TOTALLY UMBILICAL CR-SUBMANIFOLDS OF A NEARLY KAEHLER MANIFOLD

S. H. KON AND SIN-LENG TAN

Abstract. The geometry of a CR-submanifold in a Kaehler manifold has been extensively studied. B.Y. Chen has classified the totally umbilical CR-submanifolds of a Kaehler manifold and showed that they are either totally geodesic, or totally real or dim $(D^{\perp}) = 1$. In this paper we show that such a result is also true in a nearly Kaehler manifold.

1. Introduction

A. Bejancu [1] introduced the notion of a CR-submanifold of an almost Hermitian manifold. The geometry of a CR-submanifold in a Kaehler manifold has been extensively studied, a number of these results also hold for a CR-submanifold of a nearly Kaehler manifold, see [2], [4], [6] and [7].

B. Y. Chen [4] classified the totally umbilical CR-submanifolds of a Kaehler manifold and showed that they are either totally geodesic, or totally real or $\dim(D^{\perp}) = 1$. In this paper we shall generalize this result to nearly Kaehler manifolds and also show that the anti-holomorphic distribution of a totally umbilical CR-submanifold in a nearly Kaehler manifold is integrable and its leaves are totally geodesic.

2. Preliminaries

Let N be an almost Hermitian manifold with almost complex structure J and Hermitian metric g. A submanifold M of N is said to be a CR-submanifold of N if there exists a differentiable distribution.

$$D: x \to D_x \subset T_x M$$

Received October 29, 1994.

¹⁹⁹¹ Mathematics Subject Classification. 53B35, 53C15, 53C40.

Key words and phrases. CR -submanifolds, nearly Kaehler, totally umbilical.

on M satisfying the following conditions:

(i) D is holomorphic, i.e., $J(D_x) = D_x$ for each $x \in M$.

(ii) the complementary orthogonal distribution

$$D^{\perp}: x \to D_x^{\perp} \subset T_x M.$$

is anti-invariant, i.e., $J(D_x^{\perp}) \subset T_x M^{\perp}$ for each $x \in M$.

If $D = \{0\}$, (resp. $D^{\perp} = \{0\}$), then M is said to be a totally real (resp. holomorphic) submanifold. The normal bundle TM^{\perp} splits as $TM^{\perp} = JD^{\perp} \oplus \mu$, where μ is the orthogonal complement of JD^{\perp} and is an invariant subbundle of TM^{\perp} under J.

Let $\tilde{\nabla}$ be the Riemannian connection on N, then the Gauss and Weingarten formulas are given respectively by

$$\tilde{\nabla}_X Y = \nabla_X Y + h(X, Y),$$

$$\tilde{\nabla}_X U = -A_U X + \nabla_X^{\perp} U.$$

for $X, Y \in \Gamma(TM)$ and $U \in \Gamma(TM^{\perp})$, where ∇ is the induced Riemannian connection on M, h the second fundamental form of M, A_U the second fundamental tensor related by

$$g(A_U X, Y) = g(h(X, Y), U)$$

and ∇^{\perp} is the induced normal connection in the normal bundle TM^{\perp} .

A submanifold M is said to be totally umbilical if

$$h(X,Y) = g(X,Y)H$$
 for all $X,Y \in \Gamma(TM)$,

where $H = \frac{1}{n}$ (trace of h), called the mean curvature vector of M in N. The submanifold M is a totally geodesic submanifold of N if h(X,Y) = 0 for all $X, Y \in \Gamma(TM)$. It is a minimal submanifold if H = 0. Obviously a minimal, totally umbilical submanifold is totally geodesic.

A Hermitian manifold N is called a Kaehler manifold if its fundamental 2-form Ω , where $\Omega(X, Y) = g(X, JY)$ for $X, Y \in \Gamma(TN)$, is closed. It is not difficult to show that an almost Hermitian manifold N is a Kaehler manifold if and only if the almost complex structure J is parallel with respect to $\tilde{\nabla}$, i.e., $\tilde{\nabla}_X J = 0$ for all $X \in \Gamma(TN)$. An almost Hermitian manifold is called a nearly Kaehler manifold if we have

$$(\tilde{\nabla}_X J)X = 0$$
 for all $X \in \Gamma(TN)$.

Thus, an almost Hermitian manifold N is nearly Kaehler if and only if

$$(\tilde{\nabla}_X J)Y + (\tilde{\nabla}_Y J)X = 0$$
 for all $X, Y \in \Gamma(TN)$.

146

3. Integrability of the anti-holomorphic distribution of totally umbilical CR-submanifolds

We will prove in this section an integrability theorem on the anti-holomorphic distribution D^{\perp} . We first recall two results on the distribution D^{\perp} , see [2, page 28].

Lemma 3.1. (Sato). Let M be a CR-submanifold of a nearly Kaehler manifold N. The distribution D^{\perp} is integrable if and only if

$$g(h(U, X), JW) = g(h(W, X), JU)$$
 (3.1)

for all $U, W \in \Gamma(D^{\perp})$ and $X \in \Gamma(D)$.

Lemma 3.2 (Bejancu). Let M be a CR-submanifold of a nearly Kaehler manifold N. If D^{\perp} is integrable, then each leaf of D^{\perp} is immersed in M as a totally geodesic submanifold if and only if g(h(U, X), JW) = 0 for all $U, W \in \Gamma(D^{\perp})$ and $X \in \Gamma(D)$.

From the above two lemmas, we are able to obtain the following proposition, whichgeneralizes [3, Lemma 8.2].

Proposition 3.3. Let M be a totally umbilical CR-submanifold of a nearly Kaehler manifold N. Then D^{\perp} is integrable and its leaves are totally geodesic in M.

Proof. Since M is totally umbilical in N, both sides of (3.1) vanish. It follows from the above two lemmas that D^{\perp} is integrable and its leaves are totally geodesic in M.

4. The geometry of totally umbilical CR-submanifolds

In this section, we will generalize a classification theorem of Chen [4] to nearly Kaehler manifolds. The following generalizes [3; Lemma 7.1].

Proposition 4.1. Let M be a totally umbilical CR-submanifold of a nearly Kaehler manifold N. If dim $D^{\perp} > 1$, then we have

(i) $H \perp J D^{\perp}$,

(ii) $A_{JX}Y = 0$ for all $X, Y \in \Gamma(D^{\perp})$.

Proof. (i) Since M is nearly Kaehler, for $Z, W \in \Gamma(D^{\perp})$, we have $(\tilde{\nabla}_Z J)W = -(\tilde{\nabla}_W J)Z$ or $\tilde{\nabla}_Z JW - J\tilde{\nabla}_Z W = -\tilde{\nabla}_W JZ + J\tilde{\nabla}_W Z$ or $-A_{JW}Z + \nabla_Z^{\perp} JW - J\nabla_Z W - Jh(Z, W) = A_{JZ}W - \nabla_W^{\perp} JZ + J\nabla_W Z + Jh(Z, W)$. Since M is totally umbilical, we have

$$J(\nabla_W Z + \nabla_Z W) + 2g(Z, W)JH = -A_{JW}Z - A_{JZ}W + \nabla_Z^{\perp}JW + \nabla_W^{\perp}JZ.$$

Hence

$$g(J(\nabla_W Z + \nabla_Z W), Z) + 2g(Z, W)g(Z, JH)$$

= $-g(A_{JW}Z, Z) - g(A_{JZ}W, Z) + g(\nabla^{\perp}JW, Z) + g(\nabla^{\perp}_W JZ, Z).$

Therefore,

$$2g(Z, W)g(Z, JH) = -g(h(Z, Z), JW) - g(h(W, Z), JZ) = ||Z||^2 g(W, JH) + g(Z, W)g(Z, JH),$$

or

$$g(Z, W)g(Z, JH) = ||Z||^2 g(W, JH).$$

Interchanging Z, W in the above equation, we obtain

$$g(Z, W)g(W, JH) = ||W||^2 g(Z, JH).$$

Hence

$$g(W, JH) = \frac{g(Z, W)^2}{\|Z\|^2 \|W\|^2} g(W, JH).$$

Now, if dim $D^{\perp} > 1$, then for Z not parallel with W,

 $g(Z,W)^2 < ||Z||^2 ||W||^2$

and so g(W, JH) = 0, hence $H \perp JD^{\perp}$. (ii) Let $X, Y \in \Gamma(D^{\perp})$ and $Z \in \Gamma(TM)$. Then

$$g(A_{JX}Y,Z) = g(h(Y,Z),JX) = g(Y,Z)g(H,JX)$$
$$= 0 \quad \text{from (i)}.$$

Remark. A totally umbilical anti-holomorphic submanifold of a Kaehler manifold is either totally geodesic or a hypersurface [3, Theorem 7.2]. Similarly, if M is a submanifold of a nearly Kaehler manifold N such that $J(T_xM^{\perp}) \subset T_xM$ for all $x \in M$, then M can be regarded as a CR-submanifold with $D^{\perp} = J(T_xM^{\perp})$. For such a manifold, which is also totally umbilical, Proposition 4.1 show that either M is totally geodesic or M is a hypersurface in N, generalizing the above mentioned result of Blair and Chen for a totally umbilical anti-holomorphic submanifold of a Kaehler manifold.

The following theorem generalizes Chen's classification theorem [4] to nearly Kaehler manifolds.

Theorem 4.2 Let M be a totally umbilical CR-submanifold of a nearly Kaehler manifold N. Then either

- (i) M is totally geodesic, or
- (ii) M is totally real, or
- (iii) D^{\perp} is of dimension 1.

148

Proof. If dim $D^{\perp} > 1$, we have $JH \in \Gamma(\mu)$ from Proposition 4.1. Now if M is not totally real, then dim $D \ge 2$. Consider $Z \ne 0$ in $\Gamma(D)$, we have

$$\begin{split} 0 &= g(JZ,Z)g(JH,H) \\ &= g(A_{JH}JZ,Z) \\ &= g(-\tilde{\nabla}_{JZ}JH + \nabla^{\perp}_{JZ}JH,Z) \\ &= g(-\tilde{\nabla}_{JZ}JH,Z) = g(JH,\tilde{\nabla}_{JZ}Z), \quad \text{since} \quad JH\perp Z \\ &= g(JH,-\tilde{\nabla}_{JZ}J(JZ)) \\ &= g(JH,-(\tilde{\nabla}_{JZ}J)JZ - J\tilde{\nabla}_{JZ}JZ) \\ &= g(JH,-J\tilde{\nabla}_{JZ}JZ), \quad \text{since} \quad (\tilde{\nabla}_{JZ}J)JZ = 0 \\ &= g(JH,-J\nabla_{JZ}JZ - Jh(JZ,JZ)) \\ &= g(JH,-Jh(JZ,JZ)) \\ &= -g(JH,JH)g(JZ,JZ) = -||H||^2 ||Z||^2 \end{split}$$

Hence H = 0. Thus M is minimal and hence totally geodesic in N. Finally, for the case $D^{\perp} = \{0\}, M$ is minimal, see [7], and so is totally geodesic.

Remark. A CR-submanifold M with D^{\perp} integrable is said to be D^{\perp} -totally umbilical if

$$h(U,W) = g(U,W)H_{D^{\perp}}$$

for all $U, W \in \Gamma(D^{\perp})$ and some vector field $H_{D^{\perp}}$. A classification theorem, similar to Chen's result [4] has been obtained in [5] for D^{\perp} -totally umbilical CR-submanifold of a Kaehler manifold. It is easy to show that when D^{\perp} is integrable, such a result is also true in a nearly Kaehler manifold.

References

- A. Bejancu, "CR-submanifolds of a Kaehler manifold I," Proc. Amer. Math. Soc., 69(1978), 135-142.
- [2] A. Bejancu, Geometry of CR-submanifolds, Reidel Holland, 1986.
- [3] D. E. Blair and B. Y. Chen, "On CR-submanifolds of Hermitian manifolds," Isreal J. Math., 34(1979), 352-363.
- [4] B. Y. Chen, "Totally umbilical submanifolds of Kaehler manifolds," Arch. Math., 36(1981), 83-91.
- [5] S. M. Khursheed Haider, V. A. Khan and S. I. Husain, "Totally umbilical CR-submanifolds of a Kaehler manifold," Tamkang J. Math., 24(1993), 43-49.
- S. H. Kon and Sin-Leng Tan, "CR-submanifolds of a nearly Kaehlerian manifold," Bull. Malaysian Math. Soc., (Second Series), 14(1991), 31-38.
- [7] S. H. Kon and Sin-Leng Tan, "CR-submanifolds of a quasi-Kaehler manifold," Tamkang J. Math., 26(1995), 261-266.

Department of Mathematics, University of Malaya, 50603 Kuala Lumpur, Malaysia.