PRIMARY ELEMENTS AND PRIME POWER ELEMENTS IN MULTIPLICATIVE LATTICES

C. JAYARAM AND E. W. JOHNSON

Throughout, we assume that L is a C-lattice. For any prime element p of L, L_{p} denotes the localization at $\{x \in C \mid x \not \leq p\}$, where C is a multiplicative closed subset of compact elements of L which generates L under joint. For details see [7].

We shall begin with the following definitions.
Definition 1. L is said to satisfy the conditon (α) if every primary element is a power of its radical.

Definition 2. L is said to satisfy the condition (δ) if every element is a finite meet of prime power elements.

Let R be a commutative ring with identity. If every primary ideal of R is a power of its radical, then $L(R)$ (the lattice of ideals of R) is an r-lattice satisfying the conditon (α). If every ideal of R is a finite intersection of prime power ideals, then $L(R)$ is an r-lattice whcih satisfies the condition (δ). If L is a principally generated M-lattice (for definition see [6]), then L satisfies the condition (α) (see Lemma 4.4 of [2]). If L is a principal element lattice, then L satisfies the condition (δ) (see Theorem 5 of [8]).

Craig A. Wood, H. S. Butts and R. W. Gilmer have studied these conditions in the case of commutative rings (see [3] and [4]).

We need some more definitions to prove the main results.
Defintion 3. A prime element p of L is said to be an α-prime if every primary element $q \leq p$, is a power of its radical.

Definition 4. A prime element p of L is called a weak δ-prime if every element $a \leq p$ is a finite meet of prime power elements.

Definition 5. A prime element p of L is called a δ-prime if every element $a \leq p$ is a finite meet of powers of α-prime elements.

[^0]Note that L satisfies the condition (α) if and only if every prime is an α-prime. Obviously, every δ-prime element is a weak δ-prime element.

We prove some lemmas that we need.
Lemma 1. If p is a weak δ-prime element, then p is an α-prime element.
Proof. The proof of the lemma is similar to the proof of Theorem 8 of [3].
Lemma 2. The following statements on L are equivalent:
(i) L satisfies the conditon (δ).
(ii) Every prime element of L is a weak δ-prime element.
(iii) Every prime element is a δ-prime element

Proof. (i) \Leftrightarrow (ii) directly follows from the defintions and (iii) \Rightarrow (ii) is obvious. (ii) \Rightarrow (iii) follows from Lemma 1.

If $\left\{p_{\alpha}\right\}$ is the collection of prime elements minimal over a, then by the isolated primary component of a belonging to \dot{p}_{α} (or the isolated p_{α}-primary component of a) we mean the meet $\wedge q_{\alpha}$ of all p_{α}-primary elements which contain a.

Note that in L, every finite product of compact elements is compact. Therefore if $a \leq p$ and p is a prime element, then p is a minimal prime over a if and only if for any compact element $x \in L, x \leq p$ implies there exists a compact element $y \not 又 p$ such that $x^{n} y \leq a$ for some positive integer n (see Lemma 3.5 of [2]). Further if p is a minimal prime over a, then the isolated p-primary component of a is a p-primary element (see Lemma 3.8 of [2]).

Lemma 3. Let p be a minimal prime over $a(a, p \in L)$ and let q be the isolated p-primary component of a. Then

$$
q=\bigvee\{x \in C \mid x y \leq a, y \leq p \quad \text { for some } \quad y \in C\}=a_{p}
$$

Proof. The proof of the lemma is straightforward and hence is omitted.
Lemma 4. Let p be a prime element of L. For any $n \in \mathbb{Z}^{+}$. let $p^{(n)}=\bigvee\{x \in$ $C \mid x y \leq p^{n}, y \leq p$ for some $\left.y \in C\right\}$. Then $p^{(n)}$ is the isolated primary component of p^{n}.

Proof. The proof of the lemma follows from Lemma 3.
For each $n \in \mathbb{Z}^{+}, p^{(n)}$ is called the nth symbolic power of p. Note that $p^{(n)}=p_{p}^{n}$ and $p^{(n)} \circ_{p} p^{(k)}=p_{p}^{n} \circ p_{p}^{k}=\left(p^{n} p^{k}\right)_{p}=p_{p}^{n+k}=p^{(n+k)}$.

Lemma 5. Let p be a prime element of L and let every p-primary element be a power of p. If the symbolic powers of p properly descend, then for each $n \in \mathbb{Z}^{+}, p^{(n)}=p^{n}$. Hence each p^{n} is p-primary.

Proof. The proof follows by induction on n.
For each prime element $p \in L$, Let $p^{w}=\bigwedge_{n=1}^{\infty} p^{n}$ and $p^{(w)}=\bigwedge_{n=1}^{\infty} p^{(n)}$.
Lemma 6. Let p be a prime element of L. If $p^{(w)}$ is a prime element and if $p^{(w)}<p$, then the symbolic powers of p properly descend.

Proof. Observe that $p^{(w)}=\Lambda_{n=1}^{\infty} p^{(n)}=\bigwedge_{n=1}^{\infty} p_{p}^{n}$, so $p^{(w)}=p_{p}^{(w)}=\left(\bigwedge_{n=1}^{\infty} p_{p}^{n}\right)_{p}=$ $\Lambda_{p} p_{p}^{n}=\bigwedge_{p} p^{(n)}$. If $p^{(n)}=p^{(n+1)}=p^{(n)} \circ_{p} p^{(1)}$, then $p^{(n)}=p^{(k)}$ for all $k \geq n$, so $p^{(w)}=p^{(n)}$. Since $p^{n} \leq p^{(n)}=p^{(w)}$ and $p^{(w)}$ is a prime element, it follows that $p \leq p^{(w)}$ which is a contradiction. Therefore the symbolic powers of p properly descend. This completes the proof the lemma.

An element $a \in L$ is said to be a strong join principal element if a is join principal and compact. An element $b \in L$ is called prime to $a(a<1)$ if whenever $b c \leq a$, then $c \leq a$.

Lemma 7. Let d be a strong join principal element of L and let d be prime to an element $b \in L$. Suppose p is a prime element minimal over $d \vee b$ and let q_{i} be the isolated p-primary component of $d^{i} \vee b$. Then $q_{1}>q_{2}>q_{3}>\cdots$.

Proof. Clearly $q_{1} \geq q_{2} \geq \cdots$. We show that for each $i, d^{i} \leq q_{i}$ and $d^{i} \nless q_{i+1}$. Obviously $d^{i} \leq q_{i}$. If $d^{i} \leq q_{i+1}$, then by Lemma $3, d^{i} y \leq d^{i+1} \vee b=d^{i} d \vee b$ for some compact element $y \not \leq p$. Since d^{i} is prime to b, it follows that $\left(b: d^{i}\right) \leq b$. As $y \leq\left(d^{i} d \vee b: d^{i}\right)$ and d^{i} is join principal, we get $y \leq d \vee\left(b: d^{i}\right) \leq d \vee b \leq p$ which is a contradiction. Therefore $d^{i} \notin q_{i+1}$ and hence $q_{1}>q_{2}>q_{3}>\cdots$.

Theorem 1. Let p be a prime element of L and let every p-primary element be a power of its radical. Let d be a strong join principal element and let d be prime to an element $b \in L$. If p is minimal prime over $d \vee b$, then the powers of p, properly descend, $b \leq p^{w}$ and p^{w} is the meet of all p-primary elements of L.

Proof. The proof of the theorem is simsilar to the proof of Theorem 1 of [3].
Theorem 2. Suppose L is generated by strong join principal elements. Let m be an α-prime element and let p_{0} be a prime element such that $p_{0}<m$. Then $p_{0} \leq m^{w}$.

Proof. Choose any strong join principal element d such that $d \leq m$ and $d \leq p_{0}$. Then d is prime to p_{0}. Let $p \leq m$ be a minimal prime over $d \vee p_{0}$. Then by Theorem 1 , $p_{0} \leq p^{w} \leq m^{w}$. This completes the proof of the theorem.

Lemma 8. Suppose L is generated by strong join principal elements. Let p and m be prime elements such that $p<m$ and there are no prime elements strictly between p and m. If every m-primary element is a power of m, then
$p=\bigwedge_{k=1}^{\infty} m^{(k)}=\bigwedge_{k=1}^{\infty} m^{k}$.
Proof. We show that $\bigwedge_{k=1}^{\infty} m^{(k)} \leq p$. Let x be any strong join principal element such that $x \leq \bigwedge_{k=1}^{\infty} m^{(k)}$ and $x \leq p$. Then $x^{2} \notin p$, so m is a minimal prime over $p \vee x^{2}$. Let $q=\bigvee\left\{y \in C \mid y z \leq x^{2} \vee p, z \notin m\right.$, for some $\left.z \in C\right\}$. The q is m-primary, so by hypothesis, $q=m^{k}$ for some $k \in \mathbb{Z}^{+}$. As m^{k} is m-primary, it follows that $m^{k}=m^{(k)}$ and hence $x \leq q$. As x is compact, $x a \leq x^{2} \vee p$ for some $a \not \leq m$. As x is join principal, $a \leq\left(x^{2} \vee p: x\right)=x \vee(p: x) \leq x \vee p$ since $(p: x) \leq p$. Therefore $a \leq p \vee x \leq m$, a contradiction and hence $\bigwedge_{k=1}^{\infty} m^{(k)} \leq p$. The remaining part follows from Theorem 1.

Theorem 3. Let L be generated by strong join principal elements. Let m be a nonminimal prime element. If m is an α-prime, then $m^{w}=\bigwedge_{k=1}^{\infty} m^{k}$ is a prime element containing each prime element properly contained in m. Further each m^{k} is primary.

Proof. If $m=m^{2}$, the we are through. So assume that $m^{2}<m$. Let $\mathcal{Y}=\{p \in L \mid$ p is prime and $p<m\}$. By hypothesis $\mathcal{Y} \neq \emptyset$. By Theorem 2 and by Zorn's lemma, \mathcal{Y} contains a maximal element p such that p is prime, $p<m$ and there are no prime elements properly between p and m. By Lemma $8, p=m^{w}=m^{(w)}$. By Theorem $2, p$ contains each prime element properly contained in m. Further by Lemma 5 and Lemma 6 , each m^{k} is m-primary. This completes the proof of the theorem.

As consequences, we have the following results.
Corollary 1. Let L be generated by strong join principal elements. If L satisfies the condition (α), then $p^{n}\left(n \in \mathbb{Z}^{+}\right)$is p-primary for every nonminimal prime element p of L.

Corollary 2. Let L be generated by strong join principal elements. If L is a domain and if p is an α-prime, then p^{n} is p-primary for each $n \in \mathbb{Z}^{+}$.

Corollary 3. Let L be generated by strong join principal elements. If L is a domain and if L satisfied the condition (α), then prime power elements are primary.

Lemma 9. Suppose L is generated by strong join principal elements. Let $\sqrt{a}=p$ and p be a δ-prime element. Then $a=p^{n}$ for some $n \in \mathbb{Z}^{+}$.

Proof. By using Theorem 2 and by imitating the proof of Theorem 9 of [3], we can get the result.

Lemma 10. Suppose L is generated by strong join principal elements. If p is a nonminimal δ-prime element, then p is maximal.

Proof. Suppose p is a nonminimal δ-prime element. Then $p_{1}<p$ for some prime
element $p_{1} \leq L$. Choose any strong join principal element $d \leq p$ such that $d \not \leq p$. Let $p_{0} \leq p$ be a minimal prime over $d \vee p_{1}$. Note that p_{0} is a δ-prime and hence it is an α-prime. Again by Lemma 7, $p_{0} \neq p_{0}^{2}$. Choose any strong join principal $y \leq p_{0}$ such that $y \not \leq p_{0}^{2}$. Suppose p is nonmaximal. Then $p<m$ for some maximal element m of L. Since by Theorem $3, p_{0}^{2}$ is p_{0}-primary, $m y \not \leq p_{0}^{2}$, so $p_{0}^{2}<p_{0}^{2} \vee m y \leq p_{0}$ and therefore $\sqrt{p_{0}^{2} \vee m y}=p_{0}$. By Lemma $9, p_{0}^{2} \vee m y=p_{0}$, so $y \leq m y \vee p_{0}^{2}$ and hence $1=\left(m y \vee p_{0}^{2}: y\right)$. Again since y is join principal, we have $1=m \vee\left(p_{0}^{2}: y\right) \leq m \vee p_{0}\left(\right.$ since $\left.\left(p_{0}^{2}: y\right) \leq p_{0}\right)=m$, a contradiction. Therefore p is maximal and this completes the proof of the lemma.

For the definitons of discrete valuation lattices and special principa element lattices, the reader is referred to [10].

Lemma 11. Suppose L is principally generated. If m is a nonminimal δ-prime element, then L_{m} is a one-dimensional discrete valuation lattice.

Proof. Note that by Lemma $10, \operatorname{dim} L_{m}=1$, so every element has a prime radical. Again as m is a δ-prime, by Lemma 9 , every element of L_{m} is a prime power. Consequently L_{m} is totally ordered. Again by Lemma 4.8 of [1], L_{m} is a one-dimensional discrete valuation lattice.

Lemma 12. Suppose L is principally generated. If m is a δ-prime element whcih is both maximal and minimal, then L_{m} is a special principal element lattice.

Proof. The proof of the lemma follows from Lemma 9.
Theorem 4. Suppose L is principally generated. Then the following statements are equivalent:
(i) L satisfies the condition (δ).
(ii) Every prime element is a weak δ-prime element.
(iii) Every prime element is a δ-prime element.
(iv) Every element is principal.

Proof. By Lemma 2, (i), (ii), and (iii) are equivalent, (iii) \Rightarrow (iv). Suppose (iii) holds. By Lemma 10, $\operatorname{dim} L \leq 1$. Next we show that every prime element is weak meet principal. Let m be a prime element. Suppose $a \leq m$. By hypothesis, $a=p_{1}^{\alpha_{1}} \wedge \cdots \wedge p_{n}^{\alpha_{n}}$ for some prime elements $p_{i} \in L(i=1,2, \ldots, n)$. Without loss of generality, assume that p_{i} 's are distinct.

We can also assume that $p_{i} \notin p_{j}$ for $i \neq j(1 \leq i, j \leq n)$. By Lemma 1 , every prime element is an α-prime. As $\operatorname{dim} L \leq 1$, by Theorem 3, p_{i} 's are comaximal and hence $a=p_{1}^{\alpha_{1}} \cdot p_{2}^{\alpha_{2}} \cdots p_{n}^{\alpha_{n}}$. As $a \leq m, p_{i} \leq m$ for some i. If $p_{i}=m$, then we are through. Suppose $p_{i}<m$. By Lemma 11, $p_{i_{m}}=0_{m}$ and so $a b=0$ for some $b \not \leq m$. Since m is maximal, it follows that $a=a m$. This shows that every prime element is weak meet principal. Again note that L contains only a finite number of minimal primes and hence
by Theorem 1.5 of $[9], L$ is a principal element lattice. (iv) \Rightarrow (iii) follows from Theorem 5 of [8]. This completes the proof of the theorem.

References

[1] D. D. Anderson, "Abstract commutative ideal theorey without chain condition," Algebra Universalis, 6(1976), 131-145.
[2] D. D. Anderson, C. Jayaram and F. Alarcon, "Some results on abstract commutative ideal theory," Stu. Sci. Math. Hung. (to appear).
[3] H. S. Butts and R. W. Gilmer, "Primary ideals and prime power ideals," Canad. J. Math., (1966), 1183-1195.
[4] Craig A. Wood, "On general ZPI-rings," Pacific J. Math., 30(1969), 837-846.
[5] R. P. Dilworth, "Abstract commutative ideal theory," Pacific J. Math, 12(1962), 481-498.
[6] M. F. Janowitz, "Principal multiplicative lattices," Pacific J. Math., 33(1970), 653-656.
[7] C. Jayaram and E. W. Johnson, "Almost principal element lattices," Inter. J. Math. and Math. Sci. (to appear).
[8] E. W. Johnson and J. P. Lediaev, "Representable distributive Noether lattices," Pacific J. Math., 28(1969), 561-564.
[9] E. W. Johnson and J. A. Johnson, "P-lattices as ideal lattices and submodule lattices," Commen. Math. Univ. San. Pauli, 38(1989), 21-27.
[10] E. W. Johnson, "Selfduality and comultiplication lattices," Algeb̄ra Universalis, 26(1989), 196-201.

[^0]: Received September 20, 1994; revised October 3, 1995.

