A NOTE ON A FIXED POINT PROPERTY FOR METRIC PROJECTIONS

WAGDY GOMAA EL-SAYED

Abstract. The paper contains a partial answer to a question rasied recently by S.P. Singh concerning the existence of fixed points of metric projections.

Let E be a real Banach space with the norm $\|\cdot\|$. Recall that a subset X of E is said to be a Chebyshev if for every $x \in E$ there exists a unique $z \in X$ such that $\|x - z\| = \operatorname{dist}(x, X)$. In this case we can define the so-called metric projection \mathcal{P}_X of E onto X which assigns to each $x \in E$ the point $z \in X$ such that $\|x - z\| = \operatorname{dist}(x, X)$.

It is well-known [3] that if E is reflexive and strictly convex then every closed convex subset X of E is a Chebyshev set. Thus for every closed convex subset X of a reflexive and strictly convex Banach space E we can define the metric projection $\mathcal{P}_X : E \to X$.

During the conference "Functional Analysis and Applications" held at Gargnano del Garda, Italy (10-14 May 1993) professor S.P. Singh raised the following problem:

Let A, B be Chebyshev sets in a real Banach space E and let P_A , P_B be the metric projections of E onto the sets A and B, respectively. Consider the mapping $P_A P_B$: $A \rightarrow A$. Does there exist a fixed point of this mapping?

Observe that in the case when E is a real Hilbert space the answer is affirmative provided A and B are closed, convex and bounded subsets of E. It is an easy consequence of the fact that the metric projection is nonexpansive in this setting, so the well-known Browder-Gödhe-Kirk fixed point theorem gives the desired answer (cf. [2]). But it is no longer true for other Banach spaces although they have nice geometrical structure. For example, if E is uniformly convex then the metric projection is only continuous [2].

Nevertheless we show that a large class of Banach spaces has fixed point property with respect to the mapping $P_A P_B$.

We define

$$dist(A, B) = \inf\{ ||a - b|| : a \in A, b \in B \}.$$

Let us start with the following Lemma.

Received June 16, 1994; revised December 8, 1994.

Lemma 1. Let A and B be Chebyshev sets in an arbitrary Banach space E. If there exist points $a \in A$ and $b \in B$ such that ||a - b|| = dist(A, B) then a is the fixed point of the mapping $P_A P_B$.

The proof is trivial and is therefore omitted.

Our main result answering the question of S.P. Singh for a large class of Banach spaces is contained in the following theorem.

Theorem 1. Let E be a reflexive and strictly convex Banach space and let A, B be nonempty, bounded, closed and convex subsets of E. Then there exist points $a \in A$ and $b \in B$ such that ||a - b|| = dist (A, B) and simultaneously a is the fixed point of the mapping $P_A P_B$.

Proof. Let $\{a_n\} \subset A$ and $\{b_n\} \subset B$ be sequeces such that

$$\lim_{n\to\infty} \|a_n - b_n\| = \operatorname{dist}(A, B).$$

In view of reflexivity of the space E and the assumption on boundedness of A and B we may assume (taking subsequences if necessary) that $\{a_n\}$ and $\{b_n\}$ converge weakly to points a and b, respectively. By Mazur's theorem we deduce that $a \in A$ and $b \in B$. Next, let us observe that the sequence $\{a_n - b_n\}$ converges weakly to the point a - b. Hence, in view of lower semicontinuity of the norm [1] we infer that

$$||a-b|| \leq \liminf_{n \to \infty} ||a_n - b_n|| = \lim_{n \to \infty} ||a_n - b_n||.$$

This implies that ||a - b|| = dist (A, B).

Finally, applying Lemma 1 we complete the proof.

In order to show that the assumption on boundedness of the sets A and B in the above theorem is essential, consider the following example.

Example. Take the Euclidean plane R^2 . Let A, B be subsets of R^2 defined as follows:

$$A = \{(x, 0) : x \ge 0\},\$$

$$B = \{(x, y) : y \ge 1/x, x > 0\}.$$

Obviously A and B are closed, convex but unbounded subsets of R^2 . It is easily seen that the mapping $P_A P_B$ has no fixed points in the set A.

On the other hand dist (A, B) = 0 but do not exist points $a \in A$ and $b \in B$ such that ||a - b|| = 0.

56

A FIXED POINT PROPERTY FOR METRIC PROJECTIONS

References

- [1] M. M. Day, Normed Linear Spaces, Springer, Berlin-Heidelberg, New York, 1973.
- [2] K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geomety, and Nonexpansive Mappings, Marcel Dekker, New York, 1984.
- [3] G. Köthe, Toplogical Vector Spaces I, Springer, Berlin, 1969.

Department of Mathematics, Faculty of Science, Alexandria University, Alexandria, Egypt.