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THE FAMILY OF FUNCTIONS 5,
AND THE LIENARD EQUATION
HAMILTON LUIZ GUIDORIZZI

Abstract. In this paper we study qualitatively the Liénard Equation %+ f(z)x +
g(z) = 0 with aid of the non-usual family of functions given by

y+F(z)—aG(z)—k s z
Se k(2 ) =/ _Hd:c+/ g(u)du
0 as 0

where F(z) = [ f(u)du.G(z) = Jo 9(u)du and a, k R

1. Introduction and Prelimanaries

Throughout this work we consider the equation
i+ f(z)z+ g(z) =0 (1)

where f and g are functions of R in R satisfying the following conditions:

a) f and g are continuous and ensure uniqueness of solutions.

b) z.g(z) > 0 for z # 0.

Next, we suppose the above conditions are verified and they will not be mentioned again.
The equation (1) is equivalent to the system

T=y
{y = f(a - 9(x) @)

The condition b) ensures the orign (0,0) is the only singular point of (2).
The more natural positive definite function for studyng qualitatively the system (2)
is the Energy Function

1 T
E(z,y) = 5¥° + /0 g(u)du
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38 HAMILTON LUIZ GUIDORIZZI

whose derivative relative to (2) is E(z,y) = — f(z)y?.
In [1] we study qualitatively (2) using the family of positive definite functions given

by

Y s z
Va(aﬂyy)-—/0 as+1d3+/0 g(u)du

where V} is exactly the Energy Function.
The equation (1) is also equivalent to the system

z=y— F(z)
{il=~y($) ®)

where F(z) = [ f(u)du. In several works (for example [2], [3] and [4] the system (3)
was studied with aid of the family of functions

Buwy) = 5= 07 + [ gl

whose derivative relative to the system (3) is E(z,y) = —g9(z)[F(z) — k).
Condsider now the function

So,x = %[y + F(z) - k)% + /Ox g(u)du.

The derivative of Sy« relative to the system (2) is So x(z,y) = —g(z)[F(z) - k).

So the function Sy plays, relatively to the system (2), the same role that Ej
relatively to (3). The function S x is a member (a = 0) of family Sak : Qo — R given
by

y+F(z)—aG(z)—k
San(@v) = [

0 QS+1

ds +/ g(u)du
0
where F(z) = [ f(u)du, G(z) = [ g(u)du and Qg 4 is the following open set:

Qo =R? ifa=0

Qox = {(73,2/)6R2 |y > —F($)+aG(a:)+k—é-} ifa>0

1
Qo ke = {(:c,y) ER?|y< —F(z) +aG(z) + k — 5} ifa<0
The derivative of S, x relative to the system (2) is

. B 9(z)[F(x) — aG(z) — k]
Sak(z,y) = Taly+ F(z) - aG(z) — K+ 1

(4)
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We observe that the sign of Sak is the same of —g(z)[F(z) — aG(x) — k] because
aly + F(z) — aG(z) - k] +1> 0 on Q-

In this work we study qualitatively (2) utilizing the family of functions Sq . We
observe that the new idea in this paper is only the family Sa k. However, as we shall see,
the level curves of this family and the relation (4) together suggest to us how to state,
in a natural way, several qualitative results about the solutions of the Liénard Equation.

The system (2) can be also studied using the family of positive definite functions

given by

- y/Hp(z) s do 4 Ing-12H
«.5(Z,9) —/0 P rast1 s +Inp s(z)

where Hp(z) = [2G(z) + BM/2, B > 0 (see[5]).

It is clear that we can also study qualitatively the system (2) combining the functions
Vi, Wa s and Sq k- Many interesting and important works about the Leénard Equation
have been published and some are listed in the references. I have a special caress by
Theorem 2 in [7], because with aid of it (and of a dream!) I concluded my Doctoral
Thesis and indirectly my work [5] was suggested by it.

2. Auxiliary Lemmas

Next, we suppose o > 0 and
w(z) = —-F(a:)+aG(x)+k—21; fa>0 and w(z)=-o00 ifa=0.
In first place we observe that, for each fixed z, the the function

y = Sok(2,Y)

is strictly increasing for y > —F(z) + aG(z) + k and strictly decreasing for w(z) <y <
—F(z) + aG(z) + k. We have also

lim Sgk(z,y) =+ = lim  Sok(z, )
y—+oo +

y—w(z

So for each ¢ > 0 and for each z, with G(z) < ¢, thereisa unique y; > —F(z)+aG(z)+k
and a unique y2, with u(z) <y2 < —F(z) + aG(z) + k such that

Sa (T, y1) = Sak(z,y2) = ¢
_If there exist £; < 0 < z2 such that
G(z1)=G(z2) =¢

then the level curve So i(z,y) = c is clsoed and shows, in the case F(z) > oG(z) + k
and k <0and c> fo—k o1 as the following aspect (Figure 1):
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Figure 1

If F(z) > aG(x) + k for > 0 and there exists 2o > 0 such that Sok(22,0) = ¢
then the arc

Sak(2,y) = ¢,
with z > 0 and y > —F(z) + aG(z) + k, crosses the z > 0 half-axis at (z2,0) and the set

{(z,9) € Qok | Sap(z,9) =¢, 0<z<3,)

shows, in the case k < 0 and Sa,k(2,0) < ¢, for 0 < z < x4, the following aspect (Figure

2):
f

Sek(2,y) =c
'd
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Figure 2
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If F(z) < BG(z) + k, for a < z <0, with k — 21; < 0, and w(a) > 0, then the curve
y=w(z)= —F(a:)+ﬂG(a:)+k—%
crosses the z < 0 half-axis. Hence, for every ¢ > 0, the arc
Sak(z,y)=c¢, z<0andy< —F(z)+ BG(z)+k
crosses too the z < 0 half-axis at point (z1,0), with @ < z; < 0 and the set
{(z,y) € Qp.|Spk(z,y) =¢, 21 <z <0}

shows, in the case k > 0 and w(z) < 0 for z; < z < 0, the following aspect (Figure 3):

Sp.r(z,y) =c

Figure 3
If a =0 we have
Son(#,) = 3+ Fla) - k) + G(a).
So, So.x(z,y) = c is equivalent to
y=—F(z) + k+ [2c — 2G(2)]*/? or y = —F(z) + k — [2¢c — 2G(z)]*/?

The case a < 0 can be discussed in a similar way.

Lemma 2.1 Suppose there are o >0, b >0 and k <0 such that

F(z) > aG(x)+k for0<z<b. (5)
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Let ~(t) = (z(t),y(t)) be the solution of (2) with ¥(0) = (0,0), 0 < zo < b, and
t; >0 such that 0 < z(t) <b for 0<t <ty, Then, for 0 <t <ty,

y(t) > —F(a(t)) + aG(a(t)) + k - é

In particular, if z(t,) = 0 then y(t1) > k— L.

Proof. From (5), Sa,k(:c, y) < 0,0 <z <b. It follows that, for each u €]0,¢;] such
that y(t) € Qak, 0 <t < u, we have S,k (7(t)) < 0for 0 <t < u, and therefore

Sak(¥(t)) <c,  0<t<uw,

with ¢ > Sax(7(0)). It follows immediately that the set {y(t)|0 < ¢ < t;} does not
intercept the arc
Sex(z,y)=C,  y< F(z)+aG(z)+k

Then, for 0 < t < t; we have
y(t) > —F((2)) + aG(a(t)) + k — %
(This result is intuitive: it is enough to look the Figure 2 with 7o < z2)
Lemma 2.2 Suppose there are b>0, a >0, R> 0 and k <0 such that
F(z) > aG(z)+k, 0Lz<Db (6)

F(b) > k+[(R - k)? — 2G(b)]'/%. (7)

Let «(t) be the solution of (2) with ¥(0) = (0,0), 0 < yo < R. Then there ist; >0
such that
’Y(tl) = (bl,o)) 0< bl S b.

Moreover, if there exists ty > t; such that 0 < z(t) < b fort, <t < t; and
z(tz) = 0 then

1
y(t2)>k—a ifa>0and y(t) > —R+2kifa=0.

Proof. The equation
1 2
So,k(z,y) = So,k(0, R) = §(R —-k)

is equivalent to
y=—F(z)+k+[(R- k) -2G()]'/ (8)
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or
y = ~F(z) +k~ (R~ k)’ - 2G(2)]"/* 9)

The condition (7) ensures the curve (8) intercepts the z > 0 half-axis at a point
(b2,0), 0 < by < b. Form (6) have F(z) > k,0<z <b. So
Sok(z,9) <0, 0<z<b. (10)

Then the solution «(t) of (2) starting at the point y(0) = (0, y
also the z > 0 half-axis at a point ¥(¢;) = (61,0), 0 < by < b <
for i S t S to

0), 0 < yo < R, crosses
b. From (10) we have

So,k(7(t)) < So,k(v(t1)) < So,x(0, R).

Hence and from (9) we have for t; <t <,
y(t) 2 —F(z(t) + k = (R~ k)* = 2G(z(t))]"/*.

So, if @ = 0 and z(t3) = 0 we have y(t2) < —R + 2k.
From Lemma 2.1, if a > 0,

1
y(t2) > k- P
(See again Figure 2.)

Lemma 2.3 Suppose there are a <0, 3 >0, R<0 and k > 0 such that

F(z) < fG() +k, a<z<0, (1)
F(a) < BG(a) + k — % (12)
and R>k- % (13)

Let v(t) = (z(t),y(t)) be the solution of (2) with ¥(0) = (0,%), R < yo < 0.
Then there is t; > 0 such that v(t1) = (a1,0) witha < a; <0, and y(t) > —F(z(t))+
BG(z(t)) +k— 5, 0<t<t.

Proof. The conditions (12) and (13) ensure the curve
L
B
crosses the z < 0 half-axis at a point (az,0) with a < a; < 0. From (11)

y=—-F(z)+ pG(z) + k —

S5 <0, a<z<0.

So, the solution ~(t) starting v(0) = (0,y0), R < yo < 0, can not leave the compact
set i
{@1) €pul - Fla) 4 6@ + k- 5 <y <Oamd ar <2 <0
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through the arc
y=—F() +0G(@) + k- ga ST <0,

Then there is t; > 0 such that the solution ~(t) crosses the z < 0 half-axis at a point
y(t1) = (a1,0), a2 < a1 < 0, and y(t) > —F(z(t)) + BG(z(t)) + k — 713-, for 0 <t <t.
(See Figure 3.)

In a similar way we prove the following lemmas.

Lemma 2.4 Suppose there are a <0, a <0 and k > 0 such that
F(r) <aG(z)+k, a<z<0.

Let v(t) be the soluting of (2) such that ¥(0) = (20,0), a <z <0 and t; > 0 such
that a < z(t) <0 for 0<t <t;. Then for0<t <t

u(t) < —F(a(t)) + aG(a(t)) + k — .é

In particular, if z(t;) = 0, then y(t) <k - 1.
Lemma 2.5 Suppose there are a <0, a <0, R<0 and k > 0 such that

F(z) < aG(z)+k, a <z <0 and F(a) < k- [(R— k) - 2G(a)]"/>.

Let ~(t) be the solution of (2) with ¥(0) = (0,y0), R < yo < 0. Then there ist; >0
such that
¥(t1) = (a1,0), a<a; <0.

Moreover, if there exists t; > t; such thata < z(t) <0 fort; <t <ty and z(t2) =0
then i
v(t2) < k — = ifa>0and y(t2) < —R+2kifa=0.

Lemma 2.6 Suppose there are b>0, 3 <0, R>0 and k <0 such that
F(z) > pBG(z)+k, 0<z<b

F@Zﬁmm+k—%

1
and R<k—--=
B

Let v(t) be the solution of (2) with ¥(0) = (0,%0), 0 < yo < R. Then there is
t; > 0 such that y(t;) = (b1,0), with 0 < by < b.

To close the section we observe that the solutions of (2) do not admit vertical
asymptotes (see[1]).
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3. Sufficient Condition for Nonexistence of Periodic Solutions

Theorem 3.1 Suppose there are a <0<b, a>0and k<0 such that
(i) g(z)F(z) >0 fora<z <bandz#0;
(i) F(a) < —[(k — L)? = 2G(@)]/2 and F(b) > [(k = 1)* ~ 2GO)'/%;
(iii) F(z) > aG(z) +k for z > 0.
Under these conditions the system (2) does not admit non-trivial periodic solu-
tion.

Proof. Consider the solution v(t) = (z(t),y(t)) starting at ¥(0) = (0,y0) with
— L1 <y < 0. Suppose there is a smaller £, > 0 such that y(t2) = (0,%2), y2 > 0.
From Lemma 2.5 and conditions (i)-(ii) there is 0 < #; < t2 such that v(t1) = (x1,0),
a <z < 0. It follows that a < z(t) < 0for 0 < ¢ < ¢ and z(t2) = 0. From
Lemma 2.5, y2 = y(t2) < 1 — k. Suppose now there is a smaller t4 > to such that
v(ts) = (0,v4), y4 < 0. From Lemma 2.2 and conditions (i)-(ii) there is t2 < t3 < #4
such that v(t3) = (23,0), 0 < z3 < b. It follows that 0 < z(t) < bfor t; <t < t4 and
z(ts) = 0. From Lemma 2.1 and condition (iii) we have ys = y(ts) > k- L. From (i) we
have
Soo(7(t)) <0 for0<t<ts, t#ts

So, So.0(7(0)) > So,0(v(ts)) and therefore v(0) # (ts). It follows that all solution
starting at a point (0,y) with k — % < y < 0 is not periodic.

Consider now the solution v(t) with ¥(0) = (20,0), zo > 0 and suppose there is
t; > O such that 0 < z(t) < zp for 0 <t <ty and z(t;) = 0. From Lemma 2.1 and
condition (iii) we have

1

So, the system (2) does not admit non trivial periodic solution.
We observe that Theorem 1 in [6] is a particular case of our Theorem 3.1.

Remark 3.1 It can easily be verified that the conditions (i), (i) and (iii) in
Theorem 3.1 ensure all solution starting at (zo,0), o > 0, approaches the origin as
t — +00.

Remark 3.2 From Lemma 2.4 it follows that the condition (iii) can be replaced
by: there are a <0, and k > 0 such that

F(z) <aG(z)+k forz<0.

Theorem 3.2 Suppose there are a >0 and a <0 such that
(i) g(z)[F(z) — aG(z)] > 0 forz > a and = # 0;
(i) F(a) < aG(a) — L.
Under these conditions the system (2) does not admit non-trivial periodic solu-
tions.
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Proof. Consider the solution (t) = (z(t), y(t)) with 7(0) = (zo,0), zo > 0, and
suppose there is t; > 0 such that v(¢;) = (z;,0), z; > 0. From Lemmas 2.1-2.3 we have

y(t) > —F(z(t)) + aG(z(t)) — é and z(t) > a

for 0 < ¢ < ¢;. Hence and from (i) it follows that for all ¢ € [0,], with z(¢) # 0,
Sa0(7(t)) < 0. So
Sa,O('Y(O‘)) > Sa,O('Y(tl))

and therefore y(0) # ~(t;). It follows that the system (2) does not admit non-trivial
periodic solution.

Remark 3.3 From Lemmas 2.4-2.6 it follows that the condition (i) and (ii) can
be replaced by: there are a < 0 and b > 0 such that

9(z)[F(z) —aG(z)] >0 forz <bandz#0 and F(b) > aG(b) - é.

Remark 3.4 It can be immediately verified that the conditions (i) and (ii) can be
replaced by: there is a € R such that

9(z)[F(z) — aG(z)] >0 for z #0.

Example 3.1 The equation
E+ (-2 +322 + 22)i+2=0
does not admit non-trivial periodic solution.

Solution: F(z) = %i - %5 + 2% + 2% and G(z) = ?53
For z > —1 and = # 0 we have [F(z) — aG(z)]g(z) > 0, with a = 2. By other hand,

F(=1) < aG(~1) - é

From Theorem 3.2 the equation does not admit non-trivial periodic solution.

We observe, in the example above,the Theorem 3.1 can not be applied because
F(z) > 0 for z < 0. Also, the theorem 2.1 in [7] and theorem 1 in [8] can not be applied
because there are z; > 0 and z, > 0 such that F.(z1) > 0 and F.(z3) < 0, where
F.(z) = fol fe(s)ds and f.(z) = —z* + 322

Example 3.2 The equation

2z

. 3 2\ - s
Z+ (27 + 6z )a:-i-———-——--(2_’_2:':_*_362)2
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does not admit non-trivial periodic solution.

Solution: F(z) = = +22° and G(z) = {7y — =2 [ rfmyrdu
For a =1 and k = —1 we have

F(@) > aG(e) +kforz 20 and F(-1) < - [(k~ 27 ~26(-1)] "

We have also
g(z)F(z) >0 forz>-1andz#0.
From Theorem 3.1 the equation does not admit non-trivial periodic solution. (Here the

1/2
condition F(b) > [(k -1 2G(b)] is not necessary because g(z)F(z) > 0 for all
2> —1 and z # 0.) The theorems in [7 ,8] can not be applied because g(z) is not odd.

4. Sufficient Conditions for the Origin to Be Globally Asymptotically
Stable

Theorem 4.1 Suppose the following conditions are verified:
(i) There is a € R such that

9(@)[F(z) — aG()] >0 for & #0;

(ii) There are k <0 and ki > 0 such that F(z) > k for z > 0 and F(z) < k1 for

z <0.
(iii) For all R> 0 there are m <0< n such that

F(n) > k+[(R-k)?—2G(@)]'/* and F(m) <k - [(R— k1)? = 2G(m)])*/2.

Under these conditions the origin is globally asymptotically stable in Lia-
punov sense.

Proof. Consider the arcs
Sao(z,y) =c with y>—-F(z)+ aG(z) (14)

Sao(z,y) =c with y<—F(z)+ aG(z) (15) .

From hypotheses (i)-(iii) the arc (14) intercepts the z > 0 half-axis at (z1,0), z1 > 0,
and (15) crosses the z < 0 half-axis at (22,0), z2 < 0. Let K. be, ¢ > 0, the compact set
bounded by the arcs (14), (15) and by the lines z = z1 and z = z5. From (i) we have

Sao(z,y) <0 forz #0. (16)
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So, K. is an invariant set for the system (2). Then the condition (16), by La Salle
Theorem, ensures that the origin is asympotically stable and every solution starting at
a point in K. approaches the origin as ¢t — +o0. It follows that every solution starting
at a point in 2,0 approaches the origin as ¢ — +o00. From Lemmas 2.2 and 2.5 and
conditions (ii)-(iii) for every solution (t) of (2) there is ¢; such that y(t;) € Q4,0 So
all solution of (2) approaches the origin as ¢ — +oo. Therefore the origin is globally
asymptotically stable.

Remark 4.1 The condition (i) can be replaced by: There are a > 0 (a < 0),
a <0 (b>0) such that

9(z)[F(z) —aG(z)] >0 forz>a (z<b) andz #0
and

F(a) < aG(a) - ~(F(b) > aG(b) - .

Remark 4.2 The condition (i) can be replaced by: There area <0< b, a >0
(¢ <0), k<0 (k>0) such that

g(z)F(z) >0 fora<z<bandz#0;
F(z) > aG(z) +k forz >0 (F(z) < aG(z) + k for z < 0);

F(a) < - [('ﬂ - 3.1;)2 - 2G(a)] "

1/2

and F(b) > [(k - é)z - 2G(b)

Remark 4.3 Suppose that in Theorem 4.1 the following condition is also verified:
(iii) there are a;; > 0, a3 < 0 and r > 0 such that

F(z) < yG(z) forO<z<r and F(z)> aG(z) for —r <z <0.

In this case every non-trivial solution approaches the origin, as t — oo, in spiral.
We observe that the condition zF(z) < 0 for 0 < |z| < € appearing in Theorem 2 in
[2] can be replaced by (iii).

Remark 4.4 The condition (iii) is equivalent to the conditions 1.2 and 1.3 appear-
ing in [2].

Example 4.1 For the equation

i+ (z*+ 73+ 222 + )i+ 523 + 2 +2 =0
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the origin is globally asymptotically stable and, for every non-trivial solution z = z(t),
v(t) = (z(t), £(t)) approaches the origin, in spiral, as ¢ — +o00.

Solution: F(z) = % + Izt + 243 + ‘2—2 and G(z) = 3z + 5;- + 52—2-

We have, for a =1,
g(z)[F(z) —aG(z)] >0 forz #0

and
ligl F(z) =400 and lim F(z)= —oo0.

——0c0

We have also there is 7 > 0 such that
F(z) <2G(z) forO0<z<rT and F(z)>0 for —r<z<0.

The conclusion follows from Theorem 4.1 and Remark 4.3.
Example 4.2 Consider again the equation of the Example 3.2:

2z _

B 3 2y - —
Z+ (z° + 6z ):1c+————(2_+_2:!:_'_QJ_:',)2

It can be easily verified that the origin is asymptotically stable and, for every non-trivial
solution z = z(t) with &(z) = 0, ¥(t) = (z(t,%(t)) approaches the origin as ¢ — +co.
But the origin is not globally asymptotically stable because there is a < 0 such that

9(z)[F(z) - G(z)] <0 forz<a

and so the solution v(t) = (z(t),#(t)), t > 0, starting at (2o,y0) with zo < @ and
yo < —F(x0) + G(zo) — 1, does not cross the curve y = —F(x) + G(z) — 1.

5. Sufficient Conditions for Existence of Periodic Solutions

Theorem 5.1 Suppose that
(i) the origin is repulsive.
Suppose also that there are a >0, k<0, k; >0, and a < 0 < b such that:

1/2
(i) F(z) < ki for a <z <0 and F(a) < k; — [(k o ) 2G(a)] ;
1/2
(iii) F(z) > aG(z) +k for0<z <band F(b) > k+ [(i +2k —2k)° - 2G(b)] 2
Under these conditions the system (2) admits at least one non-trivial periodic

solution located between the lines x =a and ¢ =b.

Proof. From Lemma 2.5 and hypotheses (i), (ii), the solution staring at the point
0,k — i—) crosses the y > 0 half-axis at (0,y;) with 0 < y; < —k + é + 2k;. From
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Lemma 2.2 and hypotheses (i), (iii), the solution starting at a point (0,y;), with 0 <
1 < —k-— % + 2k; crosses the y < 0 half-axis at a point (0,y2) with k — % <y2 <0
From the Theorem of Poincaré-Bendixon the system (2) admits at least one non-trivial
periodic solution. It is clear that this periodic solution is located between the lines z = a

and z = b.
We observe that the Theorem 3 in [2] is a particular case of the Theorem 5.1.

Remark 5.1 If there are a € R and 7 > 0 such that
g(z)[F(z) —aG(z)] <0 forz <|z|<T
then the origin is repulsive. It is enough to observe that the above condition implies
Sao(z,y) >0 for0<|z|<r

and for ¢ > 0 sufficiently small the level curve S o(z,y) = c is closed.

Corollary 5.1. Suppose that
(i) the origin is repulsive.
Suppose also that there are o >0, k <0 and a <0 < b such that:
(i) F(z) < F(a) fora<z<b and G(a) > 1 (k- L - F(a))*;

(iii) F(z) > aG(z)+k for 0<z <b and F(b) > k+ [(i— +2F(a) - 2k)2 - 2G(b)]

Under these conditions the system (2) admits at least one non-trivial periodic
solution located between the lines z =a and z =b.

1/2

Proof. From (ii) there is @ < a; < 0 such that F(x) < F(a) fora; <z <0 and
2G(a1) = (k — L — F(a))®. Now, it is enough to make k; = F(a) in Theorem 5.1.

Theorem 5.2 Suppose that
(i) the origin is repulsive.
Suppose also that these are a >0. >0, a <0< b, k<0 and k; <0 such that:
(i) F(z) < BG(z)+ ki, a <z <0, F(a) <BG(a) + k1 — 5 and k — & > ki — &
(i) F(z)> aG(z) +k, 0<z <b and F(b) > k+ [(R — k)* — 2G(b)]*/
where R = —k + L + 2[3G(a) + ki].
Under these conditions the system (2) admits at least one non-trivial periodic
solution located between the line z = a and x = b.

Proof. From (ii) we have
F(z) <BGe)+k—-1, a<z<0.

From hypotheses and Lemmas 2.2, 2.3 and 2.5 the solution starting at (0,k — 1)

crosses again the y < 0 half-axis at (0,y;) with k — é < 71 < 0. From theorem of
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Poincaré-Bendixon the system (2) admits at least one non-trivial periodic solution. This
solution is evidently located between the lines z = a and z = b.

Remark 5.2 It can be immediately verified that the condition

F(a) < BG(a) + k1 — %

can be replaced by
1
Sﬂ.kl (Ov k- E) S Sﬁ,ln (a1 O)

In a similar way it can be proved the following theorems.

Theorem 5.3 Suppose that
(i) the origin repulsive.
Suppose also that there are a <0 k >0, k; <0 and a <0 < b such that:
(i) F(z) > k1 for 0<z <b and F(b) > ky + [(k— L — ki) — 2G6(9)]""*
(iii) F(z) < aG(z)+k, a <z <0 and F(a) < k- [(-1 — 2k, + 2k) — 2G(a)]
Under these conditions the system (2) admits at least one non-trivial periodic
solution located between the lines x =a and z = b.

1/2

Corollary 5.2 Suppose that
(i) the origin is repulsive. Suppose also that there are « <0, k>0 anda<0<b

such that:
(i) F(z)> F(b) for0<z <b and G(b) > L (k— L - F(b))*;
(iii) F(z) < aG(z)+k fora <z <0 and F(a) < k- [(-% - 2F(b) + 2lc)2 - 2G(a)]
Under these conditions the system (2) admits at least one non-trivial periodic
solution located between the lines z =a and z = b.

1/2

Theorem 5.4 Suppose that
(i) the origin is repulsive.
Suppose also that there are a <0, 3 <0, a <0< b, k; <0 such that:

(ii) F(z) > BG(z)+k for 0 <z <band F(b) > BG(b)+ki— 5 and k— 5 < ki~ 5;
(iii) F(z) < aG(z) +k fora <z <0 and F(a) <k~ [(R - k) - 2G(a)}” ’

where R = —k + 1 + 2[8G(b) + k).
Under these conditions the system (2) admits at least one non-trivial periodic
solution located between the lines z =a and z = b.

Remark 5.4 The condition

F(b) > BG(b) + k1 — -};
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in Theorem 5.4 can be replaced by

Sg,k (O,k - 21!-) < Sp,k(b, 0).

Example 5.1 The equation
i+ [x3+4x2+3z— l]a‘g+m=o
12

admits at least one non-trivial periodic solution.

Solution: F(z) = % + i’;—s + 1;—:3 — 35 and G(z) = “‘2—2

We have
F(z) <F(-1), -1<z<0,
F(z) >aG(z)+k forall z>0
where a = 3 and k = — 3, and

G(-1) > %[k - é - F(-1)]2.

From lim; .+ F(z) = 400 it follows that there is b > 0 such that
F(b)> K + [(% +2F(~1) - 2k)? — 2G(b)]1/ .
The origin is repulsive because there is 7 > 0 such that
g(z)[F(z) - G(z)] <0 for0<|z| <.

From Corollary 5.1 the equation admits at least one non-trivial periodic solution
located between the lines z = —1 and = = b, with b= 1 + 2F(-1) - 2k.

Example 5.2 The equation
E+ (@ +42> -1z +42° =0
admits at least one non-trivial periodic solution located between the lines £ = —2 and
z =2

Solution: F(z) =% + % — z and G(z) = z*.
Forﬁ=%andk1=lwehave

F(z) < BG(z) + k1, —-2<z <0and F(-2) < fG(~2) +k - %,
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fora:%a.ndk=——% we have

1
F(z) > aG(z) + k, 0§:c$2a.ndk—é>.k1—-ﬁ

. We have also
F(2) > k+[(R-k)? - 2G(2))"/?

where R = —k + 1 + 2[G(-2) + ki].
By other hand the origin is evidently repulsive. From Theorem 5.2 the equation
admits at least one non-trivial perodic solution located between the lines z = —2 and

z=2.
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