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ON THE DOUBLE NORLUND SUMMABILITY OF
DOUBLE FOURIER SERIES

YASUO OKUYAMA AND IKUKO MIYAMOTO

Abstract. We extend Rajagopal’s theorem [12] to a theorem on the dou-
ble Nérlund summability of double Fourier series, from which various known results

are deduced.

1. Let {pg,r)}('r =1,2) be two sequences of constants and let

P,(tr) = Zpg) # 0.
k=0
The double series 3 amn with the sequence of partial sum {8mn} is said to be
summable by double Nérlund method, or summable (N, pﬁ}), ps,z)) if t,,» tends to a limit
as (m,n) — oo, where the double Norlund mean tymn is defined by

1 N, @
tmn = =33 Z Do Dy 1 Sik (1.1)
P"(")PT(" ) 1=0 k=0
(see Herriot [4]). In the special case in which ps,ll) = pg) =1lor pg) = pg) = (—ni—l;, the

summability (N, pﬁ),pg)) is the same as the summability (C,1,1) or the summability

(H,1,1), respectively.
Suppose that f(u,v) is integrable (L) over the square Q(—m,7; —, 7) and is periodic
with period 27 in each variable.
The double Fourier series of function f(u,v) is
Z Z Amn[@mn COS MU COSNV + by SIN TRU COS NV
m=0n=0

+ Crn COS MU SIN NV + Ay, SN TRU SIN NV
oo o0
= —_>- E /\mnAmn(uy U)’
m=0n=0
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1
Aoo = 7
: form >0
1 forn>0
1

AmO
/\On =
)\mn

1
Amn = —2// f(u,v) cos mu cos nvdudv
x Q

form>0,72>0

and

and three other similar expressions for bmn, Cmn and dmn.
We write

¢(u,v) = %[f(x-i—u, y+v)+f(x+u, y—v)+f(x—u, y+v)+f(:c—u, y—v)—4f(x, y)]a (1'2)

QWJO=LuL”ﬂ&Qqu (13)
#1(0,0) = [ 19(s,0)lds (1.4)
Ba(s0) = [ é(o, 0t (15)
and forr=1,2
E{(u) = ;dﬂw. (1.6)

2. Let f(t) be a periodic finite-valued function with 27 and integrable (L) over
(—m, 7). We write

8(t) = 3 {f(@+1) + flz ~ 1) ~ 20(@)};

20) = [ le(wde.

Rajagopal [12] previously proved the following nice theorem on the Norlund summa-
bility of Fourier series.

Theorem A. Let a function p(t) be monotone nonincreasing and positive
for t > 0. Let p, = p(n) and let

t
P(t) = / p(u)du — 00, as t— 0.
0
1f, for some fized §, 0 < § < 1,

o 4 P(E)
B(t)| —=—L=|dt = o(P,), as n— oo,
/,r/n [dt t '
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then the Fourier series of function f(t) is summable (N,p,) to f(t), at the point
t=uz.

Theorem A contains various results due to Hardy [3], Hirokawa [6], Hirokawa and
Kayashima [7], Pati [11], Siddiqi [14] and Singh [15,16].

The purpose of this paper is to extend Theorem A to a theorem on the double

Norlund summability of double Fourier series.
Dealing with the harmonic summability of double Fourier series, Sharma [13] proved

the following theorem.

Theorem B. If the conditions

®(u,v) = o(uv/log1/ulogl/v), (2.1)
/w @, (u,t)dt = O(u/log1/u) (2.2)
~Jo
and .
/ ®5(s,v)ds = O(v/log1/v) (2.3)
0

hold, then the double Fourier series of function f(u,v) ts summable (H,1,1) to
f(u,v), at the point (u,v) = (z,¥).

This theorem is a generalization of the theorem due to Hille and Tamarkin [5] for
double Fourier series and also is analogous to the theorem of Chow [1] for summability
(C,1,1) of the double Fourier series.

Generalizing Theorem B, Mishra [10] proved the following theorem.

Theorem C. Let a function P (t)(r = 1,2) be tending to co with t and a
function p{")(t)(r = 1,2) be monotonic decreasing and strictly positive for t > 0,
such that

; =
Pt = / P (z)dz, p(n)=p{).
1]

If the conditions

®(u,v) = o(wv/ TV (1/u) TP (1/v)), (2.4)
/ﬂ &, (u, t)dt = O(u/ TV (1/u)) (2.5)

0

and .
/0 By(s,v)ds = O(v/ TP (1/v)) (2.6)

hold, then the double Fourier series of function f(u,v) is summable (N, p;{),pﬁf))

to f(u,v), at the point (u,v) = (x,y), where ¥)(t)(r = 1,2) is a positive nonde-
creasing function with t such that

® PO v
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If we put p(r) =1/(n+1) and ¥(")(z) = log z in Theorem C, we can obtain Theorem
B from Theorem C.

Though the reviewer ([MR] 87£:42034) pointed qut that there appear to be errors in
the proof of Theorem C, we think that Theorem C is essentially true.
Now we generalize these Theorems B and C in the following form.

Theorem. Let.a function PU)(t)(r = 1,2) be tending to oo with t and a
function p{")(t)(r = 1,2) be monotonic decreasing and strictly positive for t > 0,
such that

i
P(t) = / p(@)dz, p(n) = p.
(1]

If the conditions

/ " o, v)| = d PO l/u = d PO 1/" |dudv = o PO PR),
1/m J1/n

as (m,n) — oo, (2.8)
(1)
/ dt @1(u t) i mldu =0(PY), asm — oo (2.9)
1/m
and a
/ ds/ o (s, v)‘ d f—-——1—/—12’d'u =0(P®), asn—- (2.10)
1/n

hold for 0 < 6, 7 < =, then the double Fourier series of function f(u,v) is

summable (N, pﬁ), 5,2)) to f(u,v), at the point (u,v) = (z,y).

If the condition (2.4) holds, then we have by (2.7)

R e e
= 0(/1jm /1/ T T Uu(; = PQS/U)d )
= o(/ljm %’%du[:ﬂ {;—,(—2%/7%(1@)
(55 |, seo)
= o PMP)

by virture of the fact that = (M) == 0(5%1—/—”1)

U
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Similarly, we have by the conditions (2.5) and (2.7)

/ﬂdt : ®y (u, t)ld —w/—u—))i du

1/m u

- L w2,
u PU(1/u)
o[, 5ty )
m  p(1)
= of /1 . ___zf;(lfg) d)
:O(P,(nl)).

Also, the conditions (2.6) and (2.7) imply the condition (2.10). Thus we see that our
theorem is a generalization of Theorems B and C.

3. We need some lemmas for the proof of our Theorem.

Lemma 1 [9]. If a sequence {p&r)}(r =1,2) is nonnegative and nonincreasing,
then we have

n . 1
| prc )sin(n —k+ §)u‘ < CPM(1/u),
k=0

where C 1s a positive constant.

Lemma 2. (i) The condition (2.8) implies the conditon ®(u,v) = o(uv). (i)
The condition (2.9) or (2.10) implies the condition [ ®1(1/m,t)dt = O(1/m) or
[T ®2(s,1/n)ds = O(1/n), respectively.

Proof. (i) By the condition (2.8), we have

(1) (2)
o( PV P2 / / (u,v) d P (l/u H th (1/U 1 dudv
1/m J1/n

> &(1/m,1/n) /j - 1/")|d /; %M‘dv

/n v
sasmami- [} L F g~ [ §E )

= 8(1/m, 1/n){mPM(m) - —;—P(I)(l/é)}{nP(z)(n) - %P@)u/r)}
~ mn®(1/m,1/n)PM(m)P? (n).

Hence we have &(1/m,1/n) = o(1/mn). Since ®(uy,v1) < ®(uz,v2) for u; < ug and
v1 < v2, we obtain ®(u,v) = o(uv).
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(i1). By the condition (2.10), we have

(2)(
O(P(Z))—-/ ds/ ®y(s,v) dP l/v)‘
1/n

=/T |iw dv/ D, (s,v)ds
0

1/n d’U v

T d PO, [T [
= _— dv/ ds/ o(s,t)|dt
/1/,, 2 [Cas [ 1ots.0)

T iP(2)(1/v) g 1/n
Zfl/n —————~—-dv/ ds/ |6(z, £)|dt

dv v
= _/T ¢ P(Z)(l/v)d / D(s,1/n)ds

1/n dv v

:(nP@)(n)--P(?)u/r) / ®y(s,1/n)ds
T 0

~ nP®(n) /1r ®o(s,1/n)ds.
0

" Thus we have fo" ®,(s,1/n)ds = O(1/n). The other case is similarly proved.

4. Proof of Theorem. By (1.1), we have

1 s s
2 - (1) (2)
Pt = =) /0 /0 6(s, ) KD (s) KD (¢)dsdt
1 6 T § s P T b T ) @)
= + +//+// s, ) KW () KD (t)dsdt
P,S,I)P,(f)[/o /o /o /T s Jo § Jr ]¢( ) (s) ®
=h+L+I13+ 1,
say.

Now let m™! < 6§ < m,n"! < 7 < 7. Then we obtain

1 ™ T
I"'SW | 1ot 01D @1 @ldsa

1/n
= / KD (s)]ds / [6(s, OIIK (1)t

N (1) ’ 2)
=0 P,?’ /5 | K’ ()lds /1 /n|¢(s,t)HKn (t)|dt
=I5 + Is2,
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say. By Lemmas 1 and 2, we have

1 & P(l)(l/s) 1/n (2)
B :O<W /6 — s /0 |6(s,t)|O(nPL )dt)

n g
= O(;@ /O @2(8,1/n)d8)d3

o(-h)
=o(1), as(m,n)— co.

Applying Lemma 1 and integrating by parts, we obtain
1 ™ T
- (1) (2)
132 S P,Sil)P,(lz) /:; |Km (S)d51£/n kb(sat)HKn (t)ldt

1 " PM(1)s) [T P®)(1/t)
_O[PS,})P,?) /5 s [ 16(s 01— dt]

t

= 0l—o=m /; ds] [@2(s,t)———~—P(2)(1/t)]:/n - /1/n Qz(s,t)%————P(z)él/t)dt}]

PO
1 PO/ [T n ["
- of ¢ /5 (1>2(s,r)ds)+o(-g(nl—) /6 @(s,1/m)ds)

P PP
1 4 T d PA)(1/t)
+O(—_~_P,(.11)P,(.2) /5 ds /1 . By (s, )| = at)

= O(I321 + Isz2 + I323),

say. Clearly we get Is2; = o(1). By Lemma 2, we have
Iz = = [ @a(s,1/m)d
322 — P,,(nl) : 2(3a /n) S
1
- O( P,g))
=o(1), as(m,n)— oo.
By the condition (2.10), we have

P®
P,(nl)P,(f) )

-0(z1m)

=o(1), as(m,n)— oo.

I393 = O(

Thus we get I3 = o(1). Similarly, we get Iy = o(1).
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Moreover, since K,(,})(s) and Kr(,z)(t) are bounded on [6, 7] and [, 7] respectively, we

have " S
L= (s [ [ 1906, IR @D (t)dsar)

:0(—};57}—)—(2—) / / [6(s,0)ldsdz)

=o(1), as(m,n)— oco.

Finally we obtain

1 1/m  p1/n 5 1/n 1/m pr
R ocl A S B Y A |
' —P,(nl)P,(lz)[ 0 0 1/m Jo 0 1/n

é T
[ [ Tt 0lED @D () dsa
1/m J1/n
=hi+ L+ L + L,

say. By Lemma 2, we have

——’—1 Y Y 0] P(I)P(2) dsd
< s,t mni,, ) sdt

1/m pl/n
=O(mn/ / |o(s,t)|dsdt)
0 0

=o(1), as (m,n)— oo.

Appling Lemma 1 and integrating by parts, we obtain
1 Y ) ’ )
he S sy [ KOOI [ 01K s
Y ’ PW(1/s)
Y (2)
O(sarpm [, P [ tots,nT=as)
Hn pt (1/s>
=0( | / 195, )1 =)
O P<1>(1/s) % d (PM(1/s)
=0 —= dts | ® fy— .2 — Bl el < 0
(p 1) /; {[ 1(s,?) s ]l/m /l/mq>1(s’t)ds( s )ds})

n [Um PM(1/6) n PM(m) [Un
-——)/ @, (6,1%) 5/ dt+p(1) 1( )/0 @1(1/m,t)dt

N m
P(l) /1 u jméls )'dP(l) 1/s)| )

= O(l21 + L122 + I123),
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say. By Lemma 2, we have

and

Ly = O(mn /olln @1(1/m,t)dt)
= O(mn®(1/m,1/n))

=o0(1), as(m,n)— oo.

On the other hand, we have by the conditoin (2.8)

udv

1 A d P(1>(1/u d P(2> l/v

§ W1 T P21
LY £_<_/£2|du/ s P,
P o Y WP
nP® [? d PO (1/u
= AP(l)P(z) _/ B(u, 1/n ). I
1/n )(
(1)/ dt/ <I>1ut|dp 1/")|d
P 1/m
= Al3.

Thus we get I123 = o(1). Hence we have [12 = o(1). Similarly, we have I;3 = o(1).

By partial integration for double integral [2,8] and Lemma 1, we have

dtds

1 LI £ P1)(1/s) PA)(1/t
L4 < '—(T)_(z_)/ / |p(s, )] Lis) i /)
Pm Pn 1/mJ1/n S
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1 PO)(1/6) P@(1/7)
= —3 ) ®(8,7) 5

P(

(2) (1)

_ 1 P (1/7')/ @(u,r)i(P (l/u))du
P’r(rl,l)PT(),?) T 1/m du U

1 PO(1/6) d P (1/v)
- A/né(é,v)a(—mv )do

1 N d (PO (1/u)\ d PO (1/v)
+Pr(r3)P1(12)~/1/m~/1/nQ(u’v)a;( u )&Z( v Jduds

=41 + g + Iz + Thaa,

T

say. Clearly we get I14; = o(1). By the condition (2.8), we have I144 = o(1). Also, by
the condition (2.9), we have

1 P(Z)(l/T) /5 @(u,r)li————P(l)(l/u)ldu

1142 S P,S,LI)P,?) du

=0 }—(Tf;@/rdtf Ql(u,t)';—wldu)

= P(I)P(z)/ dt/ 4 (u, t)’ d P(l)il/u I u)

= O(WO(P )

- 0(}):([2))

=o(1), as(m,n)— oo.

Similarly, we get I143 = o(1). Hence we have I4 = o(1). Therefore, by the above
estimations, our theorem is completely proved.

5. In this section, we deduce some corollaries from our theorem.

Corollary 1. If the condtions
®(u,v) = ouv),

®(u,7) = O(u)

and
®(m,v) = O(v)

hold, then the double Fourier series of function f(u,v) is summable (C,1,1) to
f(u,v), at the point (u,v) = (z,y).
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A weaker form of Corollary 1 was proved by Chow [1].

Corollary 2. Let pi")(t) and P (t)(r = 1,2) be the functions satisfying the
same hypothesis of Theorem such that

logn = O(P{)(r = 1,2).

If the conditions
(u,v) = o(uv/PM(1/u) PP (1/v)),

®(u,7) = O(u/ PN (1/u))

and
&(r,v) = O(v/PP(1/v))
(1) (2))

hold, then the double Fourier series of function (u,v) is summable (N,pw’, pn
to f(u,v), at the point (u,v) = (z,y).

This corollary is also deduced from Theorem C.

References

[1] Y. S. Chow, “On the Cesaro summability of double Fourier series,” Téhoku Math. J., 5(1953),

277-283.
[2] J. J. Gergen, “Convergence criteria for double Fourier series,” Trans. Amer. Math. Soc., 35(1933),

29-63.
[3] G. H. Hardy, “On the summability of Fouier series,” Proc. London Math. Soc., 12(1913), 365-372.
[4] J. G. Herriot, “The Nérlund summability of double Fouier series,” Trans. Amer. Math. Soc.,
59(1942), 72-94.
[5] E. Hille and J. D. Tamarkin, “On the summability of Fouier series,” Trans. Amer. Math. Soc.,
34(1932), 757-783.
[6] H. Hirokawa,“On the Norlund summability of Fouier series and its conjugate series,” Proc. Japan
Acad., 44(1968), 449-451.
[7] H. Hirokawa and I. Kayashima, “ On a sequence of Fourier coefficients,” Proc. Japan Acad.,
50(1974), 57-62.
[8] E. W. Hobson, Theory of functions of a real variable, Cambridge, Vol.1, 1927.
[9] L. McFadden, “Absolute Nérlund summability,” Duke Math. J., 9(1942), 168-207.
[10] K. N. Mishra, “Summability of double Fourier series by double Norlund method,” Bull. Inst. Math.
Acad. Sinica., 13(1985), 289-295.
[11] T. Pati, “A generalization of a theorem of Igengar on the harmonic summability of Fourier series,”
Indian J. Math., 3(1961), 85-90.
[12] C. T. Rajagopal, “On the Nérlund summability of Fourier series,” Proc. Camb. Phil. Soc., 59(1963),

47-53.
[13] P. L. Sharma, “On the harmonic summability of double Fouier series,” Proc. Amer. Math. Soc.,

91(1958), 979-986.

[14] J. A. Siddigi, “On the harmonic summability of Fouier series,” Proc. Nat. Acad. Sci. India Sect.A.,
28(1948), 527-531.

[15] T. Singh, “On Nérlund summability of Fouier series and its conjugate series,” Proc. Nat. Inst. Sci.
India Part A., 29(1963), 65-73.



144 YASUO OKUYAMA AND IKUKO MIYAMOTO
[16] T. Singh, “Nérlund summahbility of Fourier series and its conjugate series,” Ann. Mat. Pura Appl.,

64(1964), 123-132.

Department of Mathematics, Faculty of Engineering, Shinshu University, Nagano 380, Japan.
Department of Mathematics and Informatics, Faculty of Science, Chiba University, Chiba 263, Japan.



