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ON THE OSCILLATION OF AN ELLIPTIC EQUATION
OF FOURTH ORDER

BHAGAT SINGH

Abstract. The elliptic equation
A%u(lel) + g(lz)u(le]) = f(l=])
is studied for its oscillatory behavior. A is the Laplace operator. Sufficient condi-

tions have been found to ensure that all solutions of this equation continuable in

some exterior domain
Q= {z = (z1,z2,z3) : || > A}
Where

3

1

ol = () st
=1

are oscillatory.

I. Introduction

QOur main purpose in this work is to study the elliptic equation
A%u(lz]) + g(jzu(lz]) = f(|=]) (1

for its oscillatory behavior in a domain 2 of R? external to the hypersphere

3
sz = A2 (2)
i=1
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where A > 0 is sufficiently large and |z| is the Euclidian length

3
EERNDIEE )
=1

g(t) and f(t) are continuous functions on [A4, co) for some A > 0. In equation (1), A is
the Laplace operator so that

3
0%u
5

2 ox?

(4)

A’U,(Zl s T2, $3) =

3=

By a solution of (1) we mean a symmetric function »(|z|) which is continuous in
some exterior domain

Qr = {z = (21,22,23) € R3:|z| >T}, T > A

and satisfies (1).

A function S(t) continuous on [T, c0) is said to be oscillatory (as in [5], [6]) if S(t)
has arbitrarily large zeros in [T, 00); otherwise S(t) is said to be nonoscillatory. S(t) is
said to be slowly oscillating if the set

{ltm — tal : S(tm) = S(ta) = 0,5(t) #0 for &€ (tm,tn)}

is unbounded.
We will soon see that equation (1) is closely related to the general ordinary differ-

ential equation
Lay(t) + F(t,y(t) = f(?) (5)

which has been, in less general cases, studied in [1-3] and [5-6]. Our techniques and

notations in [4-5] will be adapted in this work. Throughout this work we assume that
(i) Loy(t) = plo((%,Liy(t) = pyeLlinyt) for1<i<n; n>2

(ii) pi(t), f(t) and g(t) are continuous, real valued on [4,00), 1 < i < n, p; > 0,
1=0,1,2,---,n; and

/ pi(t)dt =00 for 1<i<n-1; (6)

(iii) F: R x R — R is continuous.
We define as in [5]

Io =1
[ I (t, 8$; Pk, -+ 1) =fstpk(T)Ik-l(T,S;Pk—l,'",pl)dr-
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It can be easily verified that

t
Ik(t,S;pk,---,p1)=/ p1(r) k-1 (t, 75Dk, - - -, D2)dr, (8)

and
Ik:(t7 8Pk spl) = (_1)k1k(37t;1)1, U apk): (9)

{ Ji(t,s) = po(t) I (t, 8501, -, Dx),
Ki(t,s) = pu ()it 85001, * s Pn—k).  (10)

Je(t) = Ji(t, A), Ki(t) = Ki(t,A), 0< K <n. (11)
It is easy to see that if p; =1 for 0 <7 < n then
_(@=A)r
T (t) = —r (12)

II. Main Results. The following lemma, which is Theorem (1) of Singh and
Kusano [5], establishes a growth condition for solutions of equation (5).

Lemma 1. Suppose that (6) holds, and there ezxists a number v € (0,1] and
a continuous function q: [A,00) — [0,00) such that

|F(t.s)l < q()ls|”  for (t,s) € [A,00) X R. (13)
Suppose moreover that
[ misae < oo (14)
and -
[ s pntarat < o (15)

Then every nontrivial solution y(t) of equation (5) satisfies

y(t) = 0(Jn-1(¢)) ast— oo.

Lemma 2. The function u(|z|),z = (z1,z2,z3) 15 a solution of equation (1)
i an exrterior domain

Q={zeR¥:|z|>T}, T>A,
if and only if u(t) is a solution of the ordinary differential equation

1d*

?Et—‘i(tu) +g(t)u=f(t), t>T, wheret=]|z| (16)
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Proof. By direct substitution, it can be easily verified that

_14d,du
Aulzl) = 5 3t 5
1d2
= tdt2 (tu)1 t= !:vl
Au(lel) = AC-L )
1d? 1d?
=3aet* gz ()
1d%2 &

tdt2(dt2( w))
1d? &£ Lo 2y _du
t dt? dt2 dt
1, d*u

( A +4E£3—)
1 d*

3o (tu) (17

By direct substitution from (17) into equation (1), we get equation (16). Conversely if
u(t) is a solution of equation (16) where ¢ = || then we can obtain equation (1). The
proof of Lemma 2 is now complete.

Theorem 1. Suppose

(o]

81£(2)|dt < oo (18)

and

/ ~ Plg(t)ldt < oo (19)
Then every symmetric solution u(|z|) of equation (1) satisfies
w(lel) = 0(|z/?) (20)
as |z| — oo.

Proof. If we choose po(t) = 1/t,p1(t) = p2(t) = p3(t) = 1,pa(t) = ¢, and v = 1,
then all conditions of Lemma, (1) are satisfied for equation (16). Hence any solution u(t)
of this equation satisfies tu(t) = 0(t®) = u(t) = 0(t?). The conclusion now follows by
Lemma 2.

Our next lemma is Theorem (3) of our work [5] which gives us a stronger result for
equation (1).
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Lemma 3. Suppose that (6) holds and there ezists a number v € (0,1] and
a continuous function q : [A,00) — [0,00) such that (13) holds. Suppose moreover
that

/ " Ko (O|f(D)ldt < (21)

and -
[ s Knea a0t < oo (22)

Then every oscillatory solution y(t) of (5) satisfies
Jim {y(8)l/po(t) = 0. (23)

This lemma leads us to the following stronger result for equation (1).
Theorem 2. Suppose
/ #417()|dt < 0o (24)
and -
/ ]g(t)]dt < oo. (25)

Then all oscillatory spherically symmetric solutions u(|z|) of (1) satisfy

lim |z|u(|z]) =0.
|z]—o0

Proof. Since
ks(t) = 0(t*)

J5(t) = 0(t%)

and v = 1, all conditions of Lemma. (3) are satisfied for equation (16). Thus any oscilla-
tory solution u(t) of (16) satisfies

Lim u(t)/po(t) = 0.

Since po(t) = }, we have tu(t) — 0 as t — 0o. The conclusion of the theorem follows.
Our next theorem gives sufficient conditions for all bounded solutions of equation
(1) to be oscillatory.

Theorem 3. Suppose that for any T > A

Lim sup (_}3_ /Tt(t - 3)3sf(s)ds) =00 (26)

t—oo
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1 t
Lim inf_ (F/T(t ~ 5)’sf(s)ds) = —oo (27)
and
tL—EZL 3 / s|g(s)|(t — s)3ds < oo. (28)

Then all spherically symmetric bounded solutions u(|z|) of equation (1) defined
in an exterior domain

Qr = {z = (21,22,23) : 2| > T}

are oscillatory.

Proof. We prove this for equation (16). Let u(t), to the contrary, be a bounded
nonoscillatory solution of (16). Without loss of generality suppose that u(t) > 0 for
t > T'. On direct integration from equation (16), we have

t ¢
tu"'(t) — Tu"'(T) - / u"'(s)ds + 4/ u"'(s)ds
T T

+/Tt sg(s)u(s)ds = /Tt sf(s)ds

On repeated integration three more times, we get

t 3
f’;_gtl -2 5 [ S s
_1 (t-5)3sf( \ds (29)

t3

where
M(t)=(Ci+ Co(t =T)+ C3(t — T)* + Cu(t = T)*)

and C;,Cy,Cs, and Cy4 are appropriate constants.

Since the left side of (29) is bounded as ¢ — oo, and the right hand side swings
between —oo and oo, a contradiction is reached. Hence by virtue of equation (16),
all bounded spherically symmetric solutions u(|z|) of equation (1) are oscillatory. This
completes the proof.

If in Theorem (3), we require an additional condition that g(t) > 0 for ¢ > A, then
its proof reveals that boundedness of the solutions of (1) or of (16) is not essential. This
leads us to the following stronger theorem.

Theorem 4. In addition to the conditions of Theorem (3), suppose g(t) >0
fort> A. Then all solutions of equation (1) continuable into the exterior domain
Qr are oscillatory.
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Proof. In reexamination of the proof of Theorem (3), we notice that the only
place where boundedness of u(t) is needed is in the integral on the left side of (29). Since
g(t) > 0, it is no longer needed. This observation completes the proof.

Example 1. Consider the elliptic equation
A?u(jz]) + e lu(|z]) = |z|° sin(|z]) (30)

where
3

ol = (X2) .

2=1
Then the corresponding companion differential equation is

1d*(ut
utm;l%:i_) +e7tu=t°sint, t>0 (31)

which satisfies all the conditions of Theorem (3). Hence all solutions of equation(30)
continuable beyond the hypersphere ‘

3
S E=T, ITzd

are oscillatory.

Remark 1. The proof of Theorem (3) reveals that if in addition to (26), (27),
f(t) is also slowly oscillating then bounded solutions of equations (16) and (1) will also
be slowly oscillating. We state this fact as Theorem (4).

Theorem 5. Suppose that (26), (27) and (28) hold. Further suppose that
for any bounded function L(t) the funcition f(t) — L(t)g(t) is slowly oscillating.
Then all bounded solutions of equations (16) and (1) are slowly oscillating.

Proof. Let u(t) be a bounded solution of equation (16). Then by Theorem (3),
u(t) is oscillatory. The oscillation of u(t) implies oscillation of u!V(t). From equation
(16)

d4
g (tu(®) = t(£(2) — u(t)g(t). (32)
Since u(t) is bounded, (32) implies that

d4

e (tu()

is also slowly oscillating.
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We now observe an elementary fact that if the derivative of an oscillatory function
h(t) is slowly oscillating so is the function h(t). To see this we note that if h(t1) =
h(t2) =0, h(t) # 0 for ¢t € (t;,t3) then

/ : B (t)dt =0 (33)

Thus between any two consecutive zeros of h(t), there must be a zero of A’ (t). Hence
if h'(¢) is slowly oscillating, so is h(t). This observation leads to the fact that slow
oscillation of

d4
7 (tu(®)
implies slow oscillation of
d? d? d
7 (D), 25 (tu(®), = (tu(t))

and consequently of tu(t). This completes the proof of Theorem 4.

Remark 2. Our next example shows that conditions of Theorem (4) are quite
practical.

Example 2. Consider the equation
1 . :
Au(lz]) + 20 sin(|z[)u(|z[) = sin(log(|z])) (34)

satisfies the conditions and conclusion of this theorem. This follows from the fact that
for the companion equation

| Q,
»

(tu(?)) + 2(11—0) sin(t)u = sin(log(t)), ¢ >0 (35)

| et

U

t4

the function ’
—t—ﬁ(t10 sin(log(t)) — sin(t)u(t))

is slowly oscillating for any bounded u(t).
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