [3]. 

Lemma 2. The following statements on L are equivalent: 
(i) L satisfies the conditon ( 8). 
(ii) Every prime element of L is a weak 8-prime element. 
(iii) Every prime element is a 8-prime element 

Proof. (i) <=>(ii) directly follows from the defintions and (iii) =} (ii) is obvious. (ii) 
=} (iii) follows from Lemma 1. 

If {Pa} is the collection of prime elements minimal over a, then by the isolated 
primary component of a belonging to Pa. (or the isolated Pa.-primary component of a) we 
mean the meet /\qa. of all Pa.-primary elements which contain a. 

Note that in L , every finite product of compact elements is compact. Therefore if 
a s p and p is a prime element, then p is a minimal prime over a if and only if for any 
compact element x E L, x s p implies there exists a compact element y 1:. p such that 
xny s a for some positive integer n (see Lemma 3.5 of [2]). Further if p is a minimal 
prime over a, then the isolated p-primary component of a is a p-primary element (see 
Lemma 3.8 of [2]). 

Lemma 3. Let p be a minimal prime over a (a,p E L) and let q be the 
isolated p-primary component of a. Then 

q = V { x E Clxy S a, y 1:. p for some y E C} = ap 

Proof. The proof of the lemma is straightforward and hence is omitted. 

Lemma 4. Let p be a prime element of L. For any n E z+. let p(n) = V { x E 
C I xy s pn, y 1:. p for some y E C}. Then p(n) is the isolated primary component 
of pn. 

Proof. The proof of the lemma follows from Lemma 3. 

For each n E z+, p(n) is called the nth symbolic power of p. Note that p(n) = p; 
and p(n) op p(k) = p; o P! = (pnpk)p = p;+k = p(n+k). 

Lemma 5. Let p be a prime element of L and let every p-primary element 
be a power of p. If the symbolic powers of p properly descend, then for each 
n E z+, p(n) = pn. Hence each pn is p-primary. 



PRIMARY ELEMENTS AND PRIME POWER ELEMENTS IN MULTIPLICATIVE LATTICES 113 

Proof. The proof follows by induction on n. 

For each prime element p EL, Let pw = A';=1 pn and p(w) = A';=1 p(n). 

Lemma 6. Let p be a prime element of L. If p(w) is a prime element and 
if p(w) < p, then the symbolic powers of p properly descend. 

Proof. Observe that p(w) = fl OO p(n) = fl OO pn so p(w) = p(w) = ( fl OO pn) = I \n=l I \n=l p' P I \n=l p P APP; = AP p(n) . If p(n) = p(n+l) = p(n) op p(l), then p(n) = p(k) for all k ~ n, SO 
p(w) = p(n)_ Since pn S p(n) = p(w) and p(w) is a prime element, it follows that p S p(w) 
which is a contradiction. Therefore the symbolic powers of p properly descend. This 
completes the proof the lemma. 

An element a E L is said to be a strong join principal element if a is join principal 
and compact. An element b E L is called prime to a (a < 1) if whenever be S a, then 
C $ a. 

Lemma 7. Let d be a strong join principal element of L and let d be prime 
to an element b E L. Suppose p is a prime element minimal over d vb and let qi 
be the isolated p-primary component of di vb. Then q1 > q2 > q3 > · · · . 

Proof. Clearly q1 ~ q2 ~ · · ·. We show that for each i, di S Qi and di 1:. Qi+i· 

Obviously di S qi. If di S Qi+i, then by Lemma 3, diy S di+l Vb = did Vb for 
some compact element y 1:. p. Since di is prime to b, it follows that (b : di) S b. As 
y S (did Vb: di) and di is join principal, we get y S d V (b: di) S d Vb Sp which is a 
contradiction. Therefore di 1:. Qi+i and hence q1 > Q2 > q3 > · · ·. 

Theorem 1. Let p be a prime element of L and let every p-primary element 
be a power of its radical. Let d be a strong join principal element and let d be 
prime to an element b E L. If p is minimal prime over d V b, then the powers of 
p, properly descend, b S pw and pw is the meet of all p-primary elements of L. 

Proof. The proof of the theorem is simsilar to the proof of Theorem 1 of (3]. 

Theorem 2. Suppose L is generated by strong join principal elements. Let 
m be an a-prime element and let p0 be a prime element such that p0 < m. Then 
Po S mw. 

Proof. Choose any strong join principal element d such that d S m and d 1:. p0. 
Then d is prime to Po. Let p S m be a minimal prime over d V p0. Then by Theorem 1, 
p0 S pw S mw. This completes the proof of the theorem. 

Lemma 8. Suppose L is generated by strong join principal elements. Let 
p and m be prime elements such that p < m and there are no prime elements 
strictly between p and m. If every m-primary element is a power of m, then 
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/\
CX) ( k) /\CX) k 

P = k=I m = k=l m · 

Proof. We show that /\r;:'=1 m<k) :$ p. Let x be any strong join principal element 
such that x :$ /\r;:'=1 m(k) and x 1. p. Then x2 1. p, so m is a minimal prime over p V x2. 
Let q = V{Y E C I yz :$ x2 V p, z 1. m, for some z E C}. The q ism-primary, so by 
hypothesis, q = mk for some k E z+. As mk ism-primary, it follows that mk = m<k) 
and hence x :$ q. As x is compact, xa :$ x2 V p for some a 1. m. As x is join principal, 
a :$ (x2 V p : x) = x V (p : x) :$ x V p since (p : x) :$ p. Therefore a :$ p V x :$ m, a 
contradiction and hence /\~1 m(k) :$ p. The remaining part follows from Theorem 1. 

Theorem 3. Let L be generated by strong join principal elements. Let m 
be a nonminimal prime element. If m is an a-prime, then mw = /\~1 mk is a 
prime element containing each prime element properly contained in m. Further 
each mk is primary. 

Proof. If m = m2, the we are through. So assume that m2 < m. Let Y = {p E L I 
p is prime and p < m}. By hypoth-esis Y :/= 0. By Theorem 2 and by Zorn's lemma, 
Y contains a maximal element p such that p is prime, p < m and there are no prime 
elements properly between p and m. By Lemma 8, p = mw = m<w). By Theorem 2, p 
contains each prime element properly contained in m. Further by Lemma 5 and Lemma 
6, each mk is m-primary. This completes the proof of the theorem. 

As consequences, we have the following results. 

Corollary 1. Let L be generated by strong join principal elements. If L 
satisfies the condition (a), then pn(n E z+) is p-primary for every nonminimal 
prime element p of L. 

Corollary 2. Let L be generated by strong join principal elements. If L is 
a domain and if p is an a-prime, then pn is p-primary for each n E z+. 

Corollary 3. Let L be generated by strong join principal elements. If L is 
a domain and if L satisfied the condition (a), then prime power elements are 
primary. 

Lemma 9. Suppose L is generated by strong join principal elements. Let 
,/a= p and p be a 8-prime element. Then a = pn for some n E z+. 

Proof. By using Theorem 2 and by imitating the proof of Theorem 9 of (3], we 
can get the result. 

Lemma 10. Suppose L is generated by strong join principal elements. If p 
is a nonminimal 8-prime element, then p is maximal. 

Proof. Suppose pis a nonminimal 8-prime element. Then P1 < p for some prime 
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element p1 S L. Choose any strong join principal element d S p such that d 1:. p. Let 
Po S p be a minimal prime over d V p1. Note that p0 is a «5-prime and hence it is an 
a-prime. Again by Lemma 7, Po i= p5. Choose any strong join principal y S Po such 
that y f:. p5. Suppose pis nonmaximal. Then p < m for some maximal element m of 
L. Since by Theorem 3, P6 is po-primary, my i P6, so P6 < P6 V my S Po and therefore 
Jp5 V my= Po· By Lemma 9, p5Vmy = Po, soy S myVp5 and hence 1 = (myVp5: y). 
Again since y is join principal, we have 1 = mV(p5: y) S mVpo (since (p5: y) S Po)= m, 
a contradiction. Therefore p is maximal and this completes the proof of the lemma. 

For the definitons of discrete valuation lattices and special principa element lattices, 
the reader is referred to [10]. 

Lemma 11. Suppose L is principally generated. If m is a nonminimal 
8-prime element, then Lm is a one -dimensional discrete valuation lattice. 

Proof. Note that by Lemma 10, dim Lm = 1, so every element has a prime 
radical. Again as m is a 8-prime, by Lemma 9, every element of Lm is a prime power. 
Consequently Lm is totally ordered. Again by Lemma 4.8 of [1], Lm is a one-dimensional 
discrete valuation lattice. 

Lemma 12. Suppose L is principally generated. If m is a 8-prime ele­ 
ment whcih is both maximal and minimal, then Lm is a special principal element 
lattice. 

Proof. The proof of the lemma follows from Lemma 9. 

Theorem 4. Suppose L is principally generated. Then the following state- 
ments are equivalent: 
(i) L satisfies the condition ( 8). 
(ii) Every prime element is a weak 8-prime element. 
(iii) Every prime element is a 8-prime element. 
(iv) Every element is principal. 

Proof. By Lemma 2, (i), (ii), and (iii) are equivalent, (iii) =} (iv). Suppose (iii) 
holds. By Lemma 10, dim LS 1. Next we show that every prime element is weak meet 
principal. Let m be a prime element. Suppose a S m. By hypothesis, a = pf 1 I\ · · · I\ p~n 
for some prime elements Pi E L(i = 1, 2, ... , n). Without loss of generality, assume that 
p/s are distinct. 

We can also assume that Pi 1:. p1 for ii= j (1 s i,j s n). By Lemma 1, every prime 
element is an a-prime. As dim L s 1, by Theorem 3, p/s are comaximal and hence 
a = pf1 • p~2 • • • p~n. As a S m, Pi S m for some i. If Pi = m, then we are through. 
Suppose Pi < m. By Lemma 11, Pi,,. = Om and so ab = 0 for some b i m. Since m 
is maximal, it follows that a = am. This shows that every prime element is weak meet 
principal. Again note that L contains only a finite number of minimal primes and hence 
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by Theorem 1.5 of (9], Lis a principal element lattice. (iv) =} (iii) follows from Theorem 
5 of (8]. This completes the proof of the theorem. 
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