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SOME PROPERTIES OF FIBONACCI LANGUGAES

CHENG-MING FAN AND H. J. SHYR

Abstract. Two particular types of Fibonacci languages F;,b ={a, b, ab, bab, abbabd,
...} and F.?,b = {a, b, ba, bab, babba, . . .} were defined on the free monoid X* gen-
erated by the alphabet X = {a,b}. In this paper we investigate some algebraic
properties of these two types of Fibonacci languages. We show that a general Fi-
bonacci language is a homomorphical image of either Fal’b of Ff)b. We also study
the properties of Fibonacci language related to formal language theory and codes.
We obtained the facts that every Fibonacci word is a primitive word and for any
w € X+, u? is not a subword of any words in both F:’b and Ff,b'

1. Introduction

This paper is a study of some algebraic properties of Fibonacci languages. Let X*
be the free monoid generated by an alphabet X consisting of exactly two letters, i.e.,
X = {a,b}. Any element of X* is called a word over X and any subset of X* is called a
language over X. Let X+ = X*\{1}, where 1 is the empty word. The length of a word
u € X* is denoted by lg(u).

Let w; = u,ws = v, where u,v € X*. The two types of Fibonacci sequences are
defined recursively as follows:
(1) wy =u, wa =V, W3 = UV, ...,Wn = Wn2Wn—1,Wn+1 = Wn—-1Wn, - -3
(2) wy =u, W =V, W3 =VY,...,Wn = Wn_1Wn-2,Wn4l = WnWn-1,. -
We note that for n > 4, 2-lg(wn—2) < lg(wy) < 2-lg(wn-1).

Let F! , be the set formed by taking the union of the first sequence and F? , be the
set formed by taking the union of the second sequence respectively. That is

F}, = {u,v,uv,vuv,uvvuo, .. .}

and
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F , = {u,v, vy, vuv, vuvvy, .. .}.

We will call F, , a Fibonacci language of type 1 and F? , a Fibonacci language of type
0 respectively. If we take the initial words w; and ws to be the letters a and b, then we
get the two types of Fibonacci languages

Fal‘,, = {a, b, ab, bab,abbab,...} and nyb = {a, b, ba, bab, babba, .. .}.

These Fibonacci languages will be the simplest ones and will be called the I-atom
Fibonacci language and 0-atom Fibonacci language respectively. We will see that
any other Fibonacci languages will related to one of these two atom Fibonacci languages.
For convenience we will consider a Fibonacci language also as a sequence. In order to
discuss properties on languages, we need to define some terms which we need. For any
two languages A, B C X*, let AB = {zy|z € A,y € B} and A* = A°UAUA2UA3U---,
where A® = {1}. If u is a word such that v = zwy, where w € X*,z,9 € X*, then the
word w will be called a subword of u. A subword w of u is a proper subword of u if
u = zwy such that z,y € X*+. For u € X+, let E(u) and E(u) be the set of all subwords
of u and the set of all proper subwords of u respectively. A word u € X+ is called a
primitive word if it can not be written as a power of any other word. We will let Q be the
set of all primitive words over X. And for n > 2, we let Q™ = {f"|f € Q}. In particular
Q™M = Q. We call the word u an overlapping word if u is such that v = wz = yw for
some w € X+, 2,y € X*. Let u,u € X*. We say that v is a conjugate of u if v = zy,
for some z,y € X*, then v = yx. It is easy to see that if v is a conjugate of u, then u is
a conjugate of v. Thus we may call two words with such a property a conjugate pair.
It is known that zy € Q™) if and only if yz € Q™ for any n > 1([3]). A square free
word is a word such that every subword of u is primitive. A word u is cubic-free if no
subword of u is 2° for some z € X*. We let G be the set of all square free words over
X. If X = {a,b}, then G = {a, b, ab, ba, aba, bab}. Let GV) = G; = G and also for any
n > 2, let the set G, = {u € X*|E(u) N Q™ # @} and G™ = G, \ Gpny1. Then clearly,

Xt=6Wue@uyeg®uy...,

and the union is a disjoint union. We note that the set G) UG(?) consists of all cubic-free
words over X. A language L C X is a code if L generates a free submonoid of X*. A
2-code A is a language such that every two elements from A is a code.

In this paper we investigate mostly the algebraic properties of the two types of atom
Fibonacci languages. We show that every atom Fibonacci word is a primitive word. It
is proved that the two types of atom Fibonacci words of the same length is a conjugate
pair. Both F , and F, are 2-codes and each partitioned into two infinite subsets F}!, F}
and F7, F7, all of them are codes. A language L C X* is reqular if L can be recognized
by an automaton or equivalently the index of the principal congruence determined by the
language L is finite. We also obtained the fact that both atom Fibonacci languages are
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regular free languages in the sense that every infinite subset of it is not a regular language.
There are some atom Fibonacci words which are not cubic free. We obtained that for
any v € X, u* is not a subword of any atom Fibonaccci words. The terminologies not
defined in here please refer to [3].

2. Elementary Properties of the Languages F_, and F,,

A mapping h from Xt into X* is called a homomorphism if h(uv) = h(u‘)h(v) for
all u,v € X+. For a given homomorphism ~ : X* — X* and for any language L C X+,
we let h(L) = {h(u) | u € L}. The substitution of the form, for z,y € X+,

a—z,b—y

induces a homomorphism from X+ into X*. For example, if we let h : X + - Xt by
h(a) = u,h(b) = v, u,v € X* be two fixed words, then h is clearly a homomorphism.
Thus the following lemma is immediate.

Lemma 2.1. Ewvery Fibonacci sequence is a homomorphic 1mage of the
atom Fibonacci sequences Fy, or Fy,.

Due to above fact, some algebraic properties of the atom Fibonacci languages can
be carried through by a homomorphism. The study of the algebraic properties on the
atom Fibonacci languages is then important.

In [2] de Luca has proved that every word in F, a_o,b is a primitive word. In here we
give a different proof to show that words in both F}, and Fy, are primitive words. In
order to do this we need the following known result. Recall that a non-empty word f is
a primitive word if f is not a power of any other word.

Lemma 2.2. ([4], [5]) Let a, ¢ be two primitive words. If a™ = c*z (a™ = xc*),
m,k > 2 and z is a prefix (suffiz) of c, then a =c.

Proposition 2.3. The atom Fibonacci languages F2, and F;, are subsets

of Q.

Proof. Consider F,, = {a,b, ba, bab, babba, babbabab, - - -, W, Wni1,Wnt2, -} We
show that every word in Ff,b is a primitive word by using the above lemma. The proof
will be completed by induction on terms. We observe that the first few terms in F 3,1:
are primitive words. Now we assume that wi, wz,. .., Wn—1,Wn are primitive words and
we show that, for n > 3, the term w,41 is also a primitive word. We note that w, =
Wy—1Wn_o and

Wn+1 = Wp—-1Wn—2Wn—1-
Since zy is a primitive word if and only if yz is a primitive word, (Proposition 1.11 [3]),
to show that w, 4 is a primitive word is equivalent to show that the word

u = (Wn-1)?wWn_2
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is primitive. Suppose the word u = f™,m > 2, f is a primitive word. Since w,_s is
a prefix of w,—; in our sequence, by the above lemma, we see that f = w,_;, which
is not possible. Thus the word u is primitive. Therefore w,4; is a primitive word. By
induction conclusion, we have that every Fibonacci word in Ff,b is a primitive word.

For the case of Fal’b, since each Fibonacci word w, is a suffix of w, 1, by a similar
argument and with a help of the above lemma, we can prove that every Fibonacci word
in F, , is a primitive word.

Proposition 4.9 in section 4 generalized the present result.

3. Conjugate Property of two Types of Fibonacci Words

In the two types of atom Fibonacci languages F;, and F, ,, the corresponding terms
of Fibonacci words are of the same length. In the following, we show that they are in
fact a conjugate pair. For convenience, we use the notation v <, v to mean that the
word u is a prefix of the word v and u <, v to mean that the word u is a suffix of the
word v.

To prove the following, we let

Ff’b = {a, b, ba, bab, babba, ...} = {z1, 22, 23, 24, 25, .. .}; (3.1)

F:’b = {a, b, ab, bab, abbab, ...} = {wy,ws, w3, ws, ws, ...}. (3.2)

Lemma 3.1. For n > 1, let z,,w, be the n-th words in Ffib and Fj,b re-
spectively. For n > 3, let z, = z,,2l!, w, = wlwl, where z,,z,w,,,w!! € X* with
lg(zl!) = lg(w)) = 2. Then

[ /]
n = Wnp-

z

Proof. First, by observation for the n-th terms z, in F?, and w, in F!,, we

have that lg(z,) = lg(w,) and z3 = ba, 24 = bab, w3 = ab, ws = bab. Clearly,

ba <s z3, ab <s 24, ab <, ws, ba <, wy. SiNCe Znyo = Zn412n; Wni2 = WnWntl,
clearly for n > 3, we have that, for some z/,w! € X*,

zlba, if n is odd;

"~ { zl ab, if n is even; (33)
abw!, if nis odd;

= {baw:{, if n is even. (3.4)

Our proof will be completed by induction on terms n > 3.

(1) It is clear that for n = 3, z3 = ba = (1)(ba), ws = ab = (ab)(1),25 = 1 = w}; for
n =4, z4 = (b)(ab),ws = (ba)(b), z; = b = wj. Thus the lemma is true for n = 3
and 4.
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(2) Suppose z,, = w;,, for 3 <n <m.
(3) Let n = m + 1. We consider the following two cases:
(a) If m is odd, then n = m + 1 is even, by Equations (3.3) and (3.4) and by
induction hypothesis,

Zn = Zm41 = Zm—1%m
= Zm—-1Zm—2fm-1
=2z _,abzl,_,baz,,_,ab
=w" _ abw!,_sbaw,,_,ab
= W) _Wm—2Wm_1ab

o
= w,,_1Wmab.

On the other hand, by Equation (3.3), Zmt1 = zl,410b, we have then 27, =
w!, _ wm. That is,

L
n =

2L = Wl _wWn—1. (3.5)

Similarly, by Equation (3.4),

Wm41 = Wm—1Wm

= baw!, _1Wm.

Again by Equation (3.4), Wm41 =baw], ,;, then we have that Wiy = W1 W
That is,

"

wl = w,_yWn_1. (3.6)

Now by Equations (3.5) and (3.6), 2, = w},.
(b) If m is even, then m + 1 is odd. By a similar argument as in the case (a), we
can show that z], = wj,.
Summing up Cases (a), (b) and by induction conclusion, we have that z;, = wl, for
n > 3.

Lemma 3.2. Forn > 3, let z, = 2.2/, w, = whwl, where zn, Wn, 2, 2n, Wy, Wy
are the same definitions as in Lemma 3.1. Then

" _ 1
Zpi12n = WnWpiq-

Proof. First, by Equations (3.3) and (3.4), we have

ba, if n is odd;

"__ ) )
= {ab, if n is even. (3.7)

, _ [ab, ifnisodd;
o, = {ba, if n is even. 8)
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Now we consider following two cases:
(1) fn=2k+ 1,k > 1, then, by Lemma 3.1 and Equations (3.3), (3.4), (3.7), (3.8),

1
Zpy1%n = abzog
= abzy, 1 ba
= abwyy ., ba
= war41ba

!
= WnWp -

(2) Ifn=2k+2,k > 1, then, by the similar argument as in (1), we have that 21 ln =
WnWhyg-
By Cases (1) and (2), then for all n > 3, 2]/ 12, = wawl, ;.

Proposition 3.3. Two Fibonacci words in F?, and F}, of the same length
form a conjugate pair.

Proof. Consider Equations (3.1) and (3.2). By observation, we have that 2, =
w1, 22 = W, 23 = ba, w3 = ab and z4 = wy. Thus, for n < 4, z, and w,, form a conjugate
pair.

We now show that for n > 5, z, and w, form a conjugate pair. By Lemmas 3.1 and
3.2, we have that, for n > 3,

Zn42 = Zn+12n
= ;szﬂzn
= Wy WnWnyy
and
Wn42 = WnWn+1
= Wl g Wy
It is now clear that z,42 and w,42 form a conjugate pair. We then conclude that for
n > 5, z, and w, form a conjugate pair.

4. Fibonacci Languages Related to Codes and Formal Language The-
ory

From Lemma 1.7 ([4]) and Proposition 1.25 ([4]), we have that every non-empty
subset of Q is a 2-code. The following lemma follows from Proposition 2.3.

Lemma 4.1. The atom Fibonacci languages F°, and F!, are 2-codes.
g a,b a,b

Lemma 4.2. (1) For Fibonacct words w,,, w49, Wnts in F,, we have wnys
Wnt2 = WnWny3. (2) For Fibonacct words z,, znya, Znis in nyb, we have z,4o2p49 =
Zn+32n.
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Proof. (1) Since wWn43 = Wn41Wni2, We have

WnWnp4+3 = Wn (wn+1 wn+2)
= (wnwn+1)wn+2

= Wn42Wn42-

(2) By a similar way, we can show that (2) holds true.

From the sequences nyb and Fj,b, we see that for any n > 1, the set {wn, Wny1, Wni2}
is not a code. From the above lemma, we see that, for n > 1, the set {wn, Wnt2, Wny3} is
not a code. Moreover, for any code A C F;b such that w.,,, Wmn4+1 € A, for some m > 1,
then, clearly, w,+; ¢ A, for all ¢ > 2. Thus if a subset A of Fi‘b is a code and contains
two consecutive Fibonacci words, then the set A must be finite. Nevertheless, we will
show that F, and F,, contain infinite subsets which are codes. For constructing such
infinite subsets, we just do by partitioning the two types of atom Fibonacci languages.
First we need the following

Proposition 4.3. ([4]) Let A C X*. Then A is a code if and only if

T1To - Tp =Y1Y2 - Un, Tiy ¥ € A, =1,2,...,n implies z; = y;,1=1,2,...,n.
Let
F?, = {a,b,ba,bab,babba, ...} = {z1,22, 23, 24, z5, - - - }; (4.1)
Fj,b = {a,b, ab, bab, abbab, ...} = {w1,ws, w3, wa, ws,...}. (4.2)
and let

F! ={wn € F},|n=1,3,5,7,...}
= {wy, w3, ws,wr,...} (4.3)
= {a, ab, abbab, abbabbababbab, .. .};
Fy = {wn € F},|n=2,4,6,8,...}
= {w2,w4,w6,w8,...} (44)
= {b, bab, bababbab, bababbababbabbababbab, . . .};
B = fon & Fliin=1,3,5,%...]
= {21,23725,27,...} (4.5)
= {a, ba, babba, babbababbabba, . . .};
F) ={z2n € F2}In=2,4,6,8,...}
= {20, 24526, %8s~ + + } (4.6)
= {b, bab, babbabab, babbababbabbababbabab, . . .}.

At this stage we like to give the following remarks:
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Remark.
(1) No words in F} is a prefix of any words in F}} and also no words in Fj is a prefix of
any words in F}.
(2) Every n-th word in F} is a prefix and also a suffix of (n + 1)-th word in F}, n > 2.
(3) Every n-th word in F} is a prefix and also a suffix of (n + 1)-th word in F}, n > 1.
We claim that the four subsets F},F}, F? and F? are codes. First, we prove the
following some lemmas.

Lemma 4.4. Let F} be defined by Equation (4.3). If w, € Fl,n > 1, and
W, = T1%2, for 1 € F} and z € X7, then b <, 2.

Proof. Let w, € F}'. Then n is odd. We have

Wy = (wn——Z)wn——l
= (Wn—4)Wn—3Wn_1
= (wn—ﬁ)wn—sw'n—i’;wnal

= (w1)wawy -+ - Wn_1.
In each expression above for w,, we see that
Wn—-2, Wn—g4, Wn—6, """, W1
are in F}, and ws, wyg, ..., Wn_3, Wy_; arein F}. 1t is now clear that b <p 2.
The following is a dual case of the above lemma.

Lemma 4.5. Let F} be defined by Equation (4.4). If w, € F3,n > 1 and
Wn = T1Z2, for 1 € F}, 72 € X+, then a <p Z2.

Corollary 4.6. Let F?, FY be defined by Equation (4.5), (4.6), respectively
If zp,n > 1, is in the set FY (F3) and z, = 1%, for z; € FY (FY), 22 € X*, then
z1,z2 do not have the same suffizes.

Proposition 4.7. The languages Fl,F},F? and FY are codes.

Proof. We only prove that F} is a code and the proofs of the rest are similar.

By Proposition 4.3, we consider £1%2 - - Tn =Y1Y2 - * * Yn, for n >1 and z1,z3,...,Z,,
Y1,Y2, - - -, Yn € F{. We will show that z; = y;,4 = 1,2,...,n. Our proof will be completed
by induction on n. The proposition holds true for the case n = 1 and we assume that
the proposition is true for all n < k.

Now let n = k and suppose 21%3 - Tn = Y1Y2 - - Yn. First, we show that z; = y;.
Suppose on the contrary x; # y; and no loss of generality, we assume that lg(z1) > lg(y;).
(i) Iflg(x1) = lg(y1), then z; = yy. (ii) If ig(z1) > lg(y1), then welet 21 = y1y2 - - - yi17/,
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for some 1 < i< mn,y. € XT, y; = yly!,yi' € X*. If i > 2, then since 21,31 € F}, by
Lemma 4.4, b <, y2. While since yz € F},a <, v2, a contradiction. Hence z; = y1.
Thus, by both Cases (i) and (i), 1 = y1 and Z2Z3 - - - Tn = Y2Y3 " - - Yn. Now by induction
hypothesis, we have z; = y;,i = 2,3,...,n. Hence z; = yi,1 = 1,2,3,...,n. By induction
conclusion, we have that F} is a code.

We are now in the position to discuss some language properties of the homomorphical
image of the atom Fibonacci language F‘S’b by using the following known result. A code
L C X7 is a pure code means that for any = € L*, the primitive root of z, \/z is in L*
(see [4]).

Proposition 4.8. ([4]) Let h: X* — X* be an injective homomorphism. If
h(X) is a pure code, then h preserves the primitive words.

Proposition 4.9. Let h: Xt — X% be an injective homomorphism such
that h(a) = u, h(b) = v, where a,b € X. Then the Fibonaccci language F,,=hF},)
is a subset of Q if {u,v} is a pure code.

Proof. A direct consequence of the above proposition.

The set {u,v} in the above proposition will be called the core of the Fibonacci lan-
guage F. . In the following, we consider the Fibonacci languages which are homomorphic
images of F, , in which the set {h(a) = u, h(b) = v} is not a code.

Proposition 4.10. Let F!, be a Fibonacci language such that h(a) =
u,h(b) = v. Then F., C f*, for some primitive word f, if and only if {u,v}
is not a code.

Proof. (=) Suppose for some primitive word f such that F; , C ft. Then clearly,
u,v € f+ and {u,v} is not a code.

(<) Assuming that {u,v} is not a code. Then by Lemma 1.25 of [4], wv = vu. By
Lemma 1.7 of [4] the words u and v are powers of a common primitive word. Let the
primitive word be f. Then clearly the Fibonacci language F}, is a subset of f*.

Remark. Every atom Fibonacci word is an overlapping word except for the first
three terms.

Proposition 4.11. ([4]) Let h : X* — X* be a homomorphism. Then the
following are equivalent:
(1) h is injective;
(2) h(X) is a code and |h(X)| = |X];
(3) h preserves codes;
(4) h preserves 2-codes.

We note that two-element set is a 2-code if and only if it is a code.
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Proposition 4.12. The Fibonacci core {u,v}, u # v, is a code if and only
if the Fibonacci language F., is a 2-code.

Proof. (=) The atom Fibonacci language F, , is a 2-code, and F,, , is an injective
homomorphical image of Fal,b, by the above proposition, the conclusion holds.

(<) Since F , is a 2-code, the first two Fibonacci word {u,v} forms a 2-code and
hence {u,v} is a code.

We remark here that if {u,v} is a code, h an injective homomorphism and h(a) =
u, h(b) = v, then the homomorphical images h(Fj) and h(F3) of F} and F}, respectively,
are codes. That is both the sets {h(w,)|n = 2,4,6,8,...} and {h(wn)|n =1,3,5,7,...}
are codes.

In the following we consider the atom Fibonacci languages related to formal language
theory. We will see that both the two languages F, and F, , contain no infinite regular
subsets. In other words, both F_, and F , are regular free.

For a given language L C X*, the principal congruence P determined by L is
defined as follows: for any u,v € X*,

u=v(Py) < (ruwy €L < zvy e Lforall z,y € X*).

In formal language theory, we call the language L C X* regular if the index of Py is
finite. An infinite language L is a regular free language if any infinite subset of L is
not a regular language. We now show the following:

Proposition 4.13. The language F,, (F?,) is regular free.

Proof. We show that Fé)b contains no infinite regular subsets and the proof of the
other case is similar. Let A = {u3,uz,us,...} C {w;, w2, ws,...} be an infinite subset of
F, ,. We show that for any u;,u; € A7 < j,

u; # u;(Pa).

This is true, for if u; = w,, u; = w,, thenr # s. Let z,y € X* be such that zu,y = 2w,y €
A with the length of zy is minimal. Then by the fact that the length of Fibonacci words
are Fibonacci numbers, clearly the word zu;y is not in A. This shows that u; # u;(Pa4)
if ¢ # 7. It follows that the index of P4 is infinite and A is not regular.

5. The Problem of Repetitive Subwords in F,

Lemma 5.1 Let {u,v} C Q be a conjugate pair and let v = zy, v = yzx, for
some z,y € Xt. Then u #v.

Proof. Suppose on the contrary u = v. Then zy = yz, for 2,y € X*. By Lemma
1.7([4]), we have that z and y are powers of a common word. It follows that u,v ¢ Q, a
contradiction. Thus u # v must be true.
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Proposition 5.2. For n > 1, let z,,w, be the n-th words in F_, and F,,
respectively. Then z, # w,, except n =1,2,4.

Proof. The situation is clear for the first five terms. By Proposition 3.3, for n > 6,
{zn,wn} is a conjugate pair in the forms:

Zn = wii_l(wn—zw;_l)

and
Wn = (wn—2w;71 )wii_l .

Since w _;, wn_ow!,_; € X+ and z,,w, € Q, by Lemma 5.1, we have that z, # wn.

Lemma 5.3. Let F},F} be the codes defined in Equations ({.3), (4.4) re-

spectively. Let w € F, ,. The following are true:

(1) If w € F} and v € F} is a prefiz of w, then w = uwvz for some v € F; and
zeX*.

(2) If w € F} and u € F} is a prefiz of w, then w = wvz for some v € F{ and
r€eX*

Proof. The result is clear from the proof of Lemmas 4.4 and 4.5.

Lemma 5.4. Let w, € F.,, n > 1. Then, for the Fibonacci word w;, the
following are true: (1) (w;)? £p wn, for i < n; (2) wi <, wn, for n > 3 and
2<i<n—1;(3) (w;)? <s wn, forn>6 and4<i<n-2;(4) (w;)? &5 wn, fori<mn.

Proof. (1) Since the words in F} start with the letter @ and the words in Fy start
with the letter b, the result holds from Lemmas 4.4 and 4.5.
(2) Since Wy, = Wp—2Wn—1 = Wn—2Wn_3Wn—2 = --- and by the recursion of the words in
F},, we conclude that the result is true.

(3) Consider wi = wg—2wWk—1,k > 3 and from Lemma 4.2(1), Wg—1Wk—1 = Wk—3Wk, We

have
WipWk—1 = Wp—2Wk—-1Wk—1

(5.1)
= Wg—2Wg—-3Wk -
By applying the Equation (5.1), we have w,_oWn—3 = Wn_4Wn—_5Wn—2 and
Wp = Wn-2Wn—-1
= Wy 2Wn—3Wn_2 (5.2)

= Wn—4Wn—5Wn-2Wn-2.

We now show that (w;)? <, wn, for n > 6 and 4 <1 < n — 2. We do this by induction

onn.
(i) For n = 6, ws = bababbab, since (wsg)? <5 we and n — 2 = 4, the result is true.
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(ii) Suppose for some k > 6, and for every 6 < n < k, such that (w;)? <, w,,4 <i <
n— 2.
For n = k+1, by definition, w, = wi_;w;. By assumption (w;)? <, wi,4 <1 < k—2
and then (w;)? <, w,. But by Equation (5.2), then -

Wkl = Wi—3We—q4Wk—1Wk-—1

and then (w,—2)? = (wk—1)? <, w,. By induction conclusion, we have that for every
n>6,(w;)? <, wp,4<i<n—2.
(4) First, we observe that for the case n < 5,7 < n and for n > 6, along with the condition
i=n—1, we have (w;)% £, wp.

We now show that (w;)® £, w,, for n > 6 and i < n — 2. We do this by induction
on n.

(i) For n = 6, we = bababbab and by observation (w;)3, (wq)3, (w3)® and (w4)? are not
suffix of wg. For n=7, w; = abbabbababbab. Again by observation (w;)?, (w2)3, (w3)3,
(w4)® and (ws)? are not suffix of wy.

(ii) Suppose for some k > 6 and for every 6 < n < k, (w;)3 £, wn,i <n—2.

Consider n = k+ 1 and w, = Wg4+1 = Wk—1Wk. By assumption, if i <n—-3 =k -2,
then (w;)3® €5 wi <s wi41. Now consider i = n — 2 = k — 1, applying the Equation (5.2),

we have that
Wy = Wi+1

= Wk—-3Wk—q4Wk—-1Wk—1.
Since lg(wk—3wk-4) = lg(wk—swk—3) = lg(wr—2) < lg(wk-1), then we have (wp_;)* £,
wi+1. Thus by induction conclusion, we have (w;)? £, wn,i < n — 2.
Lemma 5.5. Let w, € F},, n > 6. Then (Wn_qwWn_s5)*wn_y <, w, and
(wn——4wn——5)3 ﬁp Wn,- :

Proof. Consider w, = wp_swn—1. Then
Wn = Wn—2Wn-—1
= wn—4wn—3wn—-3wn—2
= Wn—gWn—5Wn—4Wn—5Wn—4Wn—2.

Thus (wn—4Wn—s)*wn_4s <p wa. Now by the properties of F} and F}, we have w,_s £,
Wn2. It follows that (wn—qwn_5)3 £, wn.

Proposition 5.6. Let w, € Fj,b, n>1 and let v <s Wn. If v <, wy, for some
wy € Fy k> 1, thenv e F,,.

Proof. We prove the proposition by induction on the term n.
(1) By observation, the proposition is true for the first 5 terms.
(2) Assume the proposition is true for the first n terms, n > 1.
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Consider Wpy1 = Wn—1Wn. Let v <; w1 and v <p wy, for some wy € F;’b. If ig(v) <
lg(w,), then v <, w, and, by assumption, v € ijb. If lg(v) > lg(w,) and let v =
ww,, ¥ € X1. Then u <; wp—1. From v <, wy, we have u <, v <, wg. By induction
hypothesis, u € Fi,b. Thus v = w; for some i < n — 1. We claim that 1 = n — 1. Indeed,
if i #n — 1, then there exists an integer j > 2 such that 1 =n —J.
(2-1) If j is even, then 4 = wn—; <, w, and then (wn—;)* <p v <p wy. This
contradicts to Lemma 5.4(1).
(2-2) If j is odd, then, by Lemma 5.3, wn_j43 <, wn. But, by Lemma 4.2(1),
Wn—j+2Wn—j+2 = Wn—jWn—j43 and (wn—j+2)2 = Wp—jWn—j+3 = UWn—j+3 Sp
v<p, wk € F)y
Again this contradicts to Lemma 5.4(1). We then have v = UWpy = Wn—1Wpn = Wnt1 €
Fal’b. This completes our induction proof and the proposition holds.

Proposition 5.7. Let w, be the n-th term of the Fibonacci language F, ,,
n>1 and let
Wn42 = WnWnt1 = m(wi)By» : (53)

where w; € Fj,b,i >1 and z <, Wn, Y <s Wnt1. SUppose w; satisfies Equation (5.3)
with Ig(w;) > lg(w;), for every j satisfies Equation (5.3). Then the following are
true: :

(1) If w; <p Wny1, then i =n — 3. That is, wa_3 <p Wny1 and (wn—3)? <5 Wn.

(2) If wi £p Wny1, then i =n — 2. That is, w4 <, w, and Wn—3(Wn—2)% <p Wny1.

Proof. (1) By observation, for n < 6, we have that w42 ¢ G3. Consider wn41 =
Wn_1Wn, for n > 6. Suppose w; <, wny1. Then by the properties of words in Fj'b,
Wn—k <p Wnt1; for k£ > 1 and k is odd. From the fact that lg((wn-1)?) > lg(wy),
then (wn—1)?> £s w, holds. Now by Lemma 5.4 and the fact that w; is of maximal
length in the sense that wp42 = WpWni1 = z(w;)3y, we must have ¢ = n — 3 such that
(w;)? <5 Wn, W; <p Wny1 and (w;)? € E(wnyz).

(2) Suppose w; £p Wn41. Then let (w;)"u; <5 wa, uz(w;)® <p Wny1, where 7,5 >
0,7+ s =2, w; = uuy, u1,us € XT. It is clear that i <n — 1. But wy—1 <p w41 and
hence i < n — 2. By Lemma 5.4(3), we have (w;)? <, wn.

(i) Ifr > 1, then (w;)"uy <; wn. Thus since (w;)? <; w, and w; = uiuz, the condition
upuy = u1uz holds. By Lemma 1.7([4]), we have that u; and uz are powers of a
common word and then w; ¢ @, a contradiction.

(ii) If » = 0, then u; <, w, and ua(w;)? <p Wpy1. Since vy <p w; and uz <, w;, by

Proposition 5.6, both u; and u, are in Fal‘b. It follows that u; = w;—_2,us = w;—1.
That is w;—1 (w;)? <p Wnt1. Consider

Wn41 = Wn—-1Wn

= Wp—3Wn—2Wn—-2Wn-1

and by Lemma, 5.4(2), wn—4 <s w,. Hence i =n — 2 and (Wn—2)® € E(wny2).
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By the above proposition, we see that F,} ,NG3 # 0 and it is also true that F_ ,NG3 #
@. We now give some concrete examples as follows.

In F),, 21 = a, z2 = b, 23 = ba, 24 = bab, 25 = babba, 26 = babbabab, z; =
babbababbabba, zg = babba(bab)(bab)(bab)abbabab and (bab)? is a subword of zg.
In Fj,, w1 = a, wa = b, wg = ab, wy = bab, ws = abbab, we = bababbab, w; =
abbabbababbab, ws = bababba(bab)(bab)(bab)abbab, and (bab)? is a subword of ws.
There is a word w € X*,u ¢ F, such that u® € E(w,), w, € F,. This can be seen
from the term,

wg = abbabbababb(abbab)(abbab){abbab)bababbab

= abbabbabab(babba)(babba)(babba)bbababbab.

Where both abbababbababbab = (ababb)® and babbababbababba = (babba)® are subwords
of Wg.

In the final part of this paper we will show that for any v € X1, u* is not a subword
of any Fibonacci word.

Proposition 5.8. Let w, € F,,, n > 1. Then (w;)* ¢ E(w,), for every word
wi E F;,b,’b <n.

Proof. By observation, the proposition holds true for n < 9. We now show that
the proposition is true for all » > 10. Suppose, for n > 8,

Wnt2 = WnWny1 = z(w;)*y, for some i.

Then by Proposition 5.7, ¢ can not be n — 1. Consider s = n — 2 and 1 = n — 3. By
Proposition 5.7, we have that one of the following two conditions holds:

(1) If w; <p Wnya, then i =n — 3, ie., Wpo3 <p Wnt1 and (wn—3)? <, w,. If (1) holds,
then by Lemma 5.4(1), (wn—3)? £p Wnt1 and by Lemma 5.4(4), (wa—3)% £, w,, we have
that (wn—3)* € E(wni2). ’

(2) f w; £p Wny1, then i =n — 2, ie., Wy <; Wy and Wp—3(Wn—2)? <p Wnys.

If (2) holds, then (i) we claim that w,—swn—g4 £s wn. If not, then w, _sWn_g = Wp_gwn_3
Wn_4 and we have w,_sw,_4 <; w,. But by Lemma 5.4(2), wo_o <, w,. Since
lg(wn—2) = lg(Wn—qwn_3) = lg(Wn—3Wn_4), we have that wp_sWn_3 = Wp_3w,_4. By
Lemma 1.7([3]), wn—3 and w,_4 are powers of a common word and then w,_» ¢ Q, a con-
tradiction. S0 Wn—2Wn—4 L5 wy. (ii) We claim that w,_3(w,—2)3 %p Wny1. By Lemma
5.5, (Wn—3Wn-4)® = Wn_3(Wn_swn_3)*wn_s £p Wnt1 and then wn_3(Wn—swn—3)® £,
Wnt1. Thus we have that wn_3(wn—2)® = Wa—3(Wn—awn—3)* £p Wat1. By (i) and (ii),
we have that (w,—2)* ¢ E(wny2).

Finally, for ¢ < n — 3, by the recursion of the words in F} ,, we conclude that (w;)* ¢
E(wn42) and the proof is completed.

If w, is the n-th term of Fj’b, n > 4, then w, is an overlapping word. This can be
seen from the fact that
Wn = Wn2Wn_3Wn_2.
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Proposition 5.9. Let w, € F},, n > 1. For w, #u € X*, if u <, w, and
u <, wn, then u € {wiln —2>1>2,n—1i ts even }.

Proof. Let u € X*. If u <, w, and u <, wy, then, by Proposition 5.6 and Lemma,
5.3, we have u € {w;jn —2 >4 > 2,n — 1 is even}.

Lemma 5.10. Let w, € F!,, n > 1. Then the following two conditions hold:

(1) wn £p Wnyr and wy, ¢ E(wWny1),
(2) for n > 2, wn ¢ E(wawn_1).

Proof. (1) By observation, we see that w, £p Wn41. We now show that w, ¢
E(wn41). Suppose wn, € E(wn1). Then, for some z,y € X+,

Wntl = Wn—1Wn = TWnY. (5.4)
Thus lg(z) + lg(y) = lg(w,—1) and there exist w;,,w;, € X* such that
wn = why = whw,.

Then, by Proposition 5.9, w” € {w;ln —2 > i > 2,n — i is even}. Now let w;, = w;,
for some n — 2 > i > 2. Consider w, = Wp_2Wn—1 = Wn—2Wn-3Wn-2. If lg(w;) =
lg(w!) = lg(wn—2), then lg(y) = lg(wn-1). From Equation (5.4), we see that lg(z) =0,
a contradiction. Therefore lg(w;) < Ig(wn—2). From w, = wpy = w;y, we must have
lg(y) > lg(wn—1). This contradicts to that lg(z) +1g(y) = lg(wn—1). The statement (1)
is then true. (2) By similar argument as in the proof of (1), we can prove (2).

Lemma 5.11. Let w, € F},, n > 1. If for some u € X+, u? € E(w,), then
lg(u) < lg(wn—3). In other words, if lg(u) > lg(wn—2), then u? ¢ E(w,).

Proof. Suppose u? € E(wy,) for some n > 1 and lg(u) > Ig(wn-2). Then there
exist «,y,u;, U2, ug, us € X* such that

Wn = Wn—2Wn—3Wn—2 = TUIU2UU4LY,

where © = U1y = U3ls; Wn_3 = UU3; Wn—2 = TUI = ugy. Now
(1) if lg(u1) < lg(u3), then

lg(u) = lg(uy) + lg(un) < lg(us) + lg(us) = lg(wn—3) < lg(wn—2),

which is not true.
(2) If lg(u1) > lg(us), then from the condition that

lg(u) = lg(u3) + lg(ug) > lg(wn—2) = lg(us) + lg(y),

we see that lg(usz) > lg(y) and uz € X . Since lg(u;) > lg(us), there exists z € Xt
such that
u; = uzz, and ug = 2us.
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And then
Wp—2 = TUIZ = 2UQY.

Since z <p Wn—2, 2 <s wn_p and uz € X, then z # w,_, and then by Proposition
5.9, lg(2) < lg(wn—q). Now from lg(usz) > lg(y), we have lg(usy) < lg(ugus) =
lg(wn—3) and then lg(z) > lg(wn_4), a contradiction.

By (1) and (2), the result is true.

Lemma 5.12. Let w, € F} ,n>1. If lg(u) =1g(wn41), then u® ¢ E(wawniiws,).
Moreover, Zf U2 € E(wn+1wn+1wn), then U= Wnti- That iS, 'LL2 ¢ E_'(wnﬂwnﬂwn).

Proof. Suppose Ig(u) = lg(wn+1) and u? € E(wawnyiw,). Let
WnWn41Wn = TUIULUULY,

where z,y,u1,u2,u3,us € X*; ¥ = ujus = uzug and w, = zu; = ULY; Wny1 = UgUz.
Since Ig(u) = lg(wn41), we have lg(u1) = lg(us), lg(us) = lg(us). By uy <, w,, uz <,
Wny1, then uy = ug. But uy <p wai1, ug <, wy, by properties of the sets F! and F},
we see that up # ug. It follows that u = ujuy # uzus = u, a contradiction. The former
part of the lemma is then true.

By the similar argument as in the proof of first part, we are able to show that

’U,2 ¢ E(wn+1wn+1wn).

Lemma 5.13. Let w, € Fry, n > 1 If lg(wnyr) > lg(u) > lg(w,), then (1)
u? ¢ B(Wn41WpWni1Wny1); (2) u® ¢ E(Wni1WnWnt1wy).

Proof. (1) Suppose v* € E(wnt1WnWnt1Wnt1) and for z,y, u1, ug, us, ua, us, ug €

X
Wn+1WnWn41Wni1 = TUTUUZULUSUGY,
where 4 = ujuy = UsUs = UsUg; Wnyp1 = TU; = Usus = UsY;. Wn = UgUs. Since
lg(wnt1) > lg(u) > lg(wy,), by assumption, we have lg(u;) > lg(us),lg(us) < lg(us).
Thus there exist 21,2, € Xt such that u; = uzz;, ug = 21U2; Us = U322, Uy = 2ZoUg.
Hence ’
Wn41 = UqQU5 = Z1UU3Z2 = 21Wn23.

This contradicts to Lemma 5.10(1) and condition of Lemma 5.13 (1) holds true.
(2) Similar argument as the proof of (1) will work for the proof of (2).

By the same technique used in the proof of Lemma 5.13, we are able to show the
following:

Corollary 5.14 Let w, € Fyy n > 1 If lg(wny1) > lg(u) > lg(w,), then (1)
u’ ¢ E(Wn41Wn410nwWnia); (2) u® ¢ E(wnwni1Wnwnyi1).

Proposition 5.15. Let w, € F),,n>1. Then w, ¢ Gy.
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Proof. By observation the proposition is true for n < 7. Now suppose there exists
a j > 1 such that w; € Gs4. Let wy be the first Fibonacci word in F;,b N G4. Then
Wyn_1,Wm—2 & G4. By Proposition 5.8, we have that, (w;)* ¢ E(wm), for w; € Fj’b,
1 < i < m. Thus we consider for the case u ¢ F,, and u* € E(wm). Let

W = Wmn—2Wm—1 = zuty, for some z,y € X*.

Then since, by assumption, wn, is the first Fibonacci word in F, ;,b N G4, we have z <,
Wm—-2, Y Ss Wm—1-
(A) If ig(u) > lg(wm—3), then by Lemma 5.11, u? ¢ E(wmn—1) and then u* ¢ E(wm).
(B) If lg(u) < lg(wm—s), then, by lg(wn) = lg(wn_z) + lg(wn—1) and 3 - Ig(wn—1) <
2.- Il I
lg(u*) < 4-lg(wm—s)

= lg(wm—s) + 3 lg(wm—6)
lg(wm—s) + 2 - lg(wWm—s)
lg(wm—1) + lg(Wm—s)

= lg(wm-3).

A

Thus lg(u?) < lg(wm—3). Since Wy = Wm—2Wm—1 = Wn—4Wmn—3Wm—3Wm-—2 and u*
¢ E(wpn—2),u* ¢ E(wn_1), we have u? € E(Wpm—3Wmn—3). But W _3Wm-3 <s Wm—1
(see Equation (5.2)), we have that u* € E(wn,—1) and this contradict to that wn, is,
by assumption, the first Fibonacci word such that u* € E(wm).

By above (A) and (B), we have if u* € E(wm), then

lg(wm-g) < lg(u) < lg(wm—3)-

In order to complete the proof of that no w € X* \ F, such that ut € E(wy), for
wn, € F,, we consider the following three equations :

W, = Win—2Wm—3Wm-2 = Wm—-4Wm-3Wm-3Wm—-4Wm-3 (55)

Wy, = Win—aWm—5Wm—aWm—5Wm—-4Wm—4Wm—5Wm—4 (5 6)

= wm—ﬁwm—7wm—4wm—4wm—5wm—4wm—4wm——-5wm—4
W, = Win—6Wm—5Wm—5Wm—6Wm—5Wm—5WUm—6Wm—5Wm—4Wm-3 (5.7)

(1) Consider lg(u) = lg(w;),i =m —3,m —4,m — 5. In each case, by Equations (5.5),
(5.6) and (5.7) and looking at the length of u, we see that u? € E(w;w;w;— ). But by
Lemma 5.12 u = w;, this contradicts to u ¢ Fib. Thus we have u? ¢ E(w;w;wi—1).
Hence u* ¢ E(wn).

We now consider the remaining cases:

(2) If lg(wm—s) < lg(u) < lg(wm-3), then by Equation (5.5) we have that u® €
E(Wm—3Wm—3Wm—4Wm—3)- It contradicts to Corollary 5.14(1).
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(3) If lg(wm—s) < lg(u) < Ig(wm—4), then by Equation (5.6), we have that either
(3-1) 4 € E(Wm—4Wim—5Wm—_swpm_s), This contradicts to Lemma 5.13(2); or
(3-2) u € E(Wm—4Wn—5Wm—4Wnm_4), this contradicts to Lemma, 5.13(1).
(4) If lg(wm—¢) < lg(u) < lg(wm_s), then by Equation (5.7), we have that either
(4-1) v® € E(Wm—5Wm—6Wm—_swm_s), this contradicts to Lemma 5.13(1); or
(4-2) u® € E(Wm—5Wn—sWim_gwWm_s), this contradicts to Corollary 5.14(1).
By above (1), (2), (3) and (4), we complete the proof of that there is no word u € XT\F,,
with lg(wm—g) < lg(u) < lg(wm—3) such that u* € E(w,,).
The proof of the proposition is then completed.

For u,v € X, we call v the mirror image of v if u = ajaz - - - a,, for some.r >1
and a1,az,...,a, € X, then v = a,a,_; - --a;. Now we can prove the following corollary.

Corollary 5.16. Let 2, € F), n>1. Then z, ¢ G4.

Proof. If w, is the n-th term of F}, and z, is the n-th term of F),, then z, is
the mirror image of w,. (This can be proved by induction on n and from the fact that
Wn = Wn—2Wn—3Wn—2 and 2z, = 2,_22,_32,_o. ) With this fact it is clear that Zn & Gy,
otherwise w, will be in Gy.

The following is now clear:

Proposition 5.17. The atom Fibonacci languages F), and F}, are subsets
of GW UG yGB).
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