ON A CLASS OF MEROMORPHIC STARLIKE FUNCTIONS WITH NEGATIVE COEFFICIENTS

K. K. DIXIT AND S. K. PAL

Abstract. Let $T_M^*(A, B, z_0)$ denote the class of functions $f(z) = \frac{a}{z} - \sum_{n=1}^{\infty} a_n z^n$ $(a \ge 1, a_n \ge 0)$ regular and univalent in unit disc $U' = \{z : 0 < |z| < 1\}$, satisfying the condition

$$-zrac{f'(z)}{f(z)}=rac{1+Aw(z)}{1+Bw(z)}, \qquad ext{for } z\in U' ext{ and } w\in E$$

(where E is the class of analytic functions w with w(0) = 0 and $|w(z)| \le 1$), where $-1 \le A < B \le 1$, $0 \le B \le 1$ and $f(z_0) = \frac{1}{z_0}$ ($0 < z_0 < 1$). In this paper sharp coefficient estimates, distortion properties and radius of meromorphic convexity for functions in $T_M^*(A, B, z_0)$ have been obtained. We also study integral transforms of functions in $T_M^*(A, B, z_0)$. In the last, it is proved that the class $T_M^*(A, B, z_0)$ is closed under convex linear combinations.

1. Introduction

Let S denote the class of functions of the form $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$ that are analytic in $U = \{z : |z| < 1\}$. Denote by $S^*(\rho)$ and $K(\rho)$, $(0 \le \rho < 1)$ the subclass of functions f in S that satisfy respectively the conditions:

$$\operatorname{Re}[z\frac{f'(z)}{f(z)}] > \rho \text{ and } \operatorname{Re}[1 + \frac{zf''(z)}{f'(z)}] > \rho \quad \text{for } z \in U.$$

Functions in $S^*(\rho)$ and $K(\rho)$ are called starlike functions of order ρ and convex functions of order ρ respectively.

Let T denote the subclass of functions in S of the form:

$$f(z) = z - \sum_{n=2}^{\infty} a_n z^n, a_n \ge 0. \quad \text{Also set } T^*(\rho) = T \cap S^*(\rho) \text{ and } C(\rho) = T \cap K(\rho).$$

Received April 18, 1993; revised Octember 3, 1994.

The classes $T^*(\rho)$ and $C(\rho)$ possess some very interesting properties and have been studied in detail by Silverman [9,11]. The extreme points for prestar-like functions having negative coefficients have been determined by Silverman and Silvia [12]. In this paper coefficient, distortion and radii of univalence starlikeness and convexity theorem have also been obtained.

Let $T^*(A, B, K)$ be the class of functions $f(z) = a_1 z - \sum_{n=k}^{\infty} |a_n|_z n \ (a_1 > 0, \ K \ge 2)$ regular and univalent in the unit disc $U = \{z : |z| < 1\}$ and satisfying $|\{(zf'(z)/f(z)) - 1\}/\{A - Bzf'(z)/f(z)\}| < 1, \ z \in U$, Where $-1 \le B < A \le 1$ and $-1 \le B \le 0$. Let $0 < z_0 < 1$, Kumar [4] denoted by $T_1^*(A, B, K, z_0)$ and $T_2^*(A, B, K, z_0)$, two subclasses of $T^*(A, B, K)$, consisting of functions which satisfy $f(z_0) = z_0$ and $f'(z_0) = 1$ respectively. Kumar [4] has obtained many results including coefficient estimates, distortion and closure theorems and radius of convexity of order $\rho(0 \le \rho < 1)$ for the classes $T_1^*(A, B, K, z_0)$ and $T_2^*(A, B, K, z_0)$.

Two subclasses obtained by replacing zf'(z)/f(z) by $f'(z)/a_1$ in the definitions of $T_m^*(A, B, K, z_0)$, m = 1, 2 have been studied by Kumar and Shukla [5].

Let \sum denote the class of functions of the form:

$$g(z) = \frac{1}{z} + \sum_{n=1}^{\infty} a_n z^n$$

which are regular in $U' = \{z : 0 < |z| < 1\}$ having a simple pole at the origin. Let \sum_s denote the class of functions in \sum which are univalent in U' and $\sum^*(\rho)$ and $\sum_k(\rho)$ $(0 \le \rho < 1)$ be the subclasses of functions f in \sum satisfying repectively the conditions:

$$R_e\Big\{-z\frac{f'(z)}{f(z)}\Big\}>\rho$$

and

$$Re\left[-\left\{1+\frac{zf''(z)}{f'(z)}
ight\}
ight]>
ho$$
 for $z\in U'$.

Functions in $\sum_{k}^{*}(\rho)$ and $\sum_{k}(\rho)$ are called meromorphically starlike functions of order ρ and meromorphically convex functions of order ρ respectively.

The classes $\sum^{*}(\rho)$ and $\sum_{k}(\rho)$ have been extensively studied by Pommerinke [7], Clunie [1], Kazmarski [3], Royster [8] and others.

Since to some extent the work in univalent meromorphic case has paralleled to that of regular univalent case, one is interested to investigate for a class of functions which are regular in U' with simple pole at the origin having properties analogous to those of $T^*(A, B, K)$. To this end we introduce in this section such a class of functions which are regular in U' and which have the properties simillar to those of $T^*(A, B, K)$.

Let T_M^* denote the class of functions $f(z) = \frac{a}{z} - \sum_{n=1}^{\infty} a_n z^n (a \ge 1, a_n \ge 0)$, (The condition $a \ge 1$ is necessary, see Nihari [6, ex. 8, p. 238]) regular and univalent in the

disc U'. Let $T_M^*(A, B)$ denote the subclass of function in T_M^* satisfying the condition

$$-z\frac{f'(z)}{f(z)} = \frac{1+Aw(z)}{1+Bw(z)}, \text{ for } z \in U', w \in E,$$
(1.1)

where $-1 \le A < B \le 1, 0 \le B \le 1$. Also $T_m^*(A, B, z_0)$ denote the subclass of function in $T_M^*(A, B)$ satisfying $f(z_0) = \frac{1}{z_0}$ (where $0 < z_0 < 1$).

The present chapter is devoted to obtain sharp coefficient estimates, distortion properties and radius of meromorphic convexity for functions in $T_M^*(A, B, z_0)$. We study integral transforms of functions in $T_M^*(A, B, z_0)$. In the last it is shown that the class $T_M^*(A, B, z_0)$ is closed under convex linear combinations.

2. Main Results

First we prove an important theorem which is to be used in next coming theorems.

Theorem 2.1. Let $f(z) = \frac{1}{z} - \sum_{n=1}^{\infty} |a_n| z^n$ be regular in U' and belongs in $T^*_M(A, B)$ if and only if

$$\sum_{n=1}^{\infty} \{n(1-B) + 1 - A\} |a_n| \le (B - A)$$
(2.1)

Proof. Consider the expression

$$H(f, f') = |zf'(z) + f(z)| - |Bzf'(z) + Af(z)|.$$
(2.2)

Replacing f and f' by their series expansions we have, for 0 < |z| = r < 1

$$H(f, f') = \left| \sum_{n=1}^{\infty} (n+1) |a_n| z^n \right| - \left| (A-B) \cdot \frac{1}{z} - \sum_{n=1}^{\infty} (A+Bn) |a_n| z^n \right|$$

$$\leq \left| \sum_{n=1}^{\infty} (n+1) |a_n| z^n \right| - \left[\sum_{n=1}^{\infty} (A+Bn) |a_n| z^n - |(A-B) \frac{1}{z}| \right]$$

$$= \sum_{n=1}^{\infty} (n+1) |a_n| |z|^n - \sum_{n=1}^{\infty} (A+Bn) |a_n| |z|^n + (A-B) \frac{1}{|z|}$$

or

$$rH(f, f') \le \sum_{n=1}^{\infty} \{n(1-B) + 1 - A\} |a_n| r^{n+1} + (A - B).$$

Since this holds for all r, 0 < r < 1, making $r \rightarrow 1$, we have

$$H(f, f') \le \sum_{n=1}^{\infty} \{n(1-B) + 1 - A\} |a_n| + (A - B) \le 0,$$

in view of (2.1). From (2.2), we thus have

$$\left|\frac{z\frac{f'(z)}{f(z)}+1}{Bz\frac{f'(z)}{f(z)}+A}\right| \le 1.$$

Hence $f \in T^*_M(A, B)$. Conversely, let $f(z) = \frac{1}{z} - \sum_{n=1}^{\infty} |a_n| z^n$, $a_n \ge 0$ is in $T^*_M(A, B)$, i.e.

$$\left| \frac{z \frac{f'(z)}{f(z)} + 1}{B z \frac{f'(z)}{f(z)} + A} \right| \le 1.$$

or

$$\left|\frac{\sum_{n=1}^{\infty} (n+1)|a_n|z^{n+1}}{(B-A) + \sum_{n=1}^{\infty} (A+Bn)|a_n|z^{n+1}}\right| \le 1.$$

Since $Re(z) \leq |z|$

$$Re\left\{\frac{\sum_{n=1}^{\infty} (n+1)|a_n|z^{n+1}}{(B-A) + \sum_{n=1}^{\infty} (A+Bn)|a_n|z^{n+1}}\right\} \le 1.$$

choosing z = r with 0 < r < 1, we get

$$\frac{\sum_{n=1}^{\infty} (n+1)|a_n|r^{n+1}}{(B-A) + \sum_{n=1}^{\infty} (A+Bn)|a_n|r^{n+1}} \le 1.$$
(2.3)

Let $S(r) = (B - A) + \sum_{n=1}^{\infty} (A + Bn) |a_n| r^{n+1}$, $S(r) \neq 0$ for 0 < r < 1, S(r) > 0 for sufficiently small values of r and S(r) is continuous for 0 < r < 1. Hence S(r) can not be negative for any value of r such that 0 < r < 1. Upon clearing the denominator in (2.3) and letting $r \to 1$ we get

$$\sum_{n=1}^{\infty} (n+1)|a_n| \le (D-A) + \sum_{n=1}^{\infty} (A+Bn)|a_n|$$
$$\sum_{n=1}^{\infty} \{n(1-B) + 1 - A\}|a_n| \le B - A.$$

or

Hence the theorem.

18

Theorem 2.2. Let $f(z) = \frac{a}{z} - \sum_{n=1}^{\infty} |a_n| z^n$ (where $a \ge 1$). If f is regular in U and satisfies $f(z_0) = \frac{1}{z_0}$, then $f \in T^*_M(A, B, z_0)$ if and only if

$$\sum_{n=1}^{\infty} \left[\left\{ n(1-B) + 1 - A \right\} - (B-A)z_0^{n+1} \right] |a_n| \le B - A.$$
 (2.4)

The result is sharp.

Proof. We know from theorem 2.1 that a function $g(z) = \frac{1}{z} - \sum_{n=1}^{\infty} |b_n| z^n$ regular in U, satisfies

$$\left| \frac{z \frac{g'(z)}{g(z)} + 1}{B z \frac{g'(z)}{g(z)} + A} \right| < 1, z \in U,$$

if and only if

$$\sum_{n=1}^{\infty} \{n(1-B) + 1 - A\} |b_n| \le B - A.$$
(2.5)

Applying that result to the function g(z) = f(z)/a, we find that f satisfies (1.1) if and only if

$$\sum_{n=1}^{\infty} \{n(1-B) + 1 - A\} |a_n| \le (B-A)a.$$

Since $f(z_0) = \frac{1}{z_0}$, we also have from the representation of f(z) that

$$a = 1 + \sum_{n=1}^{\infty} |a_n| z_0^{n+1}.$$
 (2.6)

Putting this value of a in the above inequality we obtain the required result

$$\sum_{n=1}^{\infty} \left[\{ n(1-B) + 1 - A \} - (B-A) z_0^{n+1} \right] |a_n| \le B - A.$$

Sharpness follows if we take the extremal function

$$f(z) = \frac{\{n(1-B)+1-A\}\frac{1}{z} - (B-A)z^n}{\{n(1-B)+1-A\} - (B-A)z_0^{n+1}}, n = 1, 2, \dots$$
(2.7)

Theorem 2.3. $f \in T_M^*(A, B, z_0)$, then f is meromorphically convex of order $\delta(0 \le \delta < 1)$ in the disc |z| < R, where

$$R = \inf_{n>1} \left[\frac{(1-\delta)\{n(1-B)+1-A\}}{n(n+\delta)(B-A)} \right]^{1/(n+1)}.$$

The result is sharp with extremal function (2.7).

Proof. In order to establish the required result, it suffices to show that

$$|2 + \frac{zf''(z)}{f'(z)}| \le 1 - \delta$$

or

$$|\frac{f'(z) + [zf'(z)]'}{f'(z)}| \le 1 - \delta$$

and

$$\left|\frac{f'(z) + [zf'(z)]'}{f'(z)}\right| \le \frac{\sum_{n=1}^{\infty} \frac{n(n+1)}{a} |a_n| \ |z|^{n+1}}{1 + \sum_{n=1}^{\infty} \frac{n}{a} |a_n| \ |z|^{n+1}}.$$

This will be bounded by $(1 - \delta)$ if

$$\sum_{n=1}^{\infty} n(n+\delta) |a_n| |z|^{n+1} \le a(1-\delta)$$

Since $a = 1 + \sum_{n=1}^{\infty} |a_n| z_0^{n+1}$, the above inequality can be written as

$$\sum_{n=1}^{\infty} \frac{[n(n+\delta)|z|^{n+1} - (1-\delta)z_0^{n+1}]}{1-\delta} |a_n| \le 1.$$
(2.8)

Also by Theorem 2.2, we have

$$\sum_{n=1}^{\infty} \frac{\{n(1-B)+1-A\}-(B-A)z_0^{n+1}}{(B-A)}|a_n| \le 1.$$

Hence (2.8) will be satisfied if

$$\frac{n(n+\delta)|z|^{n+1} - (1-\delta)z_0^{n+1}}{1-\delta} \le \frac{\{n(1-B) + 1 - A\} - (B-A)z_0^{n+1}}{(B-A)}$$

or

$$|z| < \left[\frac{(1-\delta)\{n(1-B)+1-A\}}{n(n+\delta)(B-A)}\right]^{1/(n+1)},$$

for each $n = 1, 2, \ldots$ This completes the proof of theorem.

Theorem 2.4. If $f \in T^*_M(A, B, z_0)$, then the integral transform

$$F(z) = c \int_0^1 u^c f(uz) du, \text{ for } 0 < c < \infty$$

20

is in $T_M(A', B', z_0)$, where

$$\frac{1-B'}{B'-A'} \le \frac{(2-A-B)(c+2)-(B-A)c}{2c(B-A)} - \frac{z_0^2}{c}$$

The result is sharp for the extremal function

$$f(z) = \frac{(2-A-B)\frac{1}{z} - (B-A)z}{(2-A-B) - (B-A)z_0^2}.$$

Proof. Suppose $f(z) = \frac{a}{z} - \sum_{n=1}^{\infty} |a_n| z^n \in T_M(A, B, z_0)$, then

$$F(z) = c \int_0^1 u^c \left[\frac{a}{uz} - \sum_{n=1}^\infty |a_n| (u^n z^n) \right] du$$
$$= c \int_0^1 \left[u^{c-1} \frac{a}{z} - \sum_{n=1}^\infty |a_n| z^n u^{n+c} \right] du$$
$$= c \left[\frac{u^c}{c} \frac{a}{z} - \sum_{n=1}^\infty |a_n| z^n \frac{u^{n+c+1}}{(n+c+1)} \right]_0^1$$
$$= c \left[\frac{a}{cz} - \sum_{n=1}^\infty \frac{|a_n|}{(n+c+1)} z^n \right]$$
$$= \frac{a}{z} - \sum_{n=1}^\infty \frac{c}{(n+c+1)} |a_n| z^n.$$

It is sufficient to show that

$$\sum_{n=1}^{\infty} \frac{\left[\left\{n(1-B')+1-A'\right\}-(B'-A')z_0^{n+1}\right]}{(B'-A')(n+c+1)}|a_n| \le 1.$$
(2.9)

Since $f \in T_M(A, B, z_0)$, it implies that

$$\sum_{n=1}^{\infty} \frac{\{n(1-B)+1-A\}-(B-A)z_0^{n+1}}{(B-A)}|a_n| \le 1.$$

(2.9) will be satisfied if

$$\frac{[\{n(1-B')+1-A'\}-(B'-A')z_0^{n+1}]c}{(B'-A')(n+c+1)} \le \frac{\{n(1-B)+1-A\}-(B-A)z_0^{n+1}}{(B-A)}$$

for each n,

$$\frac{n(1-B')+1-A'}{B'-A'} \le \frac{\{n(1-B)+1-A\}(n+c+1)}{(B-A)c} - \frac{(n+1)}{c}z_0^{n+1},$$

or

$$\frac{1-B'}{B'-A'} \le \frac{\{n(1-B)+1-A\}(n+c+1)-(B-A)c}{(B-A)(n+1)c} - \frac{1}{c}z_0^{n+1}.$$
 (2.10)

The right hand side of (2.10) is an increasing function of n, therefore putting n = 1 in (2.10) we get

$$\frac{1-B'}{B'-A'} \le \frac{(2-A-B)(c+2)-(B-A)c}{2c(B-A)} - \frac{z_0^2}{c}.$$

Hence the theorem.

Theorem 2.5. Let γ be a real number such that $\gamma > 1$. If $f \in T^*_M(A, B, z_0)$, then the function F defined by

$$F(z) = \frac{(\gamma - 1)}{z^{\gamma}} \int_0^z t^{\gamma - 1} f(t) dt$$

also belongs to $T^*_M(A, B, z_0)$.

Proof. Let $f(z) = \frac{a}{z} - \sum_{n=1}^{\infty} |a_n| z^n$. Then from the representation of F(z), it follows that

$$\begin{split} F(z) &= \frac{(\gamma - 1)}{z^{\gamma}} \int_0^z t^{\gamma - 1} \Big[\frac{a}{t} - \sum_{n=1}^\infty |a_n| t^n \Big] dt \\ &= \frac{\gamma - 1}{z^{\gamma}} \int_0^z \Big[a t^{\gamma - 2} - \sum_{n=1}^\infty |a_n| t^{n+\gamma - 1} \Big] dt \\ &= \frac{\gamma - 1}{z^{\gamma}} \Big[a \frac{t^{\gamma - 1}}{\gamma - 1} - \sum_{n=1}^\infty |a_n| \frac{t^{n+\gamma}}{n+\gamma} \Big]_0^z \\ &= \frac{\gamma - 1}{z^{\gamma}} \Big[a \frac{z^{\gamma - 1}}{\gamma - 1} - \sum_{n=1}^\infty \frac{|a_n|}{n+\gamma} z^{n+\gamma} \Big] \\ &= \frac{a}{z} - \sum_{n=1}^\infty \frac{\gamma - 1}{n+\gamma} |a_n| z^n, \end{split}$$

or

$$F(z) = \frac{a}{z} - \sum_{n=1}^{\infty} |b_n| z^n,$$

 $\mathbf{22}$

where $|b_n| = \frac{\gamma - 1}{n + \gamma} |a_n|$. Therefore,

$$\sum_{n=1}^{\infty} \left[\{n(1-B)+1-A\} - (B-A)z_0^{n+1} \right] |b_n|$$

=
$$\sum_{n=1}^{\infty} \left[\frac{\gamma-1}{n+\gamma} \right] \left[\{n(1-B)+1-A\} - (B-A)z_0^{n+1} \right] |a_n|$$

$$\leq \sum_{n=1}^{\infty} \left[\{n(1-B)+1-A\} - (B-A)z_0^{n+1} \right] |a_n|$$

$$\leq (B-A), \text{ by Theorem 2.2.}$$

Hence $F \in T^*_M(A, B, z_0)$. this completes the proof of the theorem.

Theorem 2.6. Let $f_j(z) = \frac{a_j}{z} - \sum_{n=1}^{\infty} |a_{nj}| z^n$, j = 1, 2, ..., m. If $f_j \in T^*_M(A, B, z_0)$ for each j = 1, 2, ..., m, then the function

$$h(z) = \frac{b}{z} - \sum_{n=1}^{\infty} |b_n| z^n$$

also belongs to $T^*_M(A, B, z_0)$ where

$$b = \sum_{j=1}^{m} \lambda_j a_j, \ |b_n| = \sum_{j=1}^{m} \lambda_j |a_{nj}| \qquad (n = 1, 2, \dots, m),$$
$$\lambda_j \ge 0 \ and \ \sum_{j=1}^{m} \lambda_j = 1$$

Proof. Since $f_j \in T^*_M(A, B, z_0)$, then

$$\sum_{n=1}^{\infty} \left[\{ n(1-B) + 1 - A \} - (B-A) z_0^{n+1} \right] |a_{nj}| \le B - A, \quad j = 1, 2, \dots, m.$$

Therefore,

$$\sum_{n=1}^{\infty} \left[\{n(1-B) + 1 - A\} - (B-A)z_0^{n+1} \right] |b_n|$$

=
$$\sum_{n=1}^{\infty} \left[\{n(1-B) + 1 - A\} - (B-A)z_0^{n+1} \right] \sum_{j=1}^{m} \lambda_j |a_{nj}|$$

=
$$\sum_{j=1}^{m} \lambda_j \sum_{n=1}^{\infty} \left[\{n(1-B) + 1 - A\} - (B-A)z_0^{n+1} \right] |a_{nj}|$$

$$\leq \sum_{j=1}^{m} \lambda_j (B-A) = (B-A).$$

Hence by Theorem 2.2, $h \in T^*_M(A, B, z_0)$.

Theorem 2.7. Let $f(z) = \frac{1}{z}$ and

$$f_n(z) = \frac{\{n(1-B)+1-A\}\frac{1}{z} - (B-A)z^n}{\{n(1-B)+1-A\} - (B-A)z_0^{n+1}},$$

 $n = 1, 2, 3, \ldots$ Then $h \in T^*_M(A, B, z_0)$ if and only if it can be expressed in the form

$$h(z) = \lambda f(z) + \sum_{n=1}^{\infty} \lambda_n f_n(z),$$

where $\lambda \geq 0$ and $\lambda + \sum_{n=1}^{\infty} \lambda_n = 1$.

Proof. Let us suppose that

$$h(z) = \lambda f(z) + \sum_{n=1}^{\infty} \lambda_n f_n(z)$$
$$= \frac{a}{z} - \sum_{n=1}^{\infty} |a_n| z^n$$

where

$$a = \lambda + \sum_{n=1}^{\infty} \frac{\{n(1-B) + 1 - A\}\lambda_n}{\{n(1-B) + 1 - A\} - (B - A)z_0^{n+1}}$$

and

$$|a_n| + \frac{(B-A)\lambda_n}{\{n(1-B)+1-A\} - (B-A)z_0^{n+1}, (n = 1, 2, ...)\}}$$

Then, it is easy to see that $f(z_0) = \frac{1}{z_0}$ and the condition (2.4) is satisfied.

Hence $h \in T^*_M(A, B, z_0)$.

Conversely let $h \in T^*_M(A, B, z_0)$, and

$$h(z) = \frac{a}{z} - \sum_{n=1}^{\infty} |a_n| z^n.$$

Then, from (2.4)

$$|a_n| \le \frac{B-A}{\{n(1-B)+1-A\}-(B-A)z_0^{n+1}}, \ (n=1,2,3,\ldots).$$

Setting

$$\lambda_n = \left[\frac{\{n(1-B) + 1 - A\} - (B - A)z_0^{n+1}}{(B - A)}\right]|a_n|$$

and

$$\lambda = 1 - \sum_{n=1}^{\infty} \lambda_n,$$

we have

$$h(z) = \lambda f(z) + \sum_{n=1}^{\infty} \lambda_n f_n(z).$$

This completes the proof of theorem.

Theorem 2.9 If $f(z) = \frac{a}{z} - \sum_{n=1}^{\infty} |a_n| z^n \in T^*_M(A, B, z_0)$ and $g(z) = \frac{b}{z} - \sum_{n=1}^{\infty} |b_n| z^n$ with $|b_n| \le 1$ for n = 1, 2, ..., then $f * g \in T^*_M(A, B, z_0)$.

Proof. Let $f(z) = \frac{a}{z} - \sum_{n=1}^{\infty} |a_n| z^n$ and $g(z) = \frac{b}{z} - \sum_{n=1}^{\infty} |b_n| z^n$, then for convolution of functions f and g we can write

$$\sum_{n=1}^{\infty} \left[\{n(1-B)+1-A\} - (B-A)z_0^{n+1} \right] |a_n b_n|$$

=
$$\sum_{n=1}^{\infty} \left[\{n(1-B)+1-A\} - (B-A)z_0^{n+1} \right] |a_n| |b_n|$$

$$\leq \sum_{n=1}^{\infty} \left[\{n(1-B)+1-A\} - (B-A)z_0^{n+1} \right] |a_n|, \quad \text{because } |b_n| \le 1.$$

$$\leq (B-A), \text{ by } (2.4).$$

Hence, by Theorem 2.2, $f * g \in T^*_M(A, B, z_0)$.

Note. It will be of interest to find some other convolution results analogous to those of Juneja and Reddy [2].

Acknowledgement

The authors are thankfull to the referee for the helpfull suggestions.

References

- [1] J. Clunie, "On meromorphic schlicht functions," J. Lond. Math. Soc., 34(1959), 215-16.
- [2] O.P. Juneja, and T.R. Reddy, "Meromorphic starlike univalent functions with positive coefficients," Annales Universitatis Mariae Curie sklodowska Lubin-Polonia, Vol.XXXIX, 9, Section A, (1985), 55-75.
- [3] J. Kaczmarski, "On the coefficients of some class of starlike functions," Bull. Acad, Polon, Sci. Ser. Sci. Math. Astronom. Phys., 17(1969), 495-501.
- [4] V. Kumar, "Starlike and convex function with negative and missing coefficients," Jnanabha, 13 (1983), 117-134.
- [5] V. Kumar and S.L. Shukla, "Certain classes of univalent functions with negative and missing coefficients," Bulletin of the Institute of Mathematics Academia Sinica, Volume 13, Number 2, June 1985.

K. K. DIXIT AND S. K. PAL

- [6] Z. Nehari, Conformal mapping, Dover Publication INC. New York, (1952), Ex. 8, p.238.
- [7] Ch. Pommerenke, "On meromorphic starlike functions," Pacific J. Math., 13(1963), 221-235.
- [8] W.C. Royster, "Meromorphic starlike multivalent functions," Trans. Amer. Math. Soc., 107(1963), 300-303.
- [9] H. Silverman, "Extreme points of univalent functions with two fixed points," Trans. Amer. Math. Soc., 219(1976), 387-395.
- [10] H. Silverman and E.M. Silvia, "Fixed coefficients for subclasses of starlike functions," Houston J. Math., 7(1981). 129-136.
- [11] H. Silverman, "Univalent functions with negative coefficients," Proc. Amer. Math. Soc., 51(1975), 109-116.
- [12] H. Silverman and E.M. Silvia, "Prestarlike functions with negative coefficients," Internat. J. Math. and Math. Scl., 2(1979), 427-439.
- [13] E.M. Silvia, Classes related to α -starlike functions, Ph.D. Dissertation, Clark University, Worcester, Mass., 1972.

Department of Mathematics, Janta College, Bakewar 206 124 Etawah (U.P.), India