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THE FAMILY OF FUNCTIONS Sa,k
AND THE LIENARD EQUATION

HAMILTON LUIZ GUIDORlZZI

Abstract. In this paper we study qualitatively the Lienard Equation x + f(x)x +
g(x) = O with aid of the non-usual family of funct10ns given by

y+F(司-aG(x)-k :z,

｀位，y) = 1 土dx + 1 g(u)du

where F(x) == Ji。~/(u)du.G(x) == Ji。~g(u)du and a, k f R

1. Introduction and Prelimanaries

Throughout this work we consider the equation

x+f(x)x 十 g(x) = 0

where f and g are functions of 民 in 民 satisfying the following conditions:
a) f and g are continuous and ensure uniqueness of solutions.
b) x.g(x) > 0 for x f. 0.
Next, we suppose the above conditions are ven e·fi d and they will not be mentioned again.

The equation (1) is equivalent to the system

{:: ~f(x)y 一 g(x)

The condition b) ensures the orign (0,0) is the only singular point of (2).
The more natural positive definite function for studyng qualitatively the system (2)

is the Energy Function
1 :z:

E(x, y) = -y2
2
+ / g(u)du
。
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whose derivative relative to (2) is E(x,y) = -f(x)y2.
In [l] we study qualitatively (2) using the family of positive definite functions given

by
y

Va(x,y) = J 8

X

。戸 ds+ 1 硏 ）du

where Vo is exactly the Energy Function.
The equation (1) is also equivalent to the system

{ x = y - F(x)
ii= -g(x)

where F(x) = 瓦f(u)du. In several works (for~xample [2], [3] and [4] the system (3)
was studied with aid of the family of functions

(3)

l X

Ek(x,y) = 2(y - k)2 十 1 g(u)du

whose derivative relative to the system (3) is Ek(x,y) = -g(x)[F(x)- k].
Condsider now the function

1
沁 =2[y + F(x) - k]2 +「g(u)du.

。
The derivative of So,k relative to the system (2) is So,k(x,y) = -g(x)[F(x) - k].

So the function So,k plays, relatively to the system (2), the same role that Ek
relatively to (3). The function So,k is a member (o = 0) of family Scx,k : ncx,k _. 民 given
by

y+F(:r)-cxG(:z:)一k :,;

Scx,k(x,y) = 1 志三 g(u)du

where F(x) = J0"'f(u)du, G(x) = f0"'g(u)du and n0,k is the following open set:

ncx,k = 臆2 ifo=O

ncx,k = { 位，y) E 民2 丨y > -F(x) + oG(x) + k -~} if o > O

and

fia,k = { (x,y) E 屈2 I y < -F(x) + aG(x) + k -~} if a< 0

The derivative of Sa,k relative to the system (2) is

Sa,k(x, y) = - . g(x)[F(x) - aG(x) - k]• • 量 (4)
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We observe that the sign of Sa,k is the same of -g(x)[F(x) - aG(x) - k] because

a[y + F(x) - aG(x) - k] + 1 > 0 on fia,k·
In this work we study qualitatively (2) utilizing the family of functions Sa,k·We

observe that the new idea in this paper is only the family Sa,k·However, as we shall see,

the level curves of this family and the relation (4) together suggest to us how to state,

in a natural way, severa ql ualitative results about the solutions of the Lienard Equation.
The system (2) can be also studied using the family of positive definite functions

given by
Wa,{3(x,y)=「/3位）_.!......一ds + ln/3-1/2恥 (x)

。 s2 +as+ 1

where H(3(x) = [2G(x) + f3]112, /3 > 0 (see[5])
It is clear that we can also study qualitatively the system (2) combining the functions

Va, Wa,{3 and Sa,k·Many interesting and important works about the Leenard Equation
have been published and some are listed in the references. I have a special caress by
Theorem 2 in [7], because with aid of it (and of a dream!) I concluded my Doctoral

Thesis and indirectly my work (5] was suggested by it.

2. Auxiliary Lemmas

Next, we suppose a ? 0 and

w(x) = -F(x) + aG(x) + k - -1 ifa>O and w(x)=-oo ifa=O.
a

In first place we observe that, for each fixed x, the the function

y 1-+ Sa,k(x, y)

is strictly increasing for y > -F(x) + aG(x) + k and strictly decreasing for w(x) < y <
-F(x) + aG(x) + k. We have also

lim Sa,k(x,y) = 十oo = lim Sa,k(x,y).
y-+oo y-w(x)+

So for each c > O and for each x, with G(x) < c there is a umque Y1 > -F(x)+aG(x)+k
and a unique y2, with u(x) < y2 < -F(x) + aG(x) + k such that

Sa,k(x, yi) = Sa,k(x, Y2) = C

. If there exist x1 < 0 < x2 such that
G(x1) = G(x2) = c

then the level curve Sa,k(x,y) = c is clsoed and shows, m·the case F(x) ? aG(x) + k
and k < 0 and c > Ji尸孟1ds, the following aspect (Figure 1):
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/ Sa,k((x,y)=c

，
｀一－、丶、丶-y = -F(x) + aG(x) + kk- .!.

"' y = w(x)

Figure 1

If F(x)~aG(x) + k for x~0 and there exists x2 > 0 such that Sa,k(x2,0) = c
then the arc

Sa,k(x,y) = c,

with x > 0 and y > -F(x) + aG(x) + k, crosses the x > O half-axis at (x2, O) and the set

{(x,y)E!l。,,k 丨Sa,k(x,y) = c, 0 S XS x2}

shows, in the case k < 0 and Sa,k(x, 0) < c, for O < x < x2, the following 邸pect (Figure
2):

X2

k-~「. . - ... .... 丶

Figure 2
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If F(x)~/3G(x) + k, for a:::; x:::; 0, with k - ! < 0, and w(a) > 0, then the curve
1

y = w(x) = -F(x) + /3G(x) + k - -
/3

crosses the x < 0 half-axis. Hence, for every c > 0, the arc

Sa,k(x,y) = c, x < 0 and y < -F(x) + {3G(x) + k

crosses too the x < 0 half-axis at point (x1, 0), with a< x1 < 0 and the set

{(x,y) E !l13,klS13,k(x,y) = c, x1~x~O}

shows, in the case k > 0 and w(x) < 0 for x2 < x < 0, the following aspect (Figure 3):

y = w(x)
丶丶丶丶丶

丶'
｀、、

k-l/3

Figure 3

If a = 0 we have
1

So,k(x, y) = -(y + F(x) - k)2 + G(x).
2

So, So,k(x,y) = c is equivalent to

y = -F(x) + k + [2c 一 2G(x)J112 or y = -F(x) + k - [2c - 2G(x)J112

The c邸e a < 0 can be discussed in a similar way.

Lemma 2.1 Suppose there are a> 0, b > 0 and k~0 such that

F(x) 2: a:G(x) + k for O~x~b. (5)
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Let ,(t) = (x(t),y(t)) be the solution of (2) with ,(0) = (xo,O), 0 < xo $ b, and
ti > O such that O $ x(t) $ b for O $ t $ t1, Then, for O $ t $ ti,

1
y(t) > -F(x(t)) + aG(x(t)) + k - 一．

a

In particular, if x(t1) = 0 then y(t1) > k - i.
Proof. From (5), Sa,k(x, y)~0, 0~x~b. It follows that, for each u E)O, t1] such

that'Y(t) E na,k, 0~t~u, we have Sa,k("/(t))~0 for O~t~u, and therefore

Sa,k('Y(t)) < c, 0~t~u,

with c > S0,k(,(O)). It follows immediately that the set {,(t) IO $ t $ ti} does not
intercept the arc

S0,k(x,y) = C,
Then, for O~t~t1 we have

y S F(x) + aG(x) + k.

1
y(t) > -F(x(t)) + aG(x(t)) + k 一一．a

(This result is intuitive: it is enough to look the Figure 2 with xo < x2)

Lemma 2.2 Suppose there are b > 0, a :2'.: 0, R > 0 and k~0 such that

F(x) :2'.: a:G(x) + k, 0~x~b

F(b) :2'.: k + [(R _:__ k)2 - 2G(b)]112.

(6)

(7)

Let ,(t) be the solution of (2) with 1(0) = (0, Yo), 0 < Yo $ R. Then there is ti > 0
such that

T伍 ）= (b1,0), 0 < b1 $ b.
Moreover, if there exists t2 > t1 such that O $ x(t) $ b for t1 $ t $ t2 and

x(t2) = 0 then
1

y(t2) > k - - if a> 0 and y(t2)~-R + 2k ifo = 0.
a

Proof. The equation

1
So,k(x,y) = So,k(O,R) = -(R- k)2

2

is equivalent to
y = -F(x) + k + [(R - k)2 - 2G(x)]112 (8)
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or
y = -F(x) + k - [(R - k)2 - 2G(x)]112 (9)

The condition (7) ensures the curve (8) intercepts the x > 0 half-axis at a point
(b2,0), 0 < b2~b. Form (6) have F(x);.::: k, 0~x~b. So

So,k(x,y)~0, 0~x~b. (10)

Then the solution ,(t) of (2) starting at the point 1(0) = (0, Yo), 0 < Yo S R, crosses
also the x > 0 half-axis at a point ,伍 ）= (b1, 0), 0 < b1 S~S b. From (10) we have
for t1 St S t2

So,k(,(t)) S So,k("Y伍 ））S So,k(O, R).

Hence and from (9) we have for t1 St S t2

y(t)~-F(x(t)) + k - [(R- k)2 - 2G(x(t))]112.

So, if a= 0 and x(t2) = 0 we have y(t2) S -R + 2k.
From Lemma 2.1, if a> 0,

1
y(t2) > k 一 一．

a
(See again Figure 2.)

Lemma 2.3 Suppose there are a < 0, f3 > 0, R < 0 and k~0 such that

F(x) :'.S (JG(x) +k, a S x S 0,

F(a) :'.S (JG(a) + k - -
1
(3

R>k- 一．
1

。

(11)

(12)

(13)and

Let -y(t) = (x(t),y(t)) be the solution of (2) with -y(O) = (O,yo), R $ y0 < 0.
Then there is ti> 0 such that -y(t1) = (a1,0) with a$ a1 < 0, and y(t) > -F(x(t))+
(3G(x(t)) + k - !, 0 $ t $ ti.
Proof. The conditions (12) and (13) ensure the curve

1
y = -F(x) + (3G(x) + k - -(3

crosses the x < 0 half-axis at a point (a2,0) with a$ a2 < 0. From (11)

s/3,k~o, a< X < 0.
''

set
So, the solution 1(t) starting 1(0) = (0, y0), Rs; Yo < 0, can not leave the compact

｛位，y) E n/3,k I - F(x) + j3G(x) + k -1 :s; y s; 0 and a2 :s; x s; 0}
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through the arc
1

y = -F(x) + (3G(x) + k- -,a2:,; x:,; 0.
/3

Then there is t1 > 0 such that the solution ,(t) crosses the x < 0 half-axis at a point
1仂 ）= (a1,0), a2 :,; a1 < 0, and y(t) > -F(x(t)) + f3G(x(t)) + k - b, for O:,; t:,; ti.
(See Figure 3.)

In a similar way we prove the following lemmas.

Lemma 2.4 Suppose there are a< 0, a< 0 and k~0 such that

F(x) :S aG(x) + k, a :S x :S 0.

Let ,(t) be the saluting of (2) such that 1(0) = (xo,O), a :S xo < 0 and t1 > 0 such
that a :S x(t) :SO for O :St :S t1. Then for O :St :S t1

1
y(t) < -F(x(t)) + aG(x(t)) + k - 一．

a

In particular, if x(ti) = 0, then y(t1) < k -~
Lemma 2.5 Suppose there are a< 0, a:::; 0, R < 0 and k~0 such that

F(x) s aG(x) + k, a:::; x s O and F(a):::; k - [(R - k)2 - 2G(a)J112.
Let ,(t) be the solution of (2) with 1(0) = (0, Yo), R :::; Yo < 0. Then there is ti > 0
such that

'Y伍 ）= (a1,0), a::; a1 < 0.

Moreover, if there exists t2 > t1 such that a ::; x(t) ::; 0 for t1 ::; t ::; t2 and x(t2) = 0
then

1
'Y(t2) < k - - if a> 0 and'Y(t2) ::; -R + 2k if a= 0.

a

Lemma 2.6 Suppose there are b > 0, /3 < 0, R > 0 and k::; 0 such that

F(x) 2: f3G(x) + k, 0~x~b
F(b) 2: /3G(a) + k - -1

/3
1

R< k- -
/3

and

Let ,(t) be the solution of (2) with ,(0) = (0, Yo), 0 < Yo S R. Then there is
t1 > 0 such that ,(ti)= (b1,0), with O < b1 Sb.

To close the section we observe that the solutions of (2) do not admit vertical
asymptotes (see[l)).
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3. Sufficient Condition for Nonexistence of Periodic Solutions
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Theorem 3.1 Suppose there are a< 0 < b, a> 0 and k :SO such that
(i) g(x)F(x) > 0 for a< x < b and x f. O;
(ii) F(a) :S -((k - 仔- 2G(a)]112 and F(b) 2:: [(k - 玕- 2G(b)]1!2;
(iii) F(x) 2:: aG(x) + k for x > 0.
Under these cond山ons the system (2) does not admit non-trivial periodic solu-
tion.

Proof. Consider the solution "t(t) = (x(t), y(t)) starting at "f(O) = (0, Yo) with
k - l.. < y0 < O. Suppose there is a smaller t2 > 0 such that "/伍 ）= (0, Y2), Y2 > 0.

a
From Lemma 2.5 and conditions (i}-(ii) there is O < t1 < t2 such that 汛ti) = (x1, 0),
a :S x1 < O. It follows that a :S x(t) :S O for O :S t :S t2 and x(t2) = 0. From
Lemma 2.5, Y2 = y(t2) <~ 一 k. Suppose now there is a smaller t4 > t2 such that
"t(t4) = (0, y4), y4 < 0. From Lemma 2.2 and conditions (i)-(ii} there is t2 < t3 < t4
such that "f伍 ）= (x3, O}, O < x3 :S b. It follows that O :S x(t) :S b for t2 :S t :S t4 and
x(t4) = O. From Lemma 2.1 and condition (iii) we have Y4 = y(t4) > k - i- From (i) we
have

S0,0("1(t)) < 0 for O < t < t4, t =I 耘
So, So,o("/(0)) > So,o("I伍 ））and therefore 7(0) #'Y山 ）. It follows that all solution
starting at a point (0, y) with k - .!. < y < 0 is not periodic.0:

Consider now the solution'Y(t) w.ith "f(O) = (xo, O), xo > 0 and suppose there is
t1 > o such that O S x(t) S x0 for O S t S t1 and x(ti) = 0. From Lemma 2.1 and
condition (iii) we have

1k - - < y(ti) < 0.
a

So, the system (2) does not admit non trivial periodic solution.
We observe that Theorem 1 in (6] is a particular case of our Theorem 3.1.

Remark 3.1 It can easily be verified that the conditions (i), (ii) and (iii) in
Theorem 3.1 ensure all solution starting at (x0, 0), xo > 0, approaches the origin as
t-. +oo.

Remark 3.2 From Lemma 2.4 it follows that the condition (iii) can be replaced
by: there are a < 0, and k~0 such that

F(x)~aG(x) + k for x < 0.

Theorem 3.2 Suppose there are a > 0 and a < 0 such that
(i) g(x)[F(x) - aG(x)] > 0 for x 2: a and x # O;
(ii) F(a)~aG(a) -~-
Under these conditions the system (2) does not admit non-trivial periodic solu-
tions.
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Proof. Consider the solution ,y(t) = (x(t), y(t)) with ,y(O) = (x0, 0), x0 > O, and
suppose there is t1 > 0 such that ,y(t1) = (x1, 0), x1 > 0. From Lemmas 2.1-2.3 we have

1
y(t) > -F(x(t)) + aG(x(t)) - - and x(t)~a

Q

for O::; t ::;; ti. Hence and from (i) it follows that for all t E [O,t1], with x(t)¥O,
S0,o('Y(t)) < 0. So

S.. ,o('Y(O)) > S0,o('Y(ti))

and therefore 7(0)¥7(ti). It follows that the system (2) does not admit non-trivial
periodic solution.

Remark 3.3 From Lemmas 2.4-2.6 it follows that the condition (i) and (ii) can
be replaced by: there are a < 0 and b > 0 such that

g(x)[F(x) - aG(x)] > 0 forx::; bandx¥0 and F(b)~aG(b) - !.
a

Remark 3.4 It can be immediately verified that the conditions (i) and (ii) can be
replaced by: there is a E 民 such that

g(x)[F(x) - aG(x)] > 0 for x ::/; 0.

Example 3.1 The equation

巨 (x5 - x4 + 3x2 + 2x)x + x = 0

does not admit non-trivial periodic solution.

Solution: F(x) =~ - 庄+x3 + x2 and G(x) = =.:2 •
For x~-1 and x-:/= 0 we have [F(x) - aG(x)]g(x) > 0, with a= 2. By other hand,

F(-1) < aG(-1) - 一1
a

From Theorem 3.2 the equation does not admit non-trivial periodic solution.
We observe, in the example above,the Theorem 3.1 can not be applied because

F(x) > 0 for x < 0. Also, the theorem 2.1 in [7] and theorem 1 in [8] can not be applied
because there are x1 > 0 and x2 > 0 such that 凡(xi) > 0 and 凡 (x2) < 0, where
凡 (x) = J01 fe(s)ds and fe(x) = -x4 + 3x2.
Example 3.2 The equation

x + (x3 + 6x爭 十 2x
(2 + 2x + X平 =0
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does not admit non-trivial periodic solution.

Solution: F(x) =£+ 2x3 and G(x) = - - -:,;+l 2
4 三 ；2 I~社1詞 du

For a = 1 and k =刁we have

F(x)~aG(x)+kforx~O and F(-1)<-[(k-柯- 2G(-1)f12

47

We have also
g(x)F(x) > 0 for x~-1 and x I 0.

From Theorem 3.1 the equation does not admit non-trivial periodic solution. (Here the

［
1/2 .

condition F(b)~(k - 秤- 2G(~)] 1s not necessary because g(x)F(x) > 0 for all
x~-1 and x =/= O.) The theorems m [7,8) can not be applied because g(x) is not odd.

4. Sufficient Conditions for the Origin to Be Globally Asymptotically
Stable

Theorem 4.1 Suppose the following cond山ons are verified:
(i) There is a E 照 such that

g(x)[F(x) - aG(x)] > 0 for x IO;

(ii) There are k~o and k1 2: O such that F(x)~k for x > 0 and F(x)~k1 for
X < 0.

(iii) For all R > 0 there are m < 0 < n such that

F(n)~k + [(R - k)2 - 2G(n)]112 and F(m)~ 柘 -[(R-矼- 2G(m)J1l2

Under these conditions the origin is globally asymptotically stable in Lia­
punov sense.

Proof. Consider the arcs

S0,0(x,y) = c with y~-F(x) + aG(x)

S0,0(x, y) = c with y :S -F(x) + aG(x)

、、
丿

丶`
l

4

5

1

1

'
＼

(

From hypotheses (i)-(iii) the arc (14) intercepts the x > 0 half-axis at (x1, 0), x1 > 0,
and (15) crosses the x < o half-axis at (x2,0), x2 < 0. Let Kc be, c > 0, the compact set
bounded by the arcs (14), (15) and by the lines x = xi and x = x2. From (i) we have

80,o(x,y) < 0 forx # 0. (16)
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So, Kc is an invariant set for the system (2). Then the condition (16), by La Salle
Theorem, ensures that the origin is asympotically stable and every solution starting at
a point in Kc approaches the origin as t -+ +oo. It follows that every solution starting
at a point in Oa,o approaches the origin as t -+ 十oo. From Lemmas 2.2 and 2.5 and
conditions (ii)-(iii) for every solution "'((t) of (2) there is t1 such that ,(t1) E Oa,o So
all solution of (2) approaches the origin as t -+ +oo. Therefore the origin is globally
asymptotically stable.

Remark 4.1 The condition (i) can be replaced by: There are a > O (a < O),
a < 0 (b > 0) such that

g(x)[F(x) - aG(x)] > 0 for x > a (x < b) and x f; O

and 1
F(a)~aG(a) - 一(F(b)~aG(b) - 一．

1
a a

Remark 4.2 The condition (i) can be replaced by: There are a < O < b, a > O
(a< 0), k~0 (k 2: 0) such that

g(x)F(x) > 0 for a< x < b and x f:. O;

F(x) 2: aG(x) + k for x > 0 (F(x)~aG(x) + k for x < O);

F(a) $~[仁江- 2G(a)「
and F(b) 2: [ (k-江- 2G(bfi'
Remark 4.3 Suppose that in Theorem 4.1 the following condition is also verified:

(iii) there are a1 > 0, a2 < 0 and r > 0 such that

F(x) < a1G(x) for O < x < r and F(x) > a2G(x) for - r < x < 0.

In this case every non-trivial solution approaches the origin, as t -+ oo, in spiral.
We observe that the condition xF(x) < 0 for O < lxl < f. appearing in Theorem 2 in

[2] can be replaced by (iii).

Remark 4.4 The condition (iii) is equivalent to the conditions 1.2 and 1.3 appear­
ing in [2].

Example 4.1 For the equation

!i + (x4 + 7x3 + 2x2 + x)x 十 5x3 + x2 + x = 0
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the origin is globally asymptotically stable and, for every non-trivial solution x = x(t),
-y(t) = (x(t),x(t)) approaches the origin, in spiral, as t-+ +oo.

5 7 4Solution: F(x) = T + 4x + lx3 十兮 and G(x) = ix4 +~ 十牙·
We have, for a= 1,

g(x)[F(x) - aG(x)] > 0 for x¥0

and
lim F(x) = +oo and lim F(x) = -oo.
x-+oo x--oo

We have also there is r > 0 such that

F(x) < 2G(x) for O < x < r and F(x) > 0 for - r < x < 0.

The conclusion follows from Theorem 4.1 and Remark 4.3.

Example 4.2 Consider again the equation of the Example 3.2:

2x
x + (x3 + 6x勺土十 =0.

(2 + 2X + X叩

It can be easily verified that the origin is asymptotically stable and, for every non-trivial
solution x = x(t) with x(x) = 0,'Y(t) = (x(t,x(t)) approaches the origin as t -+ +oo.
But the origin is not globally asymptotically stable because there is a < 0 such that

g(x)[F(x) - G(x)] < 0 for x :5 a

and so the solution'Y(t) = (x(t), x(t)), t~0, starting at (xo, Yo) with xo :5 a and
y0 < -F(xo) + G(xo) - 1, does not cross the curve y = -F(x) + G(x) - 1.

5. Sufficient Conditions for Existence of Periodic Solutions

Theorem 5.1 Suppose that
(i) the origin is repulsive.
Suppose also that there are a > 0, k $ 0, k1~0, and a < 0 < b such that:
(ii) F(x) $ 柘 for a $ x $ 0 and F(a) $ k1 - [ (k - !; -吖- 2G{a)J11\
(iii) F(x)~aG(x) + k for O $ x $ b and F(b)~k + [仕 +2k1 -吋- 2G(b>J112.
Under these conditions the system {2) admits at least one non-trivial period比
solution located between the lines x = a and x = b.

Proof. From Lemma 2.5 and hypotheses (i), (ii), the solution staring at the point
(O,k - .!.) crosses they > 0 half-axis at (O,y1) with O < Yt $ -k + !; + 2k1. From
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Lemma 2.2 and hypotheses (i), (iii), the solution starting at a point (0, Y1), with O <
y1~-k -~+ 2k1 crosses the y < 0 half-axis at a point (0, Y2) with k -~< Y2 < 0.
From the Theorem of Poincar矼Bendixon the system (2) admits at least one non-trivial
periodic solution. It is clear that this periodic solution is located between the lines x = a
and x = b.

We observe that the Theorem 3 in (2] is a particular case of the Theorem 5.1.

Remark 5.1 If there are a E 民 and r > 0 such that

g(x)[F(x) - aG(x)] < 0 for x < lxl < r

then the origin is repulsive. It is enough to observe that the above condition implies

Sc,,O位 ，y) > 0 for O <囯<r

and for c > 0 sufficiently small the level curve S"',o(x, y) = c is closed.
Corollary 5.1. Suppose that

(i) the origin is repulsive.
Suppose also that there are a > 0, k s O and a < 0 < b such that:
(ii) F(x) S F(a) for a S x Sb and G(a)~! (k - i - F(a))2;
(iii) F(x)~aG(x) + k for OS x Sb and F(b)~k + [仕+ 2F(a) - 2k)2 - 2G(b)] 112.
Under these conditions the system (2) admits at least one non-trivial periodic
solution located between the lines x = a and x = b.
Proof. From (ii) there is a s a1 < 0 such that F(x) S F(a) for a1 S x S O and

2G(ai) = (k - i - F(a))2. Now, it is enough to make 柘 = F(a) in Theorem 5.1.

Theorem 5.2 Suppose that
(i) the origin is repulsive.
Suppose also that these are a > 0. f3 > 0, a < 0 < b, k s O and k1 s O such that:
(ii) F位）S {3G(x) + k1, a S x S 0, F(a) S /3G(a) +柘- ! and k - i > k1 - 扣
(iii) F(x)~aG(x) + k, 0 S x Sb and F(b)~k + [(R - k)2 - 2G(b)]112

where R = -k + i + 2[{3G(a) + k1].
Under these cond山ons the system (2) admits at least one non-trivial periodic
solution located between the line x = a and x = b.
Proof. From (ii) we have

F(x) S {3G(a) + k - 1, a S x S 0.

From hypotheses and Lemmas 2.2, 2.3 and 2.5 the solution starting at (0, k - 护
crosses again the y < 0 half-axis at (0, Y1) with k - -。1 < y1 < 0. From theorem of
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Poincare-Bendixon the system (2) admits at least one non-trivial periodic solution. This
solution is evidently located between the lines x = a and x = b.

Remark 5.2 It can be immediately verified that the condition

1
F(a)~/3G(a) + k1 - -

/3

can be replaced by
1

S13,k1 (0, k - -) $ S13,k1 (a, 0).
a

In a similar way it can be proved the following theorems.

Theorem 5.3 Suppose that
(i) the origin repulsive.
Suppose also that there are a < 0 k ? 0, k1 $ 0 and a < 0 < b such that:
(ii) F(x)? 柘 for O $ x $ b and F(b)~ 柘 十 [(k 一；－柘）- 2G(b}J112

1/2(iii) F(x) $ aG(x) + k, a$ x $ 0 and F(a) $ k - [(母 - 2k1 + 2k) - 2G(a)] .
Under these cond山ons the system (2) admits at least one non-trivial periodic
solution located between the lines x = a and x = b.
Corollary 5.2 Suppose that

(i) the origin is repulsive. Suppose also that there are a < 0, k ? 0 and a < 0 < b
such that:

(ii) F(x) ? F(b) for O $ x $ b and G(b) ? l (k -~- F(b))鬥
1/2

(iii) F(x) $ aG(x)+k for a$ x $ 0 and F(a) $ k- [ (-~- 2F(b) + 2k)2 - 2G(a)] .
Under these conditions the system (2) admits at least one non-trivial periodic
solution located between the lines x = a and x = b.
Theorem 5.4 Suppose that

(i) the origin is repulsive.
Suppose also that there are a < 0, f3 < 0, a < 0 < b, k1 $ 0 such that:
(ii) F(x) ? f3G(x) + k1 for O $ x $ b and F(b)? f3G(b) + k1 - ! and k- .!. < k1 - 扣

"'
(iii) F(x) $ aG(x) + k for a$ x $ 0 and F(a) $ k - [(R - k)2 - 2G(a}J112

where R = -k +~+ 2[f3G(b) + k斗
Under these cond山ons the system (2) admits at least one non-trivial periodic
solution located between the lines x = a and x = b.
Remark 5.4 The condition

F(b)? j3G(b) + k1 一一
I
/3
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in Theorem 5.4 can be replaced by

S13,k (0, k - !)~S13,k(b, 0).
a

52

Example 5.1 The equation

3 2 1
x + [x + 4x + 3x - 司x+x=O

admits at least one non-trivial periodic solution.
• 4 正 記 2Solution: F(x) = :L +—+- - -4 3 2 12"'and G(x) = 牙

We have
-1~X~0,
for all

F(x)~F(-1},
F(x) >aG(x) + k x>O

where a= 3 and k = - 吉，and

1 1 2
G(-1) > 非 －－－ －a

F(1)] .

From lim.,丑十00 F(x) = +oo it follows that there is b > 0 such that

F(b)~K + [乩+2F(-1) - 2k)2 - 2G(b)r12

The origin is repulsive because there is r > 0 such that

for O < lxl < r.

From Corollary 5.1 the equation admits at least one non-trivial periodic solution
located between the lines x = -1 and x = b, with b = .!. + 2F(-1 - 2k.a ）

Example 5.2 The equation

x + (x3 + 4x2 - 1)±+ 4x3 = 0

g(x)[F(x) - G(x)] < 0

admits at least one non-trivial periodic solution located between the lines x = -2 and
X = 2.

Solution: F(x) = £_十~ -4 3 x and G(x) =丑
For /3 = t and 柘= 1 we have

1
-2 S x SO and F(-2} S (3G(-2) + k1 一 一．(3F(x) :'S f3G(x) + k1,
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for a = ! and k = -i we have
1 1

F(x) 2': aG(x) + k, 0~x~2 and k - - > k1 - -
a /3

. We have also

53

F(2) > k + [(R - k)2 - 2G(2)]112

where R = -k + !; + 2[/3G(-2) + ki].
By other hand the origin is evidently repulsive. From Theorem 5.2 the equation

admits at le邸t one non-trivial perodic solution located between the lines x = -2 and
X = 2.
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