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ON THE CONSTRUCTION OF UNIVERSALLY OPTIMAL BLOCK
DESIGNS WITH NESTED ROWS AND COLUMNS

HUNG LIN FU AND HSIAO TIEN PAO

Abstract. This paper presents a simple method for constructing universally opti
mal block designs with nested rows and columns for number of treatments greater
than the number of columns. By allowing a near maximum trace in l!.v ,p.q, we pro
pose an initial row-column design to achieve a completely symmetric information
matrix in much lesser than v! blocks. This constructive method is then extended
to the case when balanced incomplete block design is given in the columns.

1. Introduction

A block design with nested rows and columns (BNRC) is a design which has v
treatments and b blocks with p x q experimental units in each. The units in each block
are arranged in two directions, i.e. two nested blocking factors are used; one nested
blocking factor consists of p levels, and the other consists of q levels. Therefore, each
block is a p x q row-column design. When b = 1, a BNRC is an ordinary row-column
design. Let 己v,p,q,b be a class of BNRC designs under the specified design parameters
v, p, q and b. Let 6.v,p,q be a class of row-column designs under the specified design
parameters v, p, and q. The information matnx associated with treatments under a
design d E 6.u,p,q is well known to be

1 1 1
Cd= r! - -Nd1戍 --N卟'd2 + - 凶Nj,q p pq

(1)

where r~is the v x v diagonal matrix of replication numbers of the treatments, Nd1 and
Nn2 are the treatment-row and treatment-column incidence matrices, and 凶 ＝乜] is
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the v x 1 matrix, where rd, is the number of times the ith treatment appears in the block.
Futhermore, the matrix Cd is symmetric with zero row sums.

Lemma 1.1. Let d = [d1,d2, · · ·,d&] be a design in 3v,p,q,b·Then Cd =
蠶1 佤 ，where Cd, is the information matrix for tth block, dt.

A mumber of methods for constructing BNRC's have been developed. Singh and
Dey(l979) and Agrawal and Prasad (1983, 1984) give some balanced incomplete BNRC's
by using the method of difference. Cheng (1986) constructs some balanced incomplete
BNRC's by combining balanced incomplete block designs and balanced BNRC's. Chang
and Notz(l989, 1990) construct universally optimal BNRC. Kiefer's (1975) definition of
universal optimality and the sufficient condition for achieving universal optimality are
stated below.

Definition. Let Bv,o be the class of v x v symmetric nonnegative definite matrices
with zero row sums. Then a design d* E~v.p,q is called universally optimal if it minimizes
<I>(Cd) for every <I> : Bv,o ---+ (-oo, oo] satisfying the following conditions:
(a) <I> is convex;
(b) for any Cd E Bv,o, <I>(ACd) is nonincreasing in the scalar A~O; and
(c) <I> is invariant under each permutation of rows and columns of Cd in Bu,O·

Theorem 1.2. Let C = {Cd : d E~v.p,q} be a class of matrices in Bv,O·
Suppose 3d* E~v.p,q, such that Cd. satisfies
(a) Cd·is completely symmetric. (That is, Cd·= alv+blv, where a,b are scalars,
Iv is the v x v identity matrix, and lv is the v x v matrix consisting of all
1's.)

(b) trCd• = max trCd, over all d E~v.p,q·
Then d* is universally optimal in the class~v.p,q·

Using Lemma 1.1 and Theorem 1.2, Chang and Notz(l989) find universally optimal
BNRC's in the lemma below.

Lemma 1.3. Let d be a row-column design in~v"p,q, such that t凸 ＝
maxdEL\.trCd. Permute the treatment labels and let d* = {d1,d2, ...心},, i.e. d* is
the BNRC with the t-th block being the row-column design dt where dt E~v,p,q
is the design resulting from d by one of the v! permutations of the v treatment
labels. Then d* is a universally optimal BNRC in the class 己v,p,q,v! ·

A sufficient condition, given by Chang and Notz(l989), for an initial design having
maximum trace and as a basis for an optimal BNRC by Lemma 1.3 is stated in the
following.

Theorem 1.4. Given v,p,q(p~q), and v f p, let d be a design in~v.p,q
which satisfies
(a) JnJij(R) - 钅丨< 1, JnJ.ij(C) - 钅丨<l, Vi,j,
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i.e. the nd.i1(K) are as nearly equal as possible, K = R or C.

(b)
p(/i+l), i=l,2, ... ,p1;and

r;={pli, i=pi+l. .. ,v,
where r; = the number of replications of treatment i, Ii= int(;), and
P1 = (fraction part of 钅） xv. Then trCd. = maxdEAtrCd

Note that, this initial design contains at most q varied treatments. So when v > q,
the method stated in Theorem 1.4 is not desirable.

In section 2, we propose an initial design in b..v,p,q contains v treatments with v >
q 2: p and pq 2: v which has maximum trace. An universally optimal BNRC can be
constructed by using a simple permutation method. Examples are shown in the end of
this section.

In many instances, maximum trace and completely symmetry from the information
matrix of a design cannot be achieved simultaneously. If an initial design has maximum
trace, the BNRC may need v! blocks to achieve completely symmetry. In section 3, we
present a simple method for constructing initial design. The design has nearly maxi
mum trace when number of columns is large, but it does not need v! blocks to achieve
completely symmetry.

2. The Construction of an Initial Design with v > q

From information matrix Cd of Eq.(l) for a row-column design, we have

1 " P 1 " q 2 1 1J

trCd =pq- -LL心(R) - - 瓦芷辶 (C)+-芝 r~. (2)
q i=l k=l p i=l h=l pq i=l

where
ndik(R) = the number of times, treatment i occurs m ththe k row,
n州C} = the number of times, treatment i occurs in the hth column, and
rd, = the number of replications of treatment i.

In order to maximize trCd, we need to minimize LL吋ia(K), a= k or h, with constraint
2LLndia(K) = pq, for K = R or C, and maximize L~=l rd, with constraint L~=l rd, =

pq. A sufficient condition for a design in t::..v,p,q to minimize 立~1 L:=1 n~;k(R) and
立~1Lq 2 (C}h=l ndih is stated m the following.

Theorem訌 Given v,p,q(p:::; q), let d be a design in t::..v,p,q which satisfies

q p
lnJ.ik(R) - -I < 1, and lnJ.ih(C) - -I < 1, Vi, k, h

V V
(3)
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Then
V p ti p

LL弘(R) =咢LL心(R) = p[正這三 12 + 1)叮 ，and
i=l k=l i=l k=l

V q V q

芷芷 n缸 (C)=minLL 2 =q[(v五1)l? + ,1(l1 + 1)叮 ，
dE.C.

ndik(C)
i=l h=l i=l h=l

where 11 = int(;), ,1 = (fraction part of 钅）v, l2 = int( 钅），and
,2 = (fraction part of 钅）v.

Proof. According to the method of Lagrange multiplier, we consider

F1 主 立 比(R)+A1(立立 dik(R) - 四 ），and
t=l k=l i=l k=l

凡＝立立心 (C)十入心 立 州C) - pq)
•=1 h=l i=l h=l

Then
0F1
andik(R)

= 2ndik(R) + A1 = 0, Vi, k, and

0F2
an却,(C)

= 2ndih(C) + A2 = 0, Vi, h.

Solving these equations, we have

ti p

ndi1(R) = ndi2(R) =· · ·= ndip(R), i =I,···,v, 芷芷ndik(R) = pq, and
i=l k=l

ti p

ndi1(C) = ndi2(C) =· · ·= ndiq(C), i =I,···, v, 芷芷 'Tidih(C) = pq.
i=l h=l

In other words, ndik(R) = int(;) or int(;)+ 1, and ndih(C) = int(;) or int(;)+ 1 (i.e.
lndik(R) - ;I < 1 and lndih(C) - 引< 1, Vi, k, h). From this results, LL n缸 (R) and
LL n~ih(C) can be minimized ford E~- From (3), we can conclude that

1J p 1J p

芷芷心 (R) = 盟翌LL心 (R), and
i=l k=l i=l k=l
V q 1J q

LL弘(C) =霄LL心(C)
i=l h=l i=l h=l

For design d, in each row, we have (v - 12) treatments occured l2 times and ,2 treatments
occured l2 + 1 times, in each column, we have (v 一 11) treatments occured 11 times and
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,1 treatments occured li + 1 times. This implies
V p

芷芷弘 (R) = p[(v - 這五(h + 1忤], and
i=l k=l
V qLL心 (C) = q[(v五i)zr + ,1(1i + 1)叮
i=l h=l

This concludes the proof.
In many instance, treatments number is greater than columns number. In c邸e that

each treatment occurs at le邸t once in every block, a sufficient condition for an initial
design to have maximun trace is stated in the following.

Theorem 訌 Let~v,p,q be a subclass of~v,p,q with parameters v > q 2: p,
pq 2: v and rdi 2: 1 (i.e. each treatment occurs at least once). Let d E~v,p,q which
satisfies

(a) ndik(R) = 0 or 1 and ndih(C) = 0 or 1; Vi, k, h, and

(b) r;, ~{ ::·-1,
1,

i=l,2, ... ,c1;
i = c1 + 1, , q; and
i=q+l, ,v,

where rdi is the number of replications of treatment i in d, c1 = q - (fraction part
of亨)q, and p1 = p- int(~). Then trC·=max·q d dEAtrCd,

Proof. Since condition (a) satisfies (3), this implies that LL吋,k(R)= mindEA
LL n~ik(R) = pq and LL 吐，h(C) = mindEA LL吋ih (C) = pq. Thus one only needs
to show LV 2

i=l dir. being m邸1mum with d E~-
Design d, as described in Theorem 1.4, has maximum trace m~v,p,q with rJi =

勺2 = ... = rdq = p, and rd(q+l) = rd(q+2) =· · ·= rdv = 0 (when v > q). Then
它 r~. = qp2 = maxdEA它I T2i=i i=l d; . Since it also satisfies (3), so LL弘(R) = pq and

LL兀1·dih (C) = pq.
We now show that when r·. increases for j = q + l, q + 2, · · ·, v, the maximum valuedJ

立=1弓i decreases (subject to LI=i rdi = pq). Let d1 be a design satisfying condition
(a) with TJ.,(q+l) = mi, (0 <叩 ＜钅，and m1 = m11 + mi2 十.. ·+ m1q}, and rrt'(q+2) =
... = rd'(v) = O. Then rd•i + r ,h +· · ·+ rd•q = pq - m1. The difference between LI=i 弓，
and Lv 2 .r.i=l d'i is m the following:

V V V

R= 芷弓i -L rL = qp2 -L rL
i=l i=l i=l

= -mi + (p2 - (p - m氙 ］十 . . + [p2 - (p - (m1 - mu -· · ·- m1(q-l}))叮

Then 鷓 =2(p - 2m1) > 0. This implies that I:弓i decreases (subject to I:;=1 rdi =
pq) when m1 increases. Therefore Lr~has the largest value when rd•(q+l) = mi =d'i
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1. Extending this result, we conclude that I::=1 rt is maximum if we put rJ.(q+l) =
TJ.(q+2) = ... = TJ.v = 1, in C邸e that each treatment occurs at least onec. So trCJ. =
maxdE6. trCd.

The resulting design d looks like the following:

q+q
V 1 2· ··C1

q
q-1

q+l q+2
q+(q+l)

1 2
q 1 2

q-p1+3 q-p1+4 1` q-p1+2

Note that, if qlv, rdi is represented in the following:

TJi = { i-乎 i = 1, 2, , q
i = q + 1, ,v.

We use some examples to show that the design d with the above structure exists.

Example 1. Consider a design with parameters v = 11, p = 4, and q = 4, where
v Jp. By the above theorem, we have c1 = 1 and p1 = 3. The following initial designs d1
and d1 satisfy respectively the conditions listed in Theorem 2.2 and Theorem 1.4.

BLOCK(和 BLOCK(和
05 06 07 08 01 02 03 04
09 10 11 01 04 01 02 03
01 02 03 04 03 04 01 02
04 01 02 03 02 03 04 01

Example 2. Consider a design with parameters v = 10, p = 4, and q = 5, where
q丨v. The following initial designs d1 and d1 satisfy respectively the conditions listed in
Theorem 2.2 and Theorem 1.4.

BLOCK(和
6 7 8 9 0
1 2 3 4 5
2 3 4 5 1
3 4 5 1 2

BLOCK(和
1 2 3 4 5
2 3 4 5 1
3 4 5 1 2
4 5 1 2 3

The following example shows that we need only 12 blocks to obtain completely
symmetric information matrix. (The result mentioned in Theorem 1.4 needs 24 blocks.)
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Example 3. Consider a design with parameters v = 4, p = 2, and q = 3. In the
followings, there are two initial designs d1 and 社 where d1 satisfies the conditions listed
in Theorem 2.2, and d1 satisfies those of Theorem 1.4.

BLOCK(和
4 1 2
1 2 3

BLOCK(和
1 2 3
3 1 2

Take elevem permutations for the treatment labels in design d1, i.e.

{ (43), (23), (324), (341), (1234), (412), (23)(14), (2314), (24), (342), (3124) },

we obtain 心 為，···, d12 in the following:

BLOCK

2

4

1

2

3

1

3

2

1

3

4

1

4

2

1

4

3

1

2

4

3

2

1

3

3

4

2

3

1

2

4

3

2

4

1

2

3

2

4

3

1

4

3

1

4

3

2

4

4

3

1

4

2

1

3

4

1

3

2

1

4

1

2

4

3

2

Let d* = {祈 ,d2,·..'扣}, it is an universally optimal BNRC in 34,2,3,12·

3. Construct an Initial Design with Trace Nearly Maximum

The method of the construction is described in the following theorem.

Theorem 3.1. Given v,p,q(p Sq), Let d be a design in Llv,p,q which satisfies

q p
(a) 丨，tJii(R) - -I< 1, lnJ.ii(C) - -I< 1, Vi,j, and

V V

(b)Irdi
pq- - - < 1,
V I

where rJ, is the number of replications of treatment i in d.
Then trCJ 古 .....= maxdeAtrCd.
Proof. If (a) is satisfied, we see that LL吐k(R) and LL吐h (C) will be

minimized. By Theorem 1.4 we have 2 2立'=l 勺，= maxdEA L;=1 rd,. So the difference
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between trCJ and trCJ is in the following.

V V

trCd - t西 ＝上（芷 弓 －`芝 弓 ）`pq i=l i=l

＝上 [(v - pi)p2If+ p面(/1 + 1)2] - [(v - P2)li + P2(/2 + 1)叮
pq
1＝一 (p2[Ifv + (1 + 2Ii)p1] - (vli + 212P2 + P2))

pq
1 q - P1 q - P1 pq - P2 2 pq - P2＝一 (p2[(一 )2v + (1 + 2-)P1] - v(-) - 2 P2 - P2)

pq V V V V

1 p2p1(v - P1) + P2(P2 - v)
＝pq V

＜
1 p主 pv"'""""'"" = ....

-pq 4v 4q'

where Ii = int(;), p1 =(fraction part of ;) x v, h = int(~) and P2 =(fraction part of
茫）xv. Since p and v are fixed, hence trCd -+q-oo maxdE.O. trCd.

For BNRC, if an initial row-column design d, is also a BIBD when columns in d are
considered 邸 blocks, satisfies condition (a) and (b) in Theorem 3.1. Then we need only
few blocks to obtain completely symmetric information matrix. The following example
is given to show the above result.

Example 4. Consider the c邸e of v = 6, p = 3, and q = 10, a possible initial
design 直 is a BIBD(6,10,5,3,2) when columns in 缶 are considere_? 邸 blocks, satisfies
the conditions listed in Theorem 3.1 is presented in the following. d1 in the following, is
a possible design in Ll6,3,1o satisfying Theorem 1.4.

BLOCK(d1)
1156635234
2211564543
3434122656

BLOCK(祖）
1 2 3 4 5 6 1 2 3 4
2345612341
3 4 5 6 1 2 3 4 1 2

The differences between trCd.1 and trCJ1 are computed.

trCJ1 - trCJ.1 = 20 - 19.6 = 0.4 and
trCJ1 - trCJ.1 0.4

= - =0.02
trCJ1 20

Take nine permutations for the treatment labels in 直 i.e.

{(546), (456), (45), (53)(64), (523), (562), (526), (34), (53)},
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we obtain d2, d3, ... , d10 in the following:

BLOCK

1145534236 1164436235 1146634235
2211456463 2 2 1 1 6 4 5 6 5 3 2 2 1 1 4 6 5 4 5 3
3636122545 3 5 3 5 1 2 2 4 6 4 3 5 3 5 1 2 2 6 4 6

1 1 3 4 4 5 3 2 5 6 1136652354 1 1 6 2 2 3 6 5 3 4
2 2 1 1 3 4 6 3 6 5 3 3 1 1 2 6 4 2 4 5 5 5 1 1 6 2 4 6 4 3
5 6 5 6 1 2 2 4 3 4 5 4 5 4 1 3 3 6 2 6 3 4 3 4 1 5 5 2 6 2

1 1 2 5 5 3 2 6 3 4 1 1 5 6 6 4 5 2 4 3 1 1 3 6 6 5 3 2 5 4
6 6 1 1 2 5 4 2 4 3 2 2 1 1 5 6 3 5 3 4 2 2 1 1 3 6 4 3 4 5
3434166525 4 3 4 3 1 2 2 6 5 6 5 4 5 4 1 2 2 6 3 6

Let d* = {心 心 ，．．．，和 } , it is a nearly universally optimal BNRC in 26,3,10,10-
The method stated in Theorem 1.4 may need 6! blocks for completely symmetric from
information matrix.

Conclusion Remark. In this paper, we propose two initial designs stated in
Theorem 2.2 and Theorem 3.1 邸區 es for universally opotimal BNRCs. when the num
ber of treatments(v) is greater than the number of columns(q), and for each treatment
occured at least once in a block, then the design d stated in Theorem 2.1 will have max
imum trace. Furthermore, by using simple permutation method, a complete symmetric
information matrix can be achieved in lesser than v! blocks. According to Theorem 3.1,
if the design need larger number of columns, using d with BIBD in its columns, we obtain
an initial design with nearly maximum trace, and a nearly universally optimal BNRC
can be achieved in much less than v! blocks.
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