THE FAMILY OF FUNCTIONS $S_{\alpha, k}$ AND THE LIÉNARD EQUATION

HAMILTON LUIZ GUIDORIZZI

Abstract. In this paper we study qualitatively the Liénard Equation $\ddot{x}+f(x) \dot{x}+$ $g(x)=0$ with aid of the non-usual family of functions given by

$$
S_{\alpha, k}(x, y)=\int_{0}^{y+F(x)-\alpha G(x)-k} \frac{s}{\alpha s+1} d x+\int_{0}^{x} g(u) d u
$$

where $F(x)=\int_{0}^{x} f(u) d u . G(x)=\int_{0}^{x} g(u) d u$ and $\alpha, k \int R$.

1. Introduction and Prelimanaries

Throughout this work we consider the equation

$$
\begin{equation*}
\ddot{x}+f(x) \dot{x}+g(x)=0 \tag{1}
\end{equation*}
$$

where f and g are functions of \mathbb{R} in \mathbb{R} satisfying the following conditions:
a) f and g are continuous and ensure uniqueness of solutions.
b) $x . g(x)>0$ for $x \neq 0$.

Next, we suppose the above conditions are verified and they will not be mentioned again.
The equation (1) is equivalent to the system

$$
\left\{\begin{array}{l}
\dot{x}=y \tag{2}\\
\dot{y}=-f(x) y-g(x)
\end{array}\right.
$$

The condition b) ensures the orign (0,0) is the only singular point of (2).
The more natural positive definite function for studyng qualitatively the system (2) is the Energy Function

$$
E(x, y)=\frac{1}{2} y^{2}+\int_{0}^{x} g(u) d u
$$

Received May 28, 1994; revised December 27, 1994.
whose derivative relative to (2) is $\dot{E}(x, y)=-f(x) y^{2}$.
In [1] we study qualitatively (2) using the family of positive definite functions given by

$$
V_{\alpha}(x, y)=\int_{0}^{y} \frac{s}{\alpha s+1} d s+\int_{0}^{x} g(u) d u
$$

where V_{0} is exactly the Energy Function.
The equation (1) is also equivalent to the system

$$
\left\{\begin{array}{l}
\dot{x}=y-F(x) \tag{3}\\
\dot{y}=-g(x)
\end{array}\right.
$$

where $F(x)=\int_{0}^{x} f(u) d u$. In several works (for example [2], [3] and [4] the system (3) was studied with aid of the family of functions

$$
E_{k}(x, y)=\frac{1}{2}(y-k)^{2}+\int_{0}^{x} g(u) d u
$$

whose derivative relative to the system (3) is $\dot{E}_{k}(x, y)=-g(x)[F(x)-k]$.
Condsider now the function

$$
S_{0, k}=\frac{1}{2}[y+F(x)-k]^{2}+\int_{0}^{x} g(u) d u
$$

The derivative of $S_{0, k}$ relative to the system (2) is $\dot{S}_{0, k}(x, y)=-g(x)[F(x)-k]$.
So the function $S_{0, k}$ plays, relatively to the system (2), the same role that E_{k} relatively to (3). The function $S_{0, k}$ is a member ($\alpha=0$) of family $S_{\alpha, k}: \Omega_{\alpha, k} \rightarrow \mathbb{R}$ given by

$$
S_{\alpha, k}(x, y)=\int_{0}^{y+F(x)-\alpha G(x)-k} \frac{s}{\alpha S+1} d s+\int_{0}^{x} g(u) d u
$$

where $F(x)=\int_{0}^{x} f(u) d u, G(x)=\int_{0}^{x} g(u) d u$ and $\Omega_{\alpha, k}$ is the following open set:

$$
\begin{gathered}
\Omega_{\alpha, k}=\mathbb{R}^{2} \quad \text { if } \alpha=0 \\
\Omega_{\alpha, k}=\left\{(x, y) \in \mathbb{R}^{2} \left\lvert\, y>-F(x)+\alpha G(x)+k-\frac{1}{\alpha}\right.\right\} \text { if } \alpha>0
\end{gathered}
$$

and

$$
\Omega_{\alpha, k}=\left\{(x, y) \in \mathbb{R}^{2} \left\lvert\, y<-F(x)+\alpha G(x)+k-\frac{1}{\alpha}\right.\right\} \text { if } \alpha<0
$$

The derivative of $S_{\alpha, k}$ relative to the system (2) is

$$
\begin{equation*}
\dot{S}_{\alpha, k}(x, y)=-\frac{g(x)[F(x)-\alpha G(x)-k]}{\alpha[y+F(x)-\alpha G(x)-k]+1} . \tag{4}
\end{equation*}
$$

We observe that the sign of $\dot{S}_{\alpha, k}$ is the same of $-g(x)[F(x)-\alpha G(x)-k]$ because $\alpha[y+F(x)-\alpha G(x)-k]+1>0$ on $\Omega_{\alpha, k}$.

In this work we study qualitatively (2) utilizing the family of functions $S_{\alpha, k}$. We observe that the new idea in this paper is only the family $S_{\alpha, k}$. However, as we shall see, the level curves of this family and the relation (4) together suggest to us how to state, in a natural way, several qualitative results about the solutions of the Liénard Equation.

The system (2) can be also studied using the family of positive definite functions given by

$$
W_{\alpha, \beta}(x, y)=\int_{0}^{y / H_{\beta}(x)} \frac{s}{s^{2}+\alpha s+1} d s+\ln \beta^{-1 / 2} H_{\beta}(x)
$$

where $H_{\beta}(x)=[2 G(x)+\beta]^{1 / 2}, \beta>0(\operatorname{see}[5])$.
It is clear that we can also study qualitatively the system (2) combining the functions $V_{\alpha}, W_{\alpha, \beta}$ and $S_{\alpha, k}$. Many interesting and important works about the Leénard Equation have been published and some are listed in the references. I have a special caress by Theorem 2 in [7], because with aid of it (and of a dream!) I concluded my Doctoral Thesis and indirectly my work [5] was suggested by it.

2. Auxiliary Lemmas

Next, we suppose $\alpha \geq 0$ and

$$
w(x)=-F(x)+\alpha G(x)+k-\frac{1}{\alpha} \quad \text { if } \alpha>0 \quad \text { and } \quad w(x)=-\infty \quad \text { if } \alpha=0
$$

In first place we observe that, for each fixed x, the the function

$$
y \mapsto S_{\alpha, k}(x, y)
$$

is strictly increasing for $y \geq-F(x)+\alpha G(x)+k$ and strictly decreasing for $w(x)<y<$ $-F(x)+\alpha G(x)+k$. We have also

$$
\lim _{y \rightarrow+\infty} S_{\alpha, k}(x, y)=+\infty=\lim _{y \rightarrow w(x)^{+}} S_{\alpha, k}(x, y) .
$$

So for each $c>0$ and for each x, with $G(x)<c$, there is a unique $y_{1}>-F(x)+\alpha G(x)+k$ and a unique y_{2}, with $u(x)<y_{2}<-F(x)+\alpha G(x)+k$ such that

$$
S_{\alpha, k}\left(x, y_{1}\right)=S_{\alpha, k}\left(x, y_{2}\right)=c
$$

. If there exist $x_{1}<0<x_{2}$ such that

$$
G\left(x_{1}\right)=G\left(x_{2}\right)=c
$$

then the level curve $S_{\alpha, k}(x, y)=c$ is clsoed and shows, in the case $F(x) \geq \alpha G(x)+k$ and $k<0$ and $c>\int_{0}^{-k} \frac{s}{\alpha s+1} d s$, the following aspect (Figure 1):

Figure 1
If $F(x) \geq \alpha G(x)+k$ for $x \geq 0$ and there exists $x_{2}>0$ such that $S_{\alpha, k}\left(x_{2}, 0\right)=c$ then the arc

$$
S_{\alpha, k}(x, y)=c
$$

with $x>0$ and $y>-F(x)+\alpha G(x)+k$, crosses the $x>0$ half-axis at $\left(x_{2}, 0\right)$ and the set

$$
\left\{(x, y) \in \Omega_{\alpha, k} \mid S_{\alpha, k}(x, y)=c, \quad 0 \leq x \leq x_{2}\right\}
$$

shows, in the case $k<0$ and $S_{\alpha, k}(x, 0)<c$, for $0<x<x_{2}$, the following aspect (Figure $2)$:

Figure 2

If $F(x) \leq \beta G(x)+k$, for $\alpha \leq x \leq 0$, with $k-\frac{1}{\beta}<0$, and $\omega(\alpha)>0$, then the curve

$$
y=\omega(x)=-F(x)+\beta G(x)+k-\frac{1}{\beta}
$$

crosses the $x<0$ half-axis. Hence, for every $c>0$, the arc

$$
S_{\alpha, k}(x, y)=c, \quad x<0 \text { and } y<-F(x)+\beta G(x)+k
$$

crosses too the $x<0$ half-axis at point $\left(x_{1}, 0\right)$, with $a<x_{1}<0$ and the set

$$
\left\{(x, y) \in \Omega_{\beta, k} \mid S_{\beta, k}(x, y)=c, x_{1} \leq x \leq 0\right\}
$$

shows, in the case $k>0$ and $w(x)<0$ for $x_{2}<x<0$, the following aspect (Figure 3):

Figure 3
If $\alpha=0$ we have

$$
S_{0, k}(x, y)=\frac{1}{2}(y+F(x)-k)^{2}+G(x) .
$$

So, $S_{0, k}(x, y)=c$ is equivalent to

$$
y=-F(x)+k+[2 c-2 G(x)]^{1 / 2} \text { or } y=-F(x)+k-[2 c-2 G(x)]^{1 / 2}
$$

The case $\alpha<0$ can be discussed in a similar way.
Lemma 2.1 Suppose there are $\alpha>0, b>0$ and $k \leq 0$ such that

$$
\begin{equation*}
F(x) \geq \alpha G(x)+k \quad \text { for } 0 \leq x \leq b \tag{5}
\end{equation*}
$$

Let $\gamma(t)=(x(t), y(t))$ be the solution of (2) with $\gamma(0)=\left(x_{0}, 0\right), 0<x_{0} \leq b$, and $t_{1}>0$ such that $0 \leq x(t) \leq b$ for $0 \leq t \leq t_{1}$, Then, for $0 \leq t \leq t_{1}$,

$$
y(t)>-F(x(t))+\alpha G(x(t))+k-\frac{1}{\alpha} .
$$

In particular, if $x\left(t_{1}\right)=0$ then $y\left(t_{1}\right)>k-\frac{1}{\alpha}$.
Proof. From (5), $\dot{S}_{\alpha, k}(x, y) \leq 0,0 \leq x \leq b$. It follows that, for each $\left.\left.u \in\right] 0, t_{1}\right]$ such that $\gamma(t) \in \Omega_{\alpha, k}, 0 \leq t \leq u$, we have $\dot{S}_{\alpha, k}(\gamma(t)) \leq 0$ for $0 \leq t \leq u$, and therefore

$$
S_{\alpha, k}(\gamma(t))<c, \quad 0 \leq t \leq u
$$

with $c>S_{\alpha, k}(\gamma(0))$. It follows immediately that the set $\left\{\gamma(t) \mid 0 \leq t \leq t_{1}\right\}$ does not intercept the arc

$$
S_{\alpha, k}(x, y)=C, \quad y \leq F(x)+\alpha G(x)+k
$$

Then, for $0 \leq t \leq t_{1}$ we have

$$
y(t)>-F(x(t))+\alpha G(x(t))+k-\frac{1}{\alpha}
$$

(This result is intuitive: it is enough to look the Figure 2 with $x_{0}<x_{2}$)
Lemma 2.2 Suppose there are $b>0, \alpha \geq 0, R>0$ and $k \leq 0$ such that

$$
\begin{gather*}
F(x) \geq \alpha G(x)+k, \quad 0 \leq x \leq b \tag{6}\\
F(b) \geq k+\left[(R-k)^{2}-2 G(b)\right]^{1 / 2} \tag{7}
\end{gather*}
$$

Let $\gamma(t)$ be the solution of (2) with $\gamma(0)=\left(0, y_{0}\right), 0<y_{0} \leq R$. Then there is $t_{1}>0$ such that

$$
\gamma\left(t_{1}\right)=\left(b_{1}, 0\right), \quad 0<b_{1} \leq b .
$$

Moreover, if there exists $t_{2}>t_{1}$ such that $0 \leq x(t) \leq b$ for $t_{1} \leq t \leq t_{2}$ and $x\left(t_{2}\right)=0$ then

$$
y\left(t_{2}\right)>k-\frac{1}{\alpha} \text { if } \alpha>0 \text { and } y\left(t_{2}\right) \geq-R+2 k \text { if } \alpha=0
$$

Proof. The equation

$$
S_{0, k}(x, y)=S_{0, k}(0, R)=\frac{1}{2}(R-k)^{2}
$$

is equivalent to

$$
\begin{equation*}
y=-F(x)+k+\left[(R-k)^{2}-2 G(x)\right]^{1 / 2} \tag{8}
\end{equation*}
$$

or

$$
\begin{equation*}
y=-F(x)+k-\left[(R-k)^{2}-2 G(x)\right]^{1 / 2} \tag{9}
\end{equation*}
$$

The condition (7) ensures the curve (8) intercepts the $x>0$ half-axis at a point ($\left.b_{2}, 0\right), 0<b_{2} \leq b$. Form (6) have $F(x) \geq k, 0 \leq x \leq b$. So

$$
\begin{equation*}
\dot{S}_{0, k}(x, y) \leq 0, \quad 0 \leq x \leq b . \tag{10}
\end{equation*}
$$

Then the solution $\gamma(t)$ of (2) starting at the point $\gamma(0)=\left(0, y_{0}\right), 0<y_{0} \leq R$, crosses also the $x>0$ half-axis at a point $\gamma\left(t_{1}\right)=\left(b_{1}, 0\right), 0<b_{1} \leq b_{2} \leq b$. From (10) we have for $t_{1} \leq t \leq t_{2}$

$$
S_{0, k}(\gamma(t)) \leq S_{0, k}\left(\gamma\left(t_{1}\right)\right) \leq S_{0, k}(0, R) .
$$

Hence and from (9) we have for $t_{1} \leq t \leq t_{2}$

$$
y(t) \geq-F(x(t))+k-\left[(R-k)^{2}-2 G(x(t))\right]^{1 / 2} .
$$

So, if $\alpha=0$ and $x\left(t_{2}\right)=0$ we have $y\left(t_{2}\right) \leq-R+2 k$.
From Lemma 2.1, if $\alpha>0$,

$$
y\left(t_{2}\right)>k-\frac{1}{\alpha} .
$$

(See again Figure 2.)
Lemma 2.3 Suppose there are $a<0, \beta>0, R<0$ and $k \geq 0$ such that

$$
\begin{array}{ll}
& F(x) \leq \beta G(x)+k, \quad a \leq x \leq 0, \\
& F(a) \leq \beta G(a)+k-\frac{1}{\beta} \\
\text { and } \quad & R>k-\frac{1}{\beta} . \tag{13}
\end{array}
$$

Let $\gamma(t)=(x(t), y(t))$ be the solution of (2) with $\gamma(0)=\left(0, y_{0}\right), R \leq y_{0}<0$. Then there is $t_{1}>0$ such that $\gamma\left(t_{1}\right)=\left(a_{1}, 0\right)$ with $a \leq a_{1}<0$, and $y(t)>-F(x(t))+$ $\beta G(x(t))+k-\frac{1}{\beta}, 0 \leq t \leq t_{1}$.

Proof. The conditions (12) and (13) ensure the curve

$$
y=-F(x)+\beta G(x)+k-\frac{1}{\beta}
$$

crosses the $x<0$ half-axis at a point ($a_{2}, 0$) with $a \leq a_{2}<0$. From (11)

$$
\dot{S}_{\beta, k} \leq 0, \quad a \leq x \leq 0
$$

So, the solution $\gamma(t)$ starting $\gamma(0)=\left(0, y_{0}\right), R \leq y_{0}<0$, can not leave the compact set

$$
\left\{(x, y) \in \Omega_{\beta, k} \left\lvert\,-F(x)+\beta G(x)+k-\frac{1}{\beta} \leq y \leq 0\right. \text { and } a_{2} \leq x \leq 0\right\}
$$

through the arc

$$
y=-F(x)+\beta G(x)+k-\frac{1}{\beta}, a_{2} \leq x \leq 0
$$

Then there is $t_{1}>0$ such that the solution $\gamma(t)$ crosses the $x<0$ half-axis at a point $\gamma\left(t_{1}\right)=\left(a_{1}, 0\right), a_{2} \leq a_{1}<0$, and $y(t)>-F(x(t))+\beta G(x(t))+k-\frac{1}{\beta}$, for $0 \leq t \leq t_{1}$. (See Figure 3.)

In a similar way we prove the following lemmas.
Lemma 2.4 Suppose there are $a<0, \alpha<0$ and $k \geq 0$ such that

$$
F(x) \leq \alpha G(x)+k, \quad a \leq x \leq 0
$$

Let $\gamma(t)$ be the soluting of (2) such that $\gamma(0)=\left(x_{0}, 0\right), a \leq x_{0}<0$ and $t_{1}>0$ such that $a \leq x(t) \leq 0$ for $0 \leq t \leq t_{1}$. Then for $0 \leq t \leq t_{1}$

$$
y(t)<-F(x(t))+\alpha G(x(t))+k-\frac{1}{\alpha}
$$

In particular, if $x\left(t_{1}\right)=0$, then $y\left(t_{1}\right)<k-\frac{1}{\alpha}$.
Lemma 2.5 Suppose there are $a<0, \alpha \leq 0, R<0$ and $k \geq 0$ such that

$$
F(x) \leq \alpha G(x)+k, a \leq x \leq 0 \text { and } F(a) \leq k-\left[(R-k)^{2}-2 G(a)\right]^{1 / 2}
$$

Let $\gamma(t)$ be the solution of (2) with $\gamma(0)=\left(0, y_{0}\right), R \leq y_{0}<0$. Then there is $t_{1}>0$ such that

$$
\gamma\left(t_{1}\right)=\left(a_{1}, 0\right), a \leq a_{1}<0
$$

Moreover, if there exists $t_{2}>t_{1}$ such that $a \leq x(t) \leq 0$ for $t_{1} \leq t \leq t_{2}$ and $x\left(t_{2}\right)=0$ then

$$
\gamma\left(t_{2}\right)<k-\frac{1}{\alpha} \text { if } \alpha>0 \text { and } \gamma\left(t_{2}\right) \leq-R+2 k \text { if } \alpha=0 .
$$

Lemma 2.6 Suppose there are $b>0, \beta<0, R>0$ and $k \leq 0$ such that

$$
\begin{array}{ll}
& F(x) \geq \beta G(x)+k, \quad 0 \leq x \leq b \\
& F(b) \geq \beta G(a)+k-\frac{1}{\beta} \\
\text { and } \quad & R<k-\frac{1}{\beta}
\end{array}
$$

Let $\gamma(t)$ be the solution of (2) with $\gamma(0)=\left(0, y_{0}\right), 0<y_{0} \leq R$. Then there is $t_{1}>0$ such that $\gamma\left(t_{1}\right)=\left(b_{1}, 0\right)$, with $0<b_{1} \leq b$.

To close the section we observe that the solutions of (2) do not admit vertical asymptotes (see[1]).

3. Sufficient Condition for Nonexistence of Periodic Solutions

Theorem 3.1 Suppose there are $a<0<b, \alpha>0$ and $k \leq 0$ such that
(i) $g(x) F(x)>0$ for $a<x<b$ and $x \neq 0$;
(ii) $F(a) \leq-\left[\left(k-\frac{1}{\alpha}\right)^{2}-2 G(a)\right]^{1 / 2}$ and $F(b) \geq\left[\left(k-\frac{1}{\alpha}\right)^{2}-2 G(b)\right]^{1 / 2}$;
(iii) $F(x) \geq \alpha G(x)+k$ for $x>0$.

Under these conditions the system (2) does not admit non-trivial periodic solution.

Proof. Consider the solution $\gamma(t)=(x(t), y(t))$ starting at $\gamma(0)=\left(0, y_{0}\right)$ with $k-\frac{1}{\alpha}<y_{0}<0$. Suppose there is a smaller $t_{2}>0$ such that $\gamma\left(t_{2}\right)=\left(0, y_{2}\right), y_{2}>0$. From Lemma 2.5 and conditions (i)-(ii) there is $0<t_{1}<t_{2}$ such that $\gamma\left(t_{1}\right)=\left(x_{1}, 0\right)$, $a \leq x_{1}<0$. It follows that $a \leq x(t) \leq 0$ for $0 \leq t \leq t_{2}$ and $x\left(t_{2}\right)=0$. From Lemma 2.5, $y_{2}=y\left(t_{2}\right)<\frac{1}{\alpha}-k$. Suppose now there is a smaller $t_{4}>t_{2}$ such that $\gamma\left(t_{4}\right)=\left(0, y_{4}\right), y_{4}<0$. From Lemma 2.2 and conditions (i)-(ii) there is $t_{2}<t_{3}<t_{4}$ such that $\gamma\left(t_{3}\right)=\left(x_{3}, 0\right), 0<x_{3} \leq b$. It follows that $0 \leq x(t) \leq b$ for $t_{2} \leq t \leq t_{4}$ and $x\left(t_{4}\right)=0$. From Lemma 2.1 and condition (iii) we have $y_{4}=y\left(t_{4}\right)>k-\frac{1}{\alpha}$. From (i) we have

$$
\dot{S}_{0,0}(\gamma(t))<0 \quad \text { for } 0<t<t_{4}, \quad t \neq t_{2}
$$

So, $S_{0,0}(\gamma(0))>S_{0,0}\left(\gamma\left(t_{4}\right)\right)$ and therefore $\gamma(0) \neq \gamma\left(t_{4}\right)$. It follows that all solution starting at a point $(0, y)$ with $k-\frac{1}{\alpha}<y<0$ is not periodic.

Consider now the solution $\gamma(t)$ with $\gamma(0)=\left(x_{0}, 0\right), x_{0}>0$ and suppose there is $t_{1}>0$ such that $0 \leq x(t) \leq x_{0}$ for $0 \leq t \leq t_{1}$ and $x\left(t_{1}\right)=0$. From Lemma 2.1 and condition (iii) we have

$$
k-\frac{1}{\alpha}<y\left(t_{1}\right)<0 .
$$

So, the system (2) does not admit non trivial periodic solution.
We observe that Theorem 1 in [6] is a particular case of our Theorem 3.1.
Remark 3.1 It can easily be verified that the conditions (i), (ii) and (iii) in Theorem 3.1 ensure all solution starting at $\left(x_{0}, 0\right), x_{0}>0$, approaches the origin as $t \rightarrow+\infty$.

Remark 3.2 From Lemma 2.4 it follows that the condition (iii) can be replaced by: there are $\alpha<0$, and $k \geq 0$ such that

$$
F(x) \leq \alpha G(x)+k \quad \text { for } x<0
$$

Theorem 3.2 Suppose there are $\alpha>0$ and $a<0$ such that
(i) $g(x)[F(x)-\alpha G(x)]>0$ for $x \geq a$ and $x \neq 0$;
(ii) $F(a) \leq \alpha G(a)-\frac{1}{\alpha}$.

Under these conditions the system (2) does not admit non-trivial periodic solutions.

Proof. Consider the solution $\gamma(t)=(x(t), y(t))$ with $\gamma(0)=\left(x_{0}, 0\right), x_{0}>0$, and suppose there is $t_{1}>0$ such that $\gamma\left(t_{1}\right)=\left(x_{1}, 0\right), x_{1}>0$. From Lemmas 2.1-2.3 we have

$$
y(t)>-F(x(t))+\alpha G(x(t))-\frac{1}{\alpha} \quad \text { and } \quad x(t) \geq a
$$

for $0 \leq t \leq t_{1}$. Hence and from (i) it follows that for all $t \in\left[0, t_{1}\right]$, with $x(t) \neq 0$, $\dot{S}_{\alpha, 0}(\gamma(t))<0$. So

$$
S_{\alpha, 0}(\gamma(0))>S_{\alpha, 0}\left(\gamma\left(t_{1}\right)\right)
$$

and therefore $\gamma(0) \neq \gamma\left(t_{1}\right)$. It follows that the system (2) does not admit non-trivial periodic solution.

Remark 3.3 From Lemmas 2.4-2.6 it follows that the condition (i) and (ii) can be replaced by: there are $\alpha<0$ and $b>0$ such that

$$
g(x)[F(x)-\alpha G(x)]>0 \quad \text { for } x \leq b \text { and } x \neq 0 \quad \text { and } \quad F(b) \geq \alpha G(b)-\frac{1}{\alpha}
$$

Remark 3.4 It can be immediately verified that the conditions (i) and (ii) can be replaced by: there is $\alpha \in \mathbb{R}$ such that

$$
g(x)[F(x)-\alpha G(x)]>0 \quad \text { for } x \neq 0
$$

Example 3.1 The equation

$$
\ddot{x}+\left(x^{5}-x^{4}+3 x^{2}+2 x\right) \dot{x}+x=0
$$

does not admit non-trivial periodic solution.
Solution: $F(x)=\frac{x^{6}}{6}-\frac{x^{5}}{5}+x^{3}+x^{2}$ and $G(x)=\frac{x^{2}}{2}$.
For $x \geq-1$ and $x \neq 0$ we have $[F(x)-\alpha G(x)] g(x)>0$, with $\alpha=2$. By other hand,

$$
F(-1)<\alpha G(-1)-\frac{1}{\alpha}
$$

From Theorem 3.2 the equation does not admit non-trivial periodic solution.
We observe, in the example above, the Theorem 3.1 can not be applied because $F(x)>0$ for $x<0$. Also, the theorem 2.1 in [7] and theorem 1 in [8] can not be applied because there are $x_{1}>0$ and $x_{2}>0$ such that $F_{e}\left(x_{1}\right)>0$ and $F_{e}\left(x_{2}\right)<0$, where $F_{e}(x)=\int_{0}^{1} f_{e}(s) d s$ and $f_{e}(x)=-x^{4}+3 x^{2}$.

Example 3.2 The equation

$$
\ddot{x}+\left(x^{3}+6 x^{2}\right) \dot{x}+\frac{2 x}{\left(2+2 x+x^{2}\right)^{2}}=0
$$

does not admit non-trivial periodic solution.
Solution: $F(x)=\frac{x^{4}}{4}+2 x^{3}$ and $G(x)=\frac{(x+1)^{2}}{1+(x+1)^{2}}-\frac{1}{2}-2 \int_{1}^{x+1} \frac{1}{\left(1+u^{2}\right)^{2}} d u$ For $\alpha=1$ and $k=-1$ we have

$$
F(x) \geq \alpha G(x)+k \text { for } x \geq 0 \quad \text { and } \quad F(-1)<-\left[\left(k-\frac{1}{\alpha}\right)^{2}-2 G(-1)\right]^{1 / 2}
$$

We have also

$$
g(x) F(x)>0 \quad \text { for } x \geq-1 \text { and } x \neq 0 .
$$

From Theorem 3.1 the equation does not admit non-trivial periodic solution. (Here the condition $F(b) \geq\left[\left(k-\frac{1}{\alpha}\right)^{2}-2 G(b)\right]^{1 / 2}$ is not necessary because $g(x) F(x)>0$ for all $x \geq-1$ and $x \neq 0$.) The theorems in $[7,8]$ can not be applied because $g(x)$ is not odd.

4. Sufficient Conditions for the Origin to Be Globally Asymptotically Stable

Theorem 4.1 Suppose the following conditions are verified:
(i) There is $\alpha \in \mathbb{R}$ such that

$$
g(x)[F(x)-\alpha G(x)]>0 \quad \text { for } x \neq 0
$$

(ii) There are $k \leq 0$ and $k_{1} \geq 0$ such that $F(x) \geq k$ for $x>0$ and $F(x) \leq k_{1}$ for $x<0$.
(iii) For all $R>0$ there are $m<0<n$ such that

$$
F(n) \geq k+\left[(R-k)^{2}-2 G(n)\right]^{1 / 2} \quad \text { and } \quad F(m) \leq k_{1}-\left[\left(R-k_{1}\right)^{2}-2 G(m)\right]^{1 / 2}
$$

Under these conditions the origin is globally asymptotically stable in Liapunov sense.

Proof. Consider the arcs

$$
\begin{array}{llll}
S_{\alpha, 0}(x, y)=c & \text { with } & y \geq-F(x)+\alpha G(x) \\
S_{\alpha, 0}(x, y)=c & \text { with } & y \leq-F(x)+\alpha G(x) \tag{15}
\end{array}
$$

From hypotheses (i)-(iii) the arc (14) intercepts the $x>0$ half-axis at ($x_{1}, 0$), $x_{1}>0$, and (15) crosses the $x<0$ half-axis at $\left(x_{2}, 0\right), x_{2}<0$. Let K_{c} be, $c>0$, the compact set bounded by the arcs (14), (15) and by the lines $x=x_{1}$ and $x=x_{2}$. From (i) we have

$$
\begin{equation*}
\dot{S}_{\alpha, 0}(x, y)<0 \quad \text { for } x \neq 0 \tag{16}
\end{equation*}
$$

So, K_{c} is an invariant set for the system (2). Then the condition (16), by La Salle Theorem, ensures that the origin is asympotically stable and every solution starting at a point in K_{c} approaches the origin as $t \rightarrow+\infty$. It follows that every solution starting at a point in $\Omega_{\alpha, 0}$ approaches the origin as $t \rightarrow+\infty$. From Lemmas 2.2 and 2.5 and conditions (ii)-(iii) for every solution $\gamma(t)$ of (2) there is t_{1} such that $\gamma\left(t_{1}\right) \in \Omega_{\alpha, 0}$ So all solution of (2) approaches the origin as $t \rightarrow+\infty$. Therefore the origin is globally asymptotically stable.

Remark 4.1 The condition (i) can be replaced by: There are $\alpha>0(\alpha<0)$, $a<0(b>0)$ such that

$$
g(x)[F(x)-\alpha G(x)]>0 \quad \text { for } x>a(x<b) \text { and } x \neq 0
$$

and

$$
F(a) \leq \alpha G(a)-\frac{1}{\alpha}\left(F(b) \geq \alpha G(b)-\frac{1}{\alpha}\right.
$$

Remark 4.2 The condition (i) can be replaced by: There are $a<0<b, \alpha>0$ $(\alpha<0), k \leq 0(k \geq 0)$ such that

$$
\begin{aligned}
& \quad g(x) F(x)>0 \quad \text { for } a<x<b \text { and } x \neq 0 ; \\
& F(x) \geq \alpha G(x)+k \text { for } x>0 \quad(F(x) \leq \alpha G(x)+k \text { for } x<0) ; \\
& \\
& F(a) \leq-\left[\left(k-\frac{1}{\alpha}\right)^{2}-2 G(a)\right]^{1 / 2} \\
& \text { and } \quad F(b) \geq\left[\left(k-\frac{1}{\alpha}\right)^{2}-2 G(b)\right]^{1 / 2}
\end{aligned}
$$

Remark 4.3 Suppose that in Theorem 4.1 the following condition is also verified: (iii) there are $\alpha_{1}>0, \alpha_{2}<0$ and $r>0$ such that

$$
F(x)<\alpha_{1} G(x) \text { for } 0<x<r \text { and } F(x)>\alpha_{2} G(x) \text { for }-r<x<0
$$

In this case every non-trivial solution approaches the origin, as $t \rightarrow \infty$, in spiral.
We observe that the condition $x F(x)<0$ for $0<|x|<\epsilon$ appearing in Theorem 2 in [2] can be replaced by (iii).

Remark 4.4 The condition (iii) is equivalent to the conditions 1.2 and 1.3 appearing in [2].

Example 4.1 For the equation

$$
\ddot{x}+\left(x^{4}+7 x^{3}+2 x^{2}+x\right) \dot{x}+5 x^{3}+x^{2}+x=0
$$

the origin is globally asymptotically stable and, for every non-trivial solution $x=x(t)$, $\gamma(t)=(x(t), \dot{x}(t))$ approaches the origin, in spiral, as $t \rightarrow+\infty$.

Solution: $F(x)=\frac{x^{5}}{5}+\frac{7}{4} x^{4}+\frac{2}{3} x^{3}+\frac{x^{2}}{2}$ and $G(x)=\frac{5}{4} x^{4}+\frac{x^{3}}{3}+\frac{x^{2}}{2}$.
We have, for $\alpha=1$,

$$
g(x)[F(x)-\alpha G(x)]>0 \quad \text { for } x \neq 0
$$

and

$$
\lim _{x \rightarrow+\infty} F(x)=+\infty \quad \text { and } \quad \lim _{x \rightarrow-\infty} F(x)=-\infty
$$

We have also there is $r>0$ such that

$$
F(x)<2 G(x) \text { for } 0<x<r \quad \text { and } \quad F(x)>0 \quad \text { for }-r<x<0
$$

The conclusion follows from Theorem 4.1 and Remark 4.3.
Example 4.2 Consider again the equation of the Example 3.2:

$$
\ddot{x}+\left(x^{3}+6 x^{2}\right) \dot{x}+\frac{2 x}{\left(2+2 x+x^{2}\right)^{2}}=0
$$

It can be easily verified that the origin is asymptotically stable and, for every non-trivial solution $x=x(t)$ with $\dot{x}(x)=0, \gamma(t)=(x(t, \dot{x}(t))$ approaches the origin as $t \rightarrow+\infty$. But the origin is not globally asymptotically stable because there is $a<0$ such that

$$
g(x)[F(x)-G(x)]<0 \quad \text { for } x \leq a
$$

and so the solution $\gamma(t)=(x(t), \dot{x}(t)), t \geq 0$, starting at $\left(x_{0}, y_{0}\right)$ with $x_{0} \leq a$ and $y_{0}<-F\left(x_{0}\right)+G\left(x_{0}\right)-1$, does not cross the curve $y=-F(x)+G(x)-1$.

5. Sufficient Conditions for Existence of Periodic Solutions

Theorem 5.1 Suppose that

(i) the origin is repulsive.

Suppose also that there are $\alpha>0, k \leq 0, k_{1} \geq 0$, and $a<0<b$ such that:
(ii) $F(x) \leq k_{1}$ for $a \leq x \leq 0$ and $F(a) \leq k_{1}-\left[\left(k-\frac{1}{\alpha}-k_{1}\right)^{2}-2 G(a)\right]^{1 / 2}$;
(iii) $F(x) \geq \alpha G(x)+k$ for $0 \leq x \leq b$ and $F(b) \geq k+\left[\left(\frac{1}{\alpha}+2 k_{1}-2 k\right)^{2}-2 G(b)\right]^{1 / 2}$.

Under these conditions the system (2) admits at least one non-trivial periodic solution located between the lines $x=a$ and $x=b$.

Proof. From Lemma 2.5 and hypotheses (i), (ii), the solution staring at the point $\left(0, k-\frac{1}{\alpha}\right)$ crosses the $y>0$ half-axis at $\left(0, y_{1}\right)$ with $0<y_{1} \leq-k+\frac{1}{\alpha}+2 k_{1}$. From

Lemma 2.2 and hypotheses (i), (iii), the solution starting at a point $\left(0, y_{1}\right)$, with $0<$ $y_{1} \leq-k-\frac{1}{\alpha}+2 k_{1}$ crosses the $y<0$ half-axis at a point $\left(0, y_{2}\right)$ with $k-\frac{1}{\alpha}<y_{2}<0$. From the Theorem of Poincaré-Bendixon the system (2) admits at least one non-trivial periodic solution. It is clear that this periodic solution is located between the lines $x=a$ and $x=b$.

We observe that the Theorem 3 in [2] is a particular case of the Theorem 5.1.
Remark 5.1 If there are $\alpha \in \mathbb{R}$ and $r>0$ such that

$$
g(x)[F(x)-\alpha G(x)]<0 \quad \text { for } x<|x|<r
$$

then the origin is repulsive. It is enough to observe that the above condition implies

$$
\dot{S}_{\alpha, 0}(x, y)>0 \quad \text { for } 0<|x|<r
$$

and for $c>0$ sufficiently small the level curve $S_{\alpha, 0}(x, y)=c$ is closed.
Corollary 5.1. Suppose that
(i) the origin is repulsive.

Suppose also that there are $\alpha>0, k \leq 0$ and $a<0<b$ such that:
(ii) $F(x) \leq F(a)$ for $a \leq x \leq b$ and $G(a) \geq \frac{1}{2}\left(k-\frac{1}{\alpha}-F(a)\right)^{2}$;
(iii) $F(x) \geq \alpha G(x)+k$ for $0 \leq x \leq b$ and $F(b) \geq k+\left[\left(\frac{1}{\alpha}+2 F(a)-2 k\right)^{2}-2 G(b)\right]^{1 / 2}$.

Under these conditions the system (2) admits at least one non-trivial periodic solution located between the lines $x=a$ and $x=b$.

Proof. From (ii) there is $a \leq a_{1}<0$ such that $F(x) \leq F(a)$ for $a_{1} \leq x \leq 0$ and $2 G\left(a_{1}\right)=\left(k-\frac{1}{\alpha}-F(a)\right)^{2}$. Now, it is enough to make $k_{1}=F(a)$ in Theorem 5.1.

Theorem 5.2 Suppose that
(i) the origin is repulsive.

Suppose also that these are $\alpha>0 . \beta>0, \alpha<0<b, k \leq 0$ and $k_{1} \leq 0$ such that:
(ii) $F(x) \leq \beta G(x)+k_{1}, \alpha \leq x \leq 0, F(a) \leq \beta G(a)+k_{1}-\frac{1}{\beta}$ and $k-\frac{1}{\alpha}>k_{1}-\frac{1}{\beta}$;
(iii) $F(x) \geq \alpha G(x)+k, 0 \leq x \leq b$ and $F(b) \geq k+\left[(R-k)^{2}-2 G(b)\right]^{1 / 2}$
where $R=-k+\frac{1}{\alpha}+2\left[\beta G(a)+k_{1}\right]$.
Under these conditions the system (2) admits at least one non-trivial periodic solution located between the line $x=a$ and $x=b$.

Proof. From (ii) we have

$$
F(x) \leq \beta G(a)+k-1, \quad a \leq x \leq 0
$$

From hypotheses and Lemmas 2.2, 2.3 and 2.5 the solution starting at $\left(0, k-\frac{1}{\alpha}\right)$ crosses again the $y<0$ half-axis at $\left(0, y_{1}\right)$ with $k-\frac{1}{\alpha}<y_{1}<0$. From theorem of

Poincaré-Bendixon the system (2) admits at least one non-trivial periodic solution. This solution is evidently located between the lines $x=a$ and $x=b$.

Remark 5.2 It can be immediately verified that the condition

$$
F(a) \leq \beta G(a)+k_{1}-\frac{1}{\beta}
$$

can be replaced by

$$
S_{\beta, k_{1}}\left(0, k-\frac{1}{\alpha}\right) \leq S_{\beta, k_{1}}(a, 0)
$$

In a similar way it can be proved the following theorems.
Theorem 5.3 Suppose that
(i) the origin repulsive.

Suppose also that there are $\alpha<0 k \geq 0, k_{1} \leq 0$ and $a<0<b$ such that:
(ii) $F(x) \geq k_{1}$ for $0 \leq x \leq b$ and $F(b) \geq k_{1}+\left[\left(k-\frac{1}{\alpha}-k_{1}\right)-2 G(b)\right]^{1 / 2}$
(iii) $F(x) \leq \alpha G(x)+k, a \leq x \leq 0$ and $F(a) \leq k-\left[\left(-\frac{1}{\alpha}-2 k_{1}+2 k\right)-2 G(a)\right]^{1 / 2}$.

Under these conditions the system (2) admits at least one non-trivial periodic solution located between the lines $x=a$ and $x=b$.

Corollary 5.2 Suppose that
(i) the origin is repulsive. Suppose also that there are $\alpha<0, k \geq 0$ and $a<0<b$ such that:
(ii) $F(x) \geq F(b)$ for $0 \leq x \leq b$ and $G(b) \geq \frac{1}{2}\left(k-\frac{1}{\alpha}-F(b)\right)^{2}$;
(iii) $F(x) \leq \alpha G(x)+k$ for $a \leq x \leq 0$ and $F(a) \leq k-\left[\left(-\frac{1}{\alpha}-2 F(b)+2 k\right)^{2}-2 G(a)\right]^{1 / 2}$. Under these conditions the system (2) admits at least one non-trivial periodic solution located between the lines $x=a$ and $x=b$.

Theorem 5.4 Suppose that
(i) the origin is repulsive.

Suppose also that there are $\alpha<0, \beta<0, a<0<b, k_{1} \leq 0$ such that:
(ii) $F(x) \geq \beta G(x)+k_{1}$ for $0 \leq x \leq b$ and $F(b) \geq \beta G(b)+k_{1}-\frac{1}{\beta}$ and $k-\frac{1}{\alpha}<k_{1}-\frac{1}{\beta}$;
(iii) $F(x) \leq \alpha G(x)+k$ for $a \leq x \leq 0$ and $F(a) \leq k-\left[(R-k)^{2}-2 G(a)\right]^{1 / 2}$ where $R=-k+\frac{1}{\alpha}+2\left[\beta G(b)+k_{1}\right]$.
Under these conditions the system (2) admits at least one non-trivial periodic solution located between the lines $x=a$ and $x=b$.

Remark 5.4 The condition

$$
F(b) \geq \beta G(b)+k_{1}-\frac{1}{\beta}
$$

in Theorem 5.4 can be replaced by

$$
S_{\beta, k}\left(0, k-\frac{1}{\alpha}\right) \leq S_{\beta, k}(b, 0)
$$

Example 5.1 The equation

$$
\ddot{x}+\left[x^{3}+4 x^{2}+3 x-\frac{1}{12}\right] \dot{x}+x=0
$$

admits at least one non-trivial periodic solution.
Solution: $F(x)=\frac{x^{4}}{4}+\frac{4 x^{3}}{3}+\frac{3 x^{2}}{2}-\frac{x}{12}$ and $G(x)=\frac{x^{2}}{2}$.
We have

$$
\begin{aligned}
& F(x) \leq F(-1), \quad-1 \leq x \leq 0 \\
& F(x)>\alpha G(x)+k \quad \text { for all } \quad x>0
\end{aligned}
$$

where $\alpha=3$ and $k=-\frac{1}{12}$, and

$$
G(-1)>\frac{1}{2}\left[k-\frac{1}{\alpha}-F(-1)\right]^{2}
$$

From $\lim _{x \rightarrow+\infty} F(x)=+\infty$ it follows that there is $b>0$ such that

$$
F(b) \geq K+\left[\left(\frac{1}{\alpha}+2 F(-1)-2 k\right)^{2}-2 G(b)\right]^{1 / 2}
$$

The origin is repulsive because there is $r>0$ such that

$$
g(x)[F(x)-G(x)]<0 \quad \text { for } 0<|x|<r
$$

From Corollary 5.1 the equation admits at least one non-trivial periodic solution located between the lines $x=-1$ and $x=b$, with $b=\frac{1}{\alpha}+2 F(-1)-2 k$.

Example 5.2 The equation

$$
\ddot{x}+\left(x^{3}+4 x^{2}-1\right) \dot{x}+4 x^{3}=0
$$

admits at least one non-trivial periodic solution located between the lines $x=-2$ and $x=2$.

Solution: $F(x)=\frac{x^{4}}{4}+\frac{4 x^{3}}{3}-x$ and $G(x)=x^{4}$.
For $\beta=\frac{1}{4}$ and $k_{1}=1$ we have

$$
F(x) \leq \beta G(x)+k_{1}, \quad-2 \leq x \leq 0 \text { and } F(-2) \leq \beta G(-2)+k_{1}-\frac{1}{\beta}
$$

for $\alpha=\frac{1}{2}$ and $k=-\frac{3}{5}$ we have

$$
F(x) \geq \alpha G(x)+k, \quad 0 \leq x \leq 2 \text { and } k-\frac{1}{\alpha}>k_{1}-\frac{1}{\beta}
$$

. We have also

$$
F(2)>k+\left[(R-k)^{2}-2 G(2)\right]^{1 / 2}
$$

where $R=-k+\frac{1}{\alpha}+2\left[\beta G(-2)+k_{1}\right]$.
By other hand the origin is evidently repulsive. From Theorem 5.2 the equation admits at least one non-trivial perodic solution located between the lines $x=-2$ and $x=2$.

References

[1] H. L. Guidorizzi, "On the existence of periodic solutions for the equation $\ddot{x}+f(x) \dot{x}+g(x)=0$," Bol. Soc. Bras. Mat., 22(1) (1991), 81-92.
[2] G. Villari, "On the qualitative behaviour of solutions of Liénard equation," J. Differential Equations, 67(1987), 269-277.
[3] A. V. Dragilëv, "Periodic solutions of the differential equations of non-linear oscillations," Prikl. Mat. Mekh., 16(1952), 85-88 (in Russian).
[4] Y. E. Yan Qian et al., "Theory of limit cycles," Translations of Mathematical Monographs, 66(1984), American Mathematical Society.
[5] H. L. Guidorizzi, "Oscillating and periodic solutions of equations of type $\ddot{x}+\dot{x} \sum_{i=1}^{n} f_{i}(x)|\dot{x}|^{\delta_{i}}+$ $g(x)=0, "$ Journal of Mathematical Anglysis and Applications, 176(2)(1983), 330-345.
[6] Z. Zuo Huan, "On the nonexistence of periodic solutions for Liénard equations," Nonlinear Analysis, Theory, Methods and Applications, 16(2)(1991), 101-110.
[7] G. Villari, "On the existence of periodic solutions for Liénard's equation," Nonlinear Analysis, Theory, Methods and Applications, 7(1)(1983). 71-78.
[8] G. Villari, "Ciclo limite di Liénard e controllabilitá," Bolletino U.M.I. A(5) 17(1980), 406-413.
[9] G. Villari, "A new system for Liénard equation," Bolletino U.M.I. (7)I.A(1987), 375-381.
[10] G. Villari, "Periodic solutions of Liénard's equation," J. Math. Analysis and Applications, 86(1982), 406-413.
[11] A. F. Filipov, "Sufficient conditions for the existence of stable limit cycles of second order equations," Mat. Sbornik, 30(1952), 171-180 (in Russian).
[12] Z. Opial, "Sur unthéorème de A. Filipov," Annals Soc, Pol. Math., 5(1958), 67-75.
[13] J. G. Wendel, "On a Van der Pol equation with odd coefficients," J. London Math. Soc., 24 (1949), 65-67.
[14] N. Levinson and O. K. Smith, "A general equation for relaxation oscillation," Duke Math. J., 9(1942), 382-403.
[15] P. Ponzo and N. Wax, "On periodic solutions of the system $\dot{x}=y-F(x), \dot{y}=-g(x)$," J. Differential Equations, 18(1974), 262-269.
[16] T. A. Burton, "On the equation $\ddot{x}+f(x) h(\dot{x}) \dot{x}+g(x)=e(t)$," Ann. Mat. Pura et Appl., 85(1970), 277-286.
[17] J. R. Graef, "On the generalized Liénard equation with negative damping," J. Differential Equations, 12(1972), 34-62.
[18] J. R. Graef, "Asymptotic behavior of solutions of a second order linear differential equations," J. Differential Equations, 17(1975), 461-476.
[19] J. W. Heidel, "A Liapunov function for a generalized Liénard equation," J.Math. Anal. Appl., 39(1972), 192-197.
[20] M. Yamamoto and S. Sakata, "On the boundedness of soluations and the attractivity properties for nonlinear second order differential equations," Math. Japon, 27(1982), 231-257.
[21] T. Hart and T. Yoneyama, "On the global center of generalized Liénard equation and its application to stability problems," Funkcialaj Ekvacioj, 28(1985), 171-192.
[22] B. Van Der Pol, "Forced oscillations in a circuit with resistence(recepatance with reactive triode)," London, Endibrugh and Dublin Phil. Mag., 3(1927), 65-80.
[23] A. Liénard, "Étude des oscillations entretenues," Rev. Générale de l'Electricité, 23(1928), 901-912.

Instituto de Matemática e Estatística, Universidade de São Paulo, Caixa Postal 20.570-Ag. Jd. Paulistano 01452-990-São Paulo-SP-Brasil.

