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ON THE CONSTRUCTION OF UNIVERSALLY OPTIMAL BLOCK
DESIGNS WITH NESTED ROWS AND COLUMNS

HUNG LIN FU AND HSIAO TIEN PAO

Abstract. This paper presents a simple method for constructing universally opti-
mal block designs with nested rows and columns for number of treatments greater
than the number of columns. By allowing a near maximum trace in Ay,p.q, We pro-
pose an initial row-column design to achieve a completely symmetric information
matrix in much lesser than v! blocks. This constructive method is then extended
to the case when balanced incomplete block design is given in the columns.

1. Introduction

A block design with nested rows and columns (BNRC) is a design which has v
treatments and b blocks with p x ¢ experimental units in each. The units in each block
are arranged in two directions, i.e. two nested blocking factors are used; one nested
blocking factor consists of p levels, and the other consists of ¢ levels. Therefore, each
block is a p x ¢ row-column design. When b = 1, a BNRC is an ordinary row-column
design. Let Z,p,4,5 be a class of BNRC designs under the specified design parameters
v,p,q and b. Let A, ,, be a class of row-column designs under the specified design
parameters v,p, and gq. The information matrix associated with treatments under a
design d € A, 4 is well known to be

1 1 1
&
Cd = Td — ENleél = ;NdzNé,‘, + ENdNé, (1)

where 74 is the v x v diagonal matrix of replication numbers of the treatments, Ng, and
N,, are the treatment-row and treatment-column incidence matrices, and Ng = [rq,] is
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the v x 1 matrix, where 74, is the number of times the it" treatment appears in the block.
Futhermore, the matrix C, is symmetric with zero row sums.

Lemma 1.1. Let d = [di,ds,---,db] be a design in Z,,45. Then Cy =
S0, Cua,, where Cy, is the information matriz for t** block, d;.

A mumber of methods for constructing BNRC’s have been developed. Singh and
Dey(1979) and Agrawal and Prasad (1983, 1984) give some balanced incomplete BNRC’s
by using the method of difference. Cheng (1986) constructs some balanced incomplete
BNRC'’s by combining balanced incomplete block designs and balanced BNRC’s. Chang
and Notz(1989, 1990) construct universally optimal BNRC. Kiefer’s (1975) definition of
universal optimality and the sufficient condition for achieving universal optimality are
stated below.

Definition. Let B, o be the class of v X v symmetric nonnegative definite matrices
with zero row sums. Then a design d* € A, 4 is called universally optimal if it minimizes
®(C,) for every & : B, g — (—00, 0] satisfying the following conditions:

(a) @ is convex;
(b) for any Cq € B, 0, ®(AC4) is nonincreasing in the scalar A > 0; and
(c) & is invariant under each permutation of rows and columns of Cy in B, .

Theorem 1.2. Let C = {Cyq : d € A, 4} be a class of matrices in B,,.

Suppose 3d* € A, p,q, Such that Cy satisfies

(a) Cy- is completely symmetric. (That is, C4 = al, +bJ,, where a,b are scalars,
I, is the v x v identity matriz, and J, is the v x v matriz consisting of all
1’s.)

(b) trCq« = max trCy, over alld € A, .

Then d* is universally optimal in the class A, ;4.

Using Lemma 1.1 and Theorem 1.2, Chang and Notz(1989) find universally optimal
BNRC'’s in the lemma below.

Lemma 1.3. Let d be a row-column design in A, v,pg SUCh that trC;
maxgen tr Cq. Permute the treatment labels and let d* = {dl,dz, d,,v} i.e. d* ]
the BNRC with the t-th block being the row-column design d, where d;, € A, 4
is the design resulting from d by one of the v! permutations of the v treatment
labels. Then d* is a universally optimal BNRC in the class Z, p 41

A sufficient condition, given by Chang and Notz(1989), for an initial design having
maximum trace and as a basis for an optimal BNRC by Lemma 1.3 is stated in the
following.

Theorem 1.4. Given v,p,q(p < q), and v { p, let d be a design in Xy 5.
which satisfies
(a) Ing;(R) = 2| <1, |ng;(C) = B| <1, V1,5,
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i.e. the ng;(K) are as nearly equal as possible, K =R or C.
(b) i = p(l; + 1), i=1,2,...,p; and
’ le: 7:=91+1~--7'U,
where 7; = the number of replications of treatment i, I = int(), and
p1 = (fraction part of 1) xv. Then trC; = mazaeatrCa.

Note that, this initial design contains at most ¢ varied treatments. So when v > q,
the method stated in Theorem 1.4 is not desirable.

In section 2, we propose an initial design in A, 4 contains v treatments with v >
g > p and pg > v, which has maximum trace. An universally optimal BNRC can be
constructed by using a simple permutation method. Examples are shown in the end of
this section.

In many instances, maximum trace and completely symmetry from the information
matrix of a design cannot be achieved simultaneously. If an initial design has maximum
trace, the BNRC may need v! blocks to achieve completely symmetry. In section 3, we
present a simple method for constructing initial design. The design has nearly maxi-
mum trace when number of columns is large, but it does not need v! blocks to achieve
completely symmetry.

2. The Construction of an Initial Design with v > ¢

From information matrix Cy of Eq.(1) for a row-column design, we have

v 14
trCa=pg—+ 3 ndu(R) -

1
q =1 k=1 P

S5 nZa(C) + % S, @)
=1

i=1 h=1

where
naix(R) = the number of times, treatment 7 occurs in the kt* row,
nain(C) = the number of times, treatment 7 occurs in the At* column, and
r4, = the number of replications of treatment .

In order to maximize trCy, we need to minimize 3 Y n2;,(K), a = k or h, with constraint
3 S ngia(K) = pg, for K = R or C, and maximize 3 ;_, 3, with constraint ) ;_, r4; =
pg. A sufficient condition for a design in A, ,, to minimize Y ;_; 3-5_; n%;(R) and
S 21 nZ%,(C) is stated in the following.

Theorem 2.1. Given v,p,q(p < q), let d be a design in A, p, which satisfies

Inax(R) - 4| < 1,and Ingin(€) - DI <1, Visk,h. 3)
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Then
v p
S nk(R) = mmzznd,kuz) pl(v — 1) + 12(l2 + 1)%], and
=1 k=1 =1 k=1
v q
> nii(C mmZan,k(c ) = ql(v — 1)+l + 1),
1=1 h=1 i=1 h=1

where Iy = int(2), v, = (fraction part of 2)v, ly = int(1), and
v2 = (fraction part of 1)v.

Proof. According to the method of Lagrange multiplier, we consider

v P v P
= Z Znﬁik(R) + )\1(2 anik(R) - pg), and

i=1 k=1 i=1 k=1
Z Z nZn(C) + A-.»(Z anm(C) Pa).
i=1 h=1 i=1 h=1
Then
Ok =2n4it(R)+ A1 =0, Vi, k,and
and;k(R) dik 11— » vy
oF, .
= Dy =0, Vih
andih(c) 2ng4 h(C) + A2 i, h
Solving these equations, we have
v P
nair(R) = nain(R) = -+ =naip(R), i =1,---,v, 3 _ Y _nax(R) = pg, and
i=1 k=1
v P ]
nai1(C) = ngia(C) = -+ = n4ig(C), i =1,---,v, I Y nain(C) = pg.
i=1 h=1

In other words, ng4ix(R) = int(2) or int(2) + 1, and 74 (C) = int(E) or int(2) +1 (ie.
[naix(R) — 2| < 1 and |n4in(C) — B| < 1,Vi,k, h). From this results, - > n%, (R) and
3> Y"n2,,(C) can be minimized for d € A. From (3), we can conclude that

v P v B
E Z ni-ik (R) = ggg Z Z n?ﬁk (R), and

i=1 k=1 i=1 k=1
Zanm €)= mmZanm(C)
i=1 h=1 i=1 h=1

For design d, in each row, we have (v—1y) treatments occured > times and 7, treatments
occured I3 + 1 tines, in each column, we have (v — ;) treatments occured /; times and
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v treatments occured /3 + 1 times. This implies

Z Z ni’ik(R) = pl(v - ’72)l§ + 72(le + 1)2], and

=1 k=1

v q
33" 02,(0) = gl(w = B +m(l +1)7].
=1 h=1
This concludes the proof.
In many instance, treatments number is greater than columns number. In case that
each treatment occurs at least once in every block, a sufficient condition for an initial
design to have maximun trace is stated in the following.

Theorem 2.2. Let A, ,, be a subclass of A, p,, with parameters v > q > p,
pg > v andry > 1 (i.e. each treatment occurs at least once). Letd € A, pq which

satisfies
(a) ng(R) =0 or 1 and ng,(C) =0 or 1; Vi,k, h, and

D1, ‘i=1,2,...,61;
G rg=9m—1, i=c+1,...,q; and
1, i=q+1,...,7,

where rj; is the number of replications of treatment i in d, ¢1 = q— (fraction part
of *3%)q, and py =p — int(*52). Then trCy=maz c;trCa.

Proof. Since condition (a) satisfies (3), this implies that ¥ Yn3, (R)= minge 5
S n%,(R) =pgand Y Y n3, (C) = n}indveé > Y n2,, (C) = pg. Thus one only needs
to show 3_;_,; r2, being maximum with d € A.

Design d, as described in Theorem 1.4, has maximum trace in Ay pq With 75, =

Tgo = o = T =Py a0d Ty 1) = Tjgpa) = " = Tdy = 0 (when v > ¢). Then
172 = qp® = maXaea Yv_ 3. Since it also satisfies (3), 50 303 n?, (R) = pq and
We now show that when T increases for j = ¢+1,¢+2,---,v, the maximum value

Si-y 72, decreases (subject to S 7y = pg). Let d’ be a design satisfying condition
(a) with 74,41y = ™1, (0<m <&, and my =my1 +mi2 + - + mi,), and Tir(qr2) =
=Ty = 0. Then vy, +1gy+-+14, =pg—m1. The difference between Y7, 7%,
and y7_; %, is in the following:

v v v
_ 2 2 _ 2 2
R= zT«ii”ZT(i% =4qp —ZT&%
=1 i=1 i=1
=-mi+[p’ - (p- my )]+ + P —(p—(mi—mp—-— ml(q—l)))2]'

Then ;—Ti = 2(p — 2m;) > 0. This implies that ETZ‘,- decreases (subject to Y . 4, =

pq) when m; increases. Therefore ZT%,,- has the largest value when 75,4y = M1 =
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1. Extending this result, we conclude that Y7, r% is maximum if we put Td(g+1) =
=14, = 1, in case that each treatment occurs at least onec. So irC;

Td(g+2) = * 7
max ez trCq.

The resulting design d looks like the following:

q+(q+1) co “ee v 1 2 oo C1
Lg—p1+3 g-pr+4 - - 1 q—p1+2]

Note that, if g|v, ry; is represented in the following:

p— 14 1=1,2,...,q
riiz q K
1 i=q+1,...,v.

We use some examples to show that the design d with the above structure exists.

Example 1. Consider a design with parameters v = 11, p = 4, and ¢ = 4, where
v fp. By the above theorem, we have ¢; = 1 and p; = 3. The following initial designs d;
and d; satisfy respectively the conditions listed in Theorem 2.2 and Theorem 1.4.

BLOCK(d;) BLOCK(d)
05 06 07 08 01 02 03 04
09 10 11 01 04 01 02 03
01 02 03 04 03 04 01 02
04 01 02 03 02 03 04 01

Example 2. Consider a design with parameters v = 10, p = 4, and g = 5, where
glv. The following initial designs d; and d; satisfy respectively the conditions listed in
Theorem 2.2 and Theorem 1.4.

BLOCK(d,) BLOCK(d,)
6 7890 12345
12345 23451
23451 34512
34512 45123

The following example shows that we need only 12 blocks to obtain completely
symmetric information matrix. (The result mentioned in Theorem 1.4 needs 24 blocks.)
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Example 3. Consider a design with parameters v = 4, p = 2, and ¢ = 3. In the
followings, there are two initial designs d; and d;, where d; satisfies the conditions listed
in Theorem 2.2, and d; satisfies those of Theorem 1.4.

BLOCK(d:) BLOCK(d; )
4 1 2 1 2 3
1 23 312

Take elevem permutations for the treatment labels in design dy, ie.
{(43), (23), (324), (341), (1234), (412), (23)(14), (2314), (24), (342), (3124)},

we obtain da, ds, - - -, dy2 in the following:

BLOCK

312 413 314 132 123 124
124 132 142 324 234 243

143 243 214 213 324
432 431 143 134 241

Let d* = {Jl, R ,Jlg}, it is an universally optimal BNRC in Z4,2 3 12-

3. Construct an Initial Design with Trace Nearly Maximum
The method of the construction is described in the following theorem.

Theorem 3.1. Given v,p,q(p < q), Let d be a design in A, ,, which satisfies

q p s @
(a) |nJij(R) - ;I < 11 Ind-ij(o) - ;l < 11 VZ,], and

Pq
Bz - 2 <1,

where 5 1s the number of replications of treatment i in d.
Then trC; —q—00 mazqcatrCy.

Proof. If (a) is satisfied, we see that ZZnZ-ik(R) and Zzngih(C) will be

minimized. By Theorem 1.4, we have };_, r2 = maxsea 3;_, 75, So the difference
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between trC; and trCj is in the following.

tTCd‘ — t'rC& ts -l-(ZTZ — ZT?{’.)
pq =1 t =1
1
=g TP W12 + prp* (I +1)%) = [(v — p2) I3 + p2(2 + 1)°]
1
'—'E(P?[va +(1+20)p1] — (vI3 + 2L3p3 + p2))

_1 q4—p
—-;a(pz[(—v“‘)% +(1+2

P2 — p2)

Q“Pl)pl]_v(m—P2)2_2Pq"‘P2
v v v
_19m@—p1)+p2(p2 =)

Pq v
1P _p
“pq 4v 4q’

where I; = int(2), p1 =(fraction part of £) x v, I = int(ZL) and p; =(fraction part of
B) x v. Since p and v are fixed, hence t7Cj — 400 MmaXgen trCy.

For BNRC, if an initial row-column design d, is also a BIBD when columns in d are
considered as blocks, satisfies condition (a) and (b) in Theorem 3.1. Then we need only
few blocks to obtain completely symmetric information matrix. The following example
is given to show the above result.

Example 4. Consider the case of v = 6, p = 3, and ¢ = 10, a possible initial
design dy, is a BIBD(6,10,5,3,2) when columns in d; are considered as blocks, satisfies
the conditions listed in Theorem 3.1 is presented in the following. dy in the following, is
a possible design in Ag 3,10 satisfying Theorem 1.4.

BLOCK(d;) BLOCK(d,)
1156635234 12345612314
2211564543 2345612341
3434122656 3456123412

The differences between trC; and trC; are computed.

trC"i1 - trC’J1 =20-19.6 =0.4 and

trC’,i1 —trCj; 04
—_— 2 = — =0.02
trC‘il 20

Take nine permutations for the treatment labels in dy, ie.

{(546), (456), (45), (53)(64), (523), (562), (526), (34), (53)},
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1145534236
2211456463
3636122545

1134453256
2211346365
5656122434

1125532634
6611254243
3434166525

we obtain da, ds, ..., dyo in the following:

BLOCK

1164436235
2211645653
35351224614

1136652354
3311264245
5454133626

1156645243
2211563534
4343122656

1146634235
2211465453
3535122646

1162236534
5511624643
3434155262

1136653254
2211364345
5454122636

75

Let d* = {d.l,(iz,...,lim}, it is a nearly universally optimal BNRC in Zg 3 19,10-
The method stated in Theorem 1.4 may need 6! blocks for completely symmetric from
information matrix.

Conclusion Remark. In this paper, we propose two initial designs stated in
Theorem 2.2 and Theorem 3.1 as bases for universally opotimal BNRCs. when the num-
ber of treatments(v) is greater than the number of columns(g), and for each treatment
occured at least once in a block, then the design d stated in Theorem 2.1 will have max-
imum trace. Furthermore, by using simple permutation method, a complete symmetric
information matrix can be achieved in lesser than v! blocks. According to Theorem 3.1,
if the design need larger number of columns, using d with BIBD in its columns, we obtain
an initial design with nearly maximum trace, and a nearly universally optimal BNRC
can be achieved in much less than v! blocks.
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