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ON THE OSCILLATION OF AN ELLIPTIC EQUATION
OF FOURTH ORDER

BHAGAT SINGH

Abstract. The elliptic equation

~2u(lxl) + g(lxl)u(lxl) = f(lxl)

1s studied for its oscillatory behavior. /),. is the Laplace operator. Sufficient condi
tions have been found to ensure that all solutions of this equation continuable in
some exterior domain

fl= {x = (x1,x2,x3): JxJ > A}

Where
3

回＝（芷 甿）｝
i=l

are oscillatory.

I. Introduction

Our main purpose in this work is to study the elliptic equation

ti.2u(lxl) + g(jxl)u(lxl) = f(lxl)

for its oscillatory behavior in a domain n of R3 external to the hypersphere
3

芷 甿= A2
i=l
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where A > 0 is sufficiently large and 囯 is the Euclidian length

囯 ~w. (3)

g(t) and J(t) are continuous functions on [A, oo) for some A> 0. In equation (1), ~is
the Laplace operator so that

3

）
82u

~u(x1立2丐 ＝芷一8x2·
i=l •

(4)

By a solution of (1) we mean a symmetric function u(lxl) which is continuous in
some exterior domain

Dr = {x = (xi, Xz涇3) E R3: !xi;::: T}, T;::: A

and satisfies (1).
A function S(t) continuous on [T,oo) is said to be oscillator:y (as in [5], [6]) if S(t)

has arbitrarily large zeros in [T, oo); otherwise S(t) is said to be nonoscillatory. S(t) is
said to be slowly oscillating if the set

{ltm - tnl : S(tm) = S(tn) = 0, S(t) /; 0 for t E (tm, tn)}

is unbounded.
We will soon see that equation (1) is closely related to the general ordinary differ

ential equation
Lny(t) + F(t, y(t)) = f(t) (5)

which has been, in less general cases, studied in [1-3) and [5-6). Our techniques and
notations in [4-5) will be adapted in this work. Throughout this work we assume that
(i) L。y(t) =羋 Liy(t) = 1 2:..£i-1Y(t) for 1 $ i $ n; n 2: 2;Po(t)' 詞 dt
(ii) Pi(t), f(t) and g(t) are continuous, real valued on [A, oo), 1 $ i $ n, Pi > 0,

i = 0, 1, 2, · · ·, n; and

「Pi(t)dt = oo for 1 S 。S n-1; (6)

(iii) F: Rx R -+ R is contmuous.
We define as in [5]

[ t lo = l
h (t, s; Pk,···, P1) = J. Pk(r)h-1 (r, s; Pk-l, · · ·, pi)dr

(7)
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It can be easily verified that

h(t, s;pk, · · ·,P1) = ft P1(r)h-1(t, r;pk, · · ·,P2)dr,
s

and
h(t, s; Pk,···,pi)= (-llh(s, t; P1, ···,Pk),

(8)

(9)

[ Jk(t,s)=po(t)h(t,s;p1,···,p吐
Kk(t, S) = Pn(t)h(t, s; Pn-l, ·", P正 k), (10)

Jk(t) = Jk(t, A), Kk(t) = Kk(t, A), 0~K~n

It is easy to see that if Pi 三 1 for O~i~n then

Jn(t) =
(t - A)n

n.＇

(11)

(12)

II. Main Results. The following lemma, which is Theorem (1) of Singh and
Kusano [5], establishes a growth condition for solutions of equation (5)

Lemma 1. Suppose that (6) holds, and there exists a number, E (0, 1] and
a continuous function q : [A, oo) _. [O, oo) such that

IF((s)I :S q(t)lsl-r for (t, s) E [A, oo) x R. (13)

Suppose moreover that 「Pn(t)lf(t)Jdt < oo (14)

and 「[Jn-1(t)Ppn(t)q(t)dt < 00

Then every nontrivial solution y(t) of equation (5) satisfies

(15)

y(t) = O(Jn-i(t)) as t---+ oo.

Lemma 2. The function u(Jxl),x = (x1,x2涇3) is a solution of equation (1)
in an exterior domain

f! = {x E R3: !xi 2: T}, T 2'. A,

if and only if u(t) is a solution of the ordinary differential equation

1 d4
t dt4 (tu)+ g(t)u = f(t), t 2'. T, where t = lxl (16)
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Proof. By direct substitution, it can be easily verified that

t\u(因 ）＝
1 d 2du
--t —t2 dt dt
I d2

＝ 一·t dt2 (tu), t = 因

氐u(lxl) = 6.(f~(tu))

ld2 ld2
言詎(t X t詎(tu))
l d2 d2

＝－一 (—t dt2 dt2 (tu))

1 d2 d2u du
言詎(t詎 +2詎
1 d4u d3u

= t(t詎 +4志 ）
1 d4= - '"一

t dt4 (tu).
(17)

By direct substitution from (17) into equation (1), we get equation (16). Conversely if
u(t) is a solution of equation (16) where t = lxl then we can obtain equation (1). The
proof of Lemma 2 is now complete.

Theorem 1. Suppose 「tlf (t)ldt < 00 (18)

and 「心(t)ldt < 00

Then every symmetric solution u(lxl) of equation (1) satisfies

(19)

u(lxl) = O(lxl2) (20)

as lxl-+ oo.

Proof. If we choose po(t) = l/t,p1(t) = P2(t) = p3(t) = l,p4(t) = t, and,= 1,
then all conditions of Lemma (1) are satisfied for equation (16). Hence any solution u(t)
of this equation satisfies tu(t) = 0(t勺 => u(t) = O(t2). The conclusion now follows by
Lemma 2.

Our next lemma is Theorem (3) of our work [5] which gives us a stronger result for
equation (1).
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Lemma 3. Suppose that (6) holds and there exists a number , E (0, 1] and
a continuous function q : [A, oo) -+ (0, oo) such that (13) holds. Suppose moreover
that 「氐-1(t)lf(t)idt < 00 (21)

and 「[J正 1 (t)]尤-1(t)q(t)dt < 00.

Then every oscillatory solution y(t) of (5) satisfies

(22)

lim ly(t)I/Po(t) = 0
t-oo

(23)

This lemma leads us to the following stronger result for equation (1).

Theorem 2. Suppose 「叩(t)ldt < 00 (24)

and 「卣g(t)idt < oo.
Then all oscillatory spherically symmetric solutions u(lxl) of (1) satisfy

(25)

lim lxlu(囯）= 0.
J:z:J-+oo

Proof. Since
k3(t) = O(t勺
J3(t) = O(t勺

and 1 = 1, all conditions of Lemma (3) are satisfied for equation (16). Thus any oscilla
tory solution u(t) of (16) satisfies

Lim u(t)/po(t) = 0.
t-oo

Since Po(t) = t, we have tu(t) -> 0 as t-> oo. The conclusion of the theorem follows.
Our next theorem gives sufficient conditions for all bounded solutions of equation

(1) to be oscillatory.

Theorem 3. Suppose that for any T~A

1 t

Lim之届l (t - s)可(s)ds) = oo (26)



156 BHAGAT SINGH

t

Lim卫OO 信 Ir (t - s扞sf(s)ds) = -oo (27)

and
1 t

Lim 3
t-+oo
戶丨 slg(s)l(t - s) ds < oo.

T
(28)

Then all spherically symmetric bounded solutions u(回）of equation {1} defined
in an exterior domain

缶= {x = (x1,X2,X3): !xi> T}

are oscillatory.

Proof. We prove this for equation (16). Let u(t), to the contrary, be a bounded
nonoscillatory solution of (16). Without loss of generality suppose that u(t) > O for
t 2: T. On direct integration from equation (16), we have

t t

tu"'(t) - Tu"'(T) -丨~u"'(s)ds + 4丨~u"'(s)ds
十［ 吋(s)u(s)ds = ft sf(s)ds

T T

On repeated integration three more times, we get

tu(t) M(t) 1 t (t - s)3
了 一 t3 十戶丨~ 3! sg(s)u(s)ds

1 t(t-s)3
＝百丨~ 3! sf(s)ds (29)

where
M(t) = (C1 + C2(t - T) + C3(t - T)2 + C4(t - T)行

and C1, C2, C3, and C4 are appropriate constants.
Since the left side of (29) is bounded as t 一 oo, and the right hand side swings

between -oo and oo, a contradiction is reached. Hence by virtue of equation (16),
all bounded spherically symmetric solutions u(lxl) of equation (1) are oscillatory.. This
completes the proof.

If in Theorem (3) , we reqmre an additional condition that g(t) > 0 fort 2 A, then
its proof reveals that boundedness of the solutions of (1) or of (16) is not essential. This
leads us to the following stronger theorem.

Theorem 4. In addition to the cond山ons of Theorem (3), suppose g(t) 2 O
fort 2 A. Then all solutions of equation (1) continuable into the exterior domain
Dr are oscillatory.
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Proof. In reexamination of the proof of Theorem (3), we notice that the only
place where boundedness of u(t) is needed is in the integral on the left side of (29). Since
g(t)~O, it is no longer needed. This observation completes the proof.

Example 1. Consider the elliptic equation

.6.2u(lxl) + e-lxlu(lxl) = lxl5 sin(lxl) (30)

where
3 1

回＝（芷 x;)2
i=l

Then the corresponding companion differential equation is

1 d4(ut)
''t dt4

+t-tu=t5sint, t>O (31)

which satisfies all the conditions of Theorem (3). Hence all solutions of equation(30}
continuable beyond the hypersphere

3

芷 吒=T2, T>A.
i=l

are oscillatory.

Remark 1. The proof of Theorem (3) reveals that if in addition to (26), (27),
f(t) is also slowly oscillating then bounded solutions of equations (16) and (1) will also
be slowly oscillating. We state this fact as Theorem (4).

Theorem 5. Suppose th.at (26), (27) and (28) hold. Further suppose that
for any bounded function L(t) the funcition f(t) - L(t)g(t) is slowly oscillating.
Then all bounded solutions of equations (16) and (1) are slowly oscillating.

Proof. Let u(t) be a bounded solution of equation (16). Then by Theorem (3),
u(t) is oscillatory. The oscillation of u(t) implies oscillation of u1v (t). From equation
(16)

d4
''dt4 (tu(t)) = t(f(t)~u(t)g(t))

Since u(t) is bounded, (32) implies that

(32)

d4
dt4 (tu(t))

is also slowly oscillating.
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We now observe an elementary fact that if the derivative of an oscillatory function
h(t) is slowly oscillating so is the function h(t). To see this we note that if h(ti) =
h(t2) = 0, h(t) ::/ 0 fort E (t1,t2) then

「h'(t)dt = 0
ti

(33)

Thus between any two consecutive zeros of h(t), there must be a zero of h'(t). Hence
if h'(t) is slowly oscillating, so is h(t). This observation leads to the fact that slow
oscillation of

d4
dt4 (tu(t))

implies slow oscillation of

d3 d2
(tu(t)) d

dt3'dt2 (tu(t)) 一 (tu(t))'dt

and consequently of tu(t). This completes the proof of Theorem 4

Remark 2. Our next example shows that conditions of Theorem (4) are quite
practical.

Example 2. Consider the equation

1
~2u(lxl) +-sin(Jxl)u(Jxl) = sin(log(Jxl))

囯10 (34)

satisfies the conditions and conclusion of this theorem. This follows from the fact that
for the companion equation

1 d4 1
互t4 (tu(t))十詞 sin(t)u = sin(log(t)), t > O

the function
1
阿 (t10 sin(log(t)) - sin(t)u(t))

is slowly oscillating for any bounded u(t).
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