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PRIMARY ELEMENTS AND PRIME POWER ELEMENTS
IN MULTIPLICATIVE LATTICES

C. JAYARAM AND E. W. JOHNSON

Throughout, we assume that L is a C-lattice. For any prime element p of L, L,
denotes the localization at {z € C|z £ p}, where C is a multiplicative closed subset of
compact elements of L which generates L under joint. For details see [7].

We shall begin with the following definitions.

Definition 1. L is said to satisfy the conditon () if every primary element is a
power of its radical.

Definition 2. L is said to satisfy the condition (§) if every element is a finite meet
of prime power elements.

Let R be a commutative ring with identity. If every primary ideal of R is a power
of its radical, then L(R) (the lattice of ideals of R) is an r-lattice satisfying the conditon
(a). If every ideal of R is a finite intersection of prime power ideals, then L(R) is an
r-lattice whcih satisfies the condition (6). If L is a principally generated M-lattice (for
definition see [6]), then L satisfies the condition (a) (see Lemma 4.4 of [2]). If L is a
principal element lattice, then L satisfies the condition (§) (see Theorem 5 of [8]).

Craig A. Wood, H. S. Butts and R. W. Gilmer have studied these conditions in the
case of commutative rings (see [3] and [4]).

We need some more definitions to prove the main results.

Defintion 3. A prime element p of L is said to be an a-prime if every primary
element ¢ < p, is a power of its radical.

Definition 4. A prime element p of L is called a weak §-prime if every element
a < p is a finite meet of prime power elements.

Definition 5. A prime element p of L is called a §-prime if every element a < p
is a finite meet of powers of a-prime elements.
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Note that L satisfies the condition (a) if and only if every prime is an a-prime.
Obviously, every é-prime element is a weak §-prime element.
We prove some lemmas that we need.

Lemma 1. If p is a weak §-prime element, then p 1S an a-prime element.
Proof. The proof of the lemma is similar to the proof of Theorem 8 of [3].

Lemma 2. The following statements on L are equivalent:
(i) L satisfies the conditon ().
(ii) Every prime element of L is a weak §-prime element.
(i) Fvery prime element is a 6-prime element

Proof. (i) < (ii) directly follows from the defintions and (iii) = (ii) is obvious. (ii)
= (iii) follows from Lemma 1.

If {p.} is the collection of prime elements minimal over a, then by the isolated
primary component of a belonging to p, (or the isolated p,-primary component of a) we
mean the meet Ag, of all p,-primary elements which contain a.

Note that in L , every finite product of compact elements is compact. Therefore if
a < p and p is a prime element, then p is a minimal prime over a if and only if for any
compact element z € L, z < p implies there exists a compact element y £ p such that
z™y < a for some positive integer n (see Lemma 3.5 of [2]). Further if p is a minimal
prime over a, then the isolated p-primary component of a is a p-primary element (see
Lemma 3.8 of [2]).

Lemma 3. Let p be a minimal prime over a (a,p € L) and let q be the
1solated p-primary component of a. Then

q:V{wEChvySa,ygp for some yeC}=a,

Proof. The proof of the lemma is straightforward and hence is omitted.

Lemma 4. Let p be a prime element of L. For anyn € Z*. let p™ = \/{z €
C|zy <p*y £p for some y € C}. Then p'™ is the isolated primary component

of p™.
Proof. The proof of the lemma follows from Lemma 3.

For each n € Z*, p( is called the nth symbolic power of p. Note that p(™) = p»
and p(™ Op Pk = Py °p§ = (pnpk)p = P;H-k = plesh),

Lemma 5. Let p be a prime element of L and let every p-primary element
be a power of p. If the symbolic powers of p properly descend, then for each
n € Z*, pi™) = p*. Hence each p™ is p-primary.
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Proof. The proof follows by induction on n.
For each prime element p € L, Let p* = A2 p" and p(*) = A2, (™).

Lemma 6. Let p be a prime element of L. If p'*) is a prime element and
if ) < p, then the symbolic powers of p properly descend.

Proof. Observe that p(*) = A2 p(") = A2, Py, SO P = 27( ) = = (Anta Pplp =
A7y = /\pp(”) If p(® = plntl) = p(") o, p1), then p(™ = p*) for all k > n, so
p(*) = p(") Since p™ < p(™) = p(*) and p(*) is a prime element, it follows that p < p(*)
which is a contradiction. Therefore the symbolic powers of p properly descend. This
completes the proof the lemma.

An element a € L is said to be a strong join principal element if a is join principal
and compact. An element b € L is called prime to a (a < 1) if whenever bc < a, then
c<a.

Lemma 7. Let d be a strong join principal element of L and let d be prime
to an element b € L. Suppose p is a prime element minimal over dV b and let g;
be the isolated p-primary component of & Vb. Then q; > qa > q3 > - -

Proof. Clearly g1 > g2 > ---. We show that for each i, d* < ¢; and d* £ q;y;.
Obviously d* < ¢;. If d* < ¢i41, then by Lemma 3, diy < d**! Vb = d'd v b for
some compact element y £ p. Since d' is prime to b, it follows that (b : d*) < b. As
y < (d'd Vb :d") and d* is join principal, we get y < dV (b:d*) < dV b < p which is a
contradiction. Therefore d* £ ¢;41 and hence q; > g2 > g3 > -~ -.

Theorem 1. Let p be a prime element of L and let every p-primary element
be a power of its radical. Let d be a strong join principal element and let d be
prime to an element b € L. If p is minimal prime over dV b, then the powers of
p, properly descend, b < p* and p* is the meet of all p-primary elements of L.

Proof. The proof of the theorem is simsilar to the proof of Theorem 1 of [3].

Theorem 2. Suppose L is generated by strong join principal elements. Let
m be an a-prime element and let py be a prime element such that py < m. Then
Po < m®.

Proof. Choose any strong join principal element d such that d < m and d € py.
Then d is prime to py. Let p < m be a minimal prime over d V po. Then by Theorem 1, -
po < p¥ < m". This completes the proof of the theorem.

Lemma 8. Suppose L is generated by strong join principal elements. Let
p and m be prime elements such that p < m and there are no prime elements
strictly between p and m. If every m-primary element is a power of m, then
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D= /‘\:?_—1 mk) = /\Zozl mk.

Proof. We show that Ag.; m(*¥) < p. Let = be any strong join principal element
such that z < Age, m®) and z £ p. Then z? £ p, so m is a minimal prime over p V z2.
Let g = \/{y € C | yz < 22V p,z £ m, for some z € C}. The ¢ is m-primary, so by
hypothesis, ¢ = m* for some k € Z*. As m* is m-primary, it follows that m* = m(*)
and hence z < q. As z is compact, za < 22 V p for some a £ m. As z is join principal,
a<(@®Vp:z)=zV(p:z) <zVpsince (p:z) < p. Thereforea <pvz <m,a
contradiction and hence A;_, m(*) < p. The remaining part follows from Theorem 1.

Theorem 3. Let L be generated by strong join principal elements. Let m
be a nonminimal prime element. If m is an a-prime, then m¥ = A7, m* is a
prime element containing each prime element properly contained in m. Further

each m* is primary.

Proof. If m = m?, the we are through. So assume that m? <m. Let Y = {p€ L |
p is prime and p < m}. By hypothesis J # §. By Theorem 2 and by Zorn’s lemma,
Y contains a maximal element p such that p is prime, p < m and there are no prime
elements properly between p and m. By Lemma 8, p = m¥ = m(®). By Theorem 2, p
contains each prime element properly contained in m. Further by Lemma 5 and Lemma
6, each m* is m-primary. This completes the proof of the theorem.

As consequences, we have the following results.

Corollary 1. Let L be generated by strong join principal elements. If L
satisfies the condition (o), then p™(n € Z*) is p-primary for every nonminimal
prime element p of L.

Corollary 2. Let L be generated by strong join principal elements. If L is
a domain and if p is an a-prime, then p™ is p-primary for each n € Z*.

Corollary 3. Let L be generated by strong join principal elements. If L is
a domain and if L satisfied the condition (a), then prime power elements are
primary.

Lemma 9. Suppose L is generated by strong join principal elements. Let
va=p and p be a §5-prime element. Then a = p™ for some n € Z+.

Proof. By using Theorem 2 and by imitating the proof of Theorem 9 of [3], we
can get the result.

Lemma 10. Suppose L is generated by strong join principal elements. If p
18 a nonminimal §-prime element, then p is mazimal.

Proof. Suppose p is a nonminimal §-prime element. Then p; < p for some prime



PRIMARY ELEMENTS AND PRIME POWER ELEMENTS IN MULTIPLICATIVE LATTICES 115

element p; < L. Choose any strong join principal element d < p such that d' £ p. Let
po < p be a minimal prime over d V pl. Note that po is a é-prime and hence it is an
a-prime. Again by Lemma 7, po # p3. Choose any strong join principal y < po such
that y £ p2. Suppose p is nonmaximal. Then p < m for some maximal element m of
L. Since by Theorem 3, p3 is po-primary, my £ P2, 80 i < p2 vV my < po and therefore
P2V my = po. By Lemma 9, piVmy =po,s0y < myV p3 and hence 1 = (myVp?: y)
Again since y is join principal, we have 1 = mV(p? : y) < mVpo (since (p§ : y) < po) =
a contradiction. Therefore p is maximal and this completes the proof of the lemma.

For the definitons of discrete valuation lattices and special principa element lattices,
the reader is referred to [10].

Lemma 11. Suppose L is principally generated. If m is a nonminimal
§-prime element, then L., 1is a one -dimensional discrete valuation lattice.

Proof. Note that by Lemma 10, dim L,, = 1, so every element has a prime
radical. Again as m is a §-prime, by Lemma 9, every element of L,, is a prime power.
Consequently L,, is totally ordered. Again by Lemma 4.8 of [1], L, is a one-dimensional
discrete valuation lattice.

Lemma 12. Suppose L is principally generated. If m is a 6-prime ele-
ment wheih is both mazimal and minimal, then L,, 1s a special principal element
lattice.

Proof. The proof of the lemma follows from Lemma 9.

Theorem 4. Suppose L is principally generated. Then the following state-
ments are equivalent:
(i) L satisfies the condition (8).
(i) Every prime element is a weak §-prime element.
(iii) Every prime element is a §-prime element.
(iv) Every element is principal.

Proof. By Lemma 2, (i), (ii), and (iii) are equivalent, (iii) = (iv). Suppose (ii)
holds. By Lemma 10, dim L < 1. Next we show that every prime element is weak meet
principal. Let m be a prime element. Suppose a < m. By hypothesis, @ = p{* A--- ApS»
for some prime elements p; € L(z = 1,2,...,n). Without loss of generality, assume that
p;’s are distinct.

We can also assume that p; £ p; for ¢ # j (1 <4,j < n). By Lemma 1, every prime
element is an a-prime. As dim L < 1, by Theorem 3, p;’s are comaximal and hence
a=pt-py?--pam. Asa<m,pi<m for some i. If p; = m, then we are through.
Suppose p; < m. By Lemma 11, p;,, = 0,, and so ab =0 for some b £ m. Since m
is maximal, it follows that a = am. This shows that every prime element is weak meet
principal. Again note that L contains only a finite number of minimal primes and hence
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by Theorem 1.5 of [9], L is a principal element lattice. (iv) = (iii) follows from Theorem
5 of [8]. This completes the proof of the theorem.
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