COMMUTATIVITY THEOREMS FOR RINGS WITH CONSTRAINTS ON COMMUTATORS

H. A. S. ABUJABAL AND MOHD. ASHRAF

Abstract. Let R be a left (resp. right) s-unital ring and m be a positive integer. Suppose that for each y in R there exist f(t), g(t), h(t) in Z[t] such that $x^m[x, y] = g(y)[x, y^2 f(y)]h(y)$ (resp. $[x, y]x^m = g(y)[x, y^2 f(y)]h(y)$) for all x in R. Then R is commutative (and conversely). Finally, the result is extended to the case when the exponent m depends on the choice of x and y.

1. Introduction

Throughout the paper, R will denote an associative ring (may be without unity 1), and for any x, y in R the symbol [x, y] stands for the commutator xy - yx. A ring R is called left (resp. right) s-unital if $x \in Rx$ (resp. $x \in xR$) for all x in R, and R is called s-unital if $x \in Rx \cap xR$ for all x in R. As usual $\mathbb{Z}[t]$ is the totality of polynomials in twith coefficients in \mathbb{Z} , the ring of integers. We consider the following ring properties:

- (P₁) For each y in R there exist f(t), g(t), h(t) in $\mathbb{Z}[t]$ such that $x^m[x, y] = g(y)[x, y^2 f(y)]h(y)$ for all x in R, where m is a fixed positive integer.
- (P_1^*) For each x, y in R there exist a positive integer m and f(t), g(t), h(t) in $\mathbb{Z}[t]$ such that $x^m[x, y] = g(y)[x, y^2 f(y)]h(y)$.
- (P₂) For each y in R there exist f(t), g(t), h(t) in $\mathbb{Z}[t]$ such that $[x, y]x^m = g(y)[x, y^2 f(y)]h(y)$ for all x in R, where m is a fixed positive integer.
- (P_2^*) For each x, y in R there exist a positive integer m and f(t), g(t), h(t) in $\mathbb{Z}[t]$ such that $[x, y]x^m \doteq g(y)[x, y^2 f(y)]h(y)$.
- (CH) For each x, y in R there exist $p(t), q(t) \in t^2 \mathbb{Z}[t]$ such that [x p(x), y q(y)] = 0. A well-known theorem of Bell [5] states that if n > 1 is a positive integer and

R is an n-torsion free ring with unity 1 such that $[x^n, y] = [x, y^n]$ for all x, y in R,

Received September 3, 1993; revised February 22, 1994.

¹⁹⁹¹ Mathematics Subject Classification. 16U80.

Key words and phrases. s-unital rings, factor subrings, polynomial identity, semiprime rings, commutators.

then R is commutative. Recently, Psomopoulos [11] generalized the above result and proved that if R is an *n*-torsion free ring with unity 1 satisfying the polynomial identity $x^t[x^n, y] = [x, y^m]y^s$ for non-negative integers $m \ge 1, n > 1, t \ge 0, s \ge 0$, then R is commutative. In the present paper our objective is to further extend the later result to rings satisfying condition of the form (P_1) or (P_2) . We shall also investigate the commutativity of rings satisfying either of the properties (P_1^*) and (P_2^*) together with the Chacron's condition (CH).

2. Some preliminary results

We being by considering the following types of rings:

(a) $\begin{pmatrix} GF(p) & GF(p) \\ 0 & GF(p) \end{pmatrix}$, p a prime.

$$(a)_1 \begin{pmatrix} GF(p) & GF(p) \\ 0 & 0 \end{pmatrix}, p \text{ a prime.}$$

- $(a)_r \begin{pmatrix} 0 & GF(p) \\ 0 & GF(p) \end{pmatrix}$, p a prime.
 - (b) $M_{\sigma}(K) = \{ \begin{pmatrix} \alpha & \beta \\ 0 & \sigma(\alpha) \end{pmatrix} | \alpha, \beta \in K \}$, where K is a finite field with a non-trivial automorphism σ .
 - (c) A non-commutative ring with non-zero divisors of zero.
 - (d) $S = \langle 1 \rangle + T, T$ a non-commutative subring of S such that T[T, T] = [T, T]T = 0.

In a paper [12], Streb gave a classification for non-commutative rings, which has been used effectively to obtain a number of commutativity theorems (cf. [8], [9] & [10]). Further, from the proof of [12, Corollary (1)] one can easily observe that if R is a noncommutative left *s*-unital ring, then there exists a factor subring of R which is of type $(a)_1, (b), (c)$ or (d). This result gives the following lemma which plays the key role in our subsequent study (cf. [9, Meta Theorem]).

Lemma 1. Let P be a ring property which is inherited by factor subrings. If no rings of type $(a)_1$ (resp. $(a)_r$), (b), (c) or (d) satisfy P, then every left (resp. right) s-unital satisfying P is commutative.

The proofs of the following lemmas can be found in [7], [8] and [10] respectively.

Lemma 2. Let f be a polynomial in non-commuting indeterminates x_1, x_2, \ldots, x_n with relatively prime integer coefficients. Then the following are equivalent.

- (i) Every ring satisfying the polynomial identity f = 0 has nil commutator ideal.
- (ii) Every semi-prime ring satisfying f = 0 is commutative.
- (iii) For every prime $p, (GF(p))_2$ fail to satisfy f = 0.

Lemma 3. Suppose that a ring R with unity 1 satisfies (CH). If R is

non-commutative, then there exists a factor subring of R which is of type (a) or (b).

Lemma 4. If R is left (resp. right) s-unital and not right (resp. left) s-unital, then R has a factor subring of type $(a)_1$ (resp. $(a)_r$).

3. Main results

Theorem 1. Let R be a left s-unital ring satisfying the condition (P_1) . Then R is commutative (and conversely).

In order to establish the above theorem, first we prove the following lemma.

Lemma 5. Let R be a ring with unity 1 satisfying any one of the conditions (P_1) and (P_2) . Then R has nil commutator ideal.

Proof. Let R satisfy (P_1) . Replace x by 1 + x in (P_1) and subtract (P_1) , to get $(1 + x)^m[x, y] = x^m[x, y]$. This is a polynomial identity and $x = e_{12} - e_{22}, y = e_{12}$ in $(GF(p))_2$ fail to satisfy this equality. Hence by Lemma 2, R has nil commutator ideal.

Using a similar arguments as above, one can establish the result if R satisfies the condition (P_2) .

Proof of Theorem 1. First, consider the ring of type $(a)_1$. If R satisfies (P_1) , then in $(GF(p))_2$, p a prime, we see that $e_{11}^m[e_{11}, e_{12}] - g(e_{12})[e_{11}, e_{12}^2f(e_{12})]h(e_{12}) = e_{12} \neq 0$ for any positive integer m and $f(t), g(t), h(t) \in \mathbb{Z}[t]$. Thus no rings of type $(a)_1$ satisfy (P_1) .

Next, consider the ring $M_{\sigma}(K)$, a ring of type (b). If R satisfies (P_1) , then let $x = \begin{pmatrix} a & 0 \\ 0 & \sigma(a) \end{pmatrix} (\sigma(a) \neq a), y = e_{12}$. This yields that

$$x^{m}[x,y] - g(y)[x,y^{2}f(y)]h(y) = a^{m}(a - \sigma(a))e_{12} \neq 0$$

for all integer m and f(t), g(t), h(t) in $\mathbb{Z}[t]$. Thus R cannot be of type (b).

Further, let R be the ring of type (c). If R satisfies (P_1), then in view of the above, R cannot be of type $(a)_1$. Hence in view of Lemma 4, R is also right *s*-unital. Thus R is *s*-unital and by [6, Proposition 1], R has unity 1. Now in view of Lemma 2 and Lemma 5 we see that no rings of type (c) satisfy our assumption.

Finally, suppose that R is a ring of type (d). If R satisfies (P_1) , then choose $s, t \in T$ such that $[s,t] \neq 0$. A simple computation shows that

$$[s,t] = (1+s)^m [s+1,t] = g(t)[s+1,t^2 f(t)]h(t) = 0.$$

Hence, we find a contradiction that [s, t] = 0. This shows that no rings of type $(a)_1, (b), (c)$ or (d) satisfy (P_1) and in view of Lemma 1, R is commutative.

Corollary 1. Let R be a left s-unital ring in which for every y in R there exist integers $p = p(y) \ge 0, q = q(y) \ge 0, s = s(y) > 1$ such that $x^m[x, y] = y^P[x, y^s]y^q$ for all x in R, where m is a fixed positive integer. Then R is commutative (and conversely).

In case, if R satisfies (P_2) , then we have the following:

Theorem 2. Let R be a right s-unital ring satisfying (P_2) . Then R is commutative (and conversely).

Proof. Suppose that R is a ring of type $(a)_r$. If R satisfies (P_2) , then in $(GF(p))_2$, p a prime, we find that

$$[e_{22}, e_{12}]e_{22}^m - g(e_{12})[e_{22}, e_{12}^2 f(e_{12})]h(e_{12}) = -e_{12} \neq 0$$

for any positive integer m and $f(t), g(t), h(t) \in \mathbb{Z}[t]$. Accordingly, R cannot be of type $(a)_r$. Further, using similar arguments as used to prove Theorem 1 with necessary variations, it can be shown that no rings of type (b), (c) or (d) satisfy our hypothesis. Hence, in view of Lemma 1, R is commutative.

Corollary 2. Let R be a right s-unital ring in which for every y in R there exist integers $p = p(y) \ge 0, q = q(y) \ge 0, s = s(y) > 1$ such that $[x, y]x^m = y^p[x, y^s]y^q$ for all x in R, where m is a fixed positive integer. Then R is commutative (and conversely).

Remark. The following example demonstrates that there are non-commutative left (resp. right) s-unital rings satisfying (P_2) (resp. (P_1)).

Example. Let

$$R_{1} = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \right\}$$
$$\left(\text{resp. } R_{2} = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \right\} \right)$$

be subring of 2×2 matrices over GF(2). Then for any fixed positive integers $m, p, q, s > 1, R_1$ (resp. R_2) satisfies $[x, y]x^m - y^p[x, y^s]y^q = 0$ (resp. $x^m[x, y] - y^pp[x, y^s]y^q = 0$). However, R_1 (resp. R_2) is a non-commutative left (resp. right) s-unital ring.

A careful scrutiny of the proofs of Theorem 1 and Theorem 2 yields that if R is a ring with unity 1 satisfying either of the property (P_1^*) or (P_2^*) , then R has no factor subrings of type (a) or (b). Further, if R satisfies (CH), then in view of Lemma 3, we get the following:

Theorem 3. Let R be a ring with unity 1 satisfying any one of the conditions (P_1^*) and (P_2^*) . Further, if R satisfies (CH), then R is commutative (and conversely). **Corollary 3.** Suppose that R is a ring with unity 1 in which for every x, y in R there exist integers $m > 0, p \ge 0, q \ge 0, s > 1$ such that either $x^m[x, y] = y^p[x, y^s]y$ or $[x, y]x^m = y^p[x, y^s]y^q$. Further, if R satisfies (CH), then R is commutative.

The existence of ring R with $R^3 = 0$ rules out the possible generalization of Theorem 3 for argitary rings. However, if R is a left (resp. right) *s*-unital ring satisfying (P_1^*) (resp. (P_2^*)), then in view of the arguments given in the proofs of Theorem 1 and 2, we see that no rings of type $(a)_1$ (resp. $(a)_r$) satisfy (P_1^*) (resp. (P_2^*)). Hence, Lemma 4 yields that R is also right (resp. left) *s*-unital. Accordingly, R is *s* unitial and by [6, Proposition 1], we may assume that R has unity 1, Hence, using Theorem 3, we get the following

Theorem 4. Let R be a left (resp. right) s-unital ring satisfying (P_1^*) (resp. (P_2^*)). Further, if R satisfies (CH), then R is commutative.

Acknowledgement

The authors are greatly indebted to the refree for his valuable suggestions.

References

- H. A. S. Abu-Jabal and V. Perić, "Commutativity of s-unital rings through a streb result," Rad. Mat., 7 (1991), 73-92.
- [2] M. Ashraf and M. A. Quadri, "On commutativity of associative rings," Bull. Austral. Math. Soc., 38 (1988), 267-271.
- [3] M. Ashraf, M. A. Quadri and V. W. Jacob, "On commutativity of right s-unital rings," Riv. Mat. Univ. Parma, (to appear).
- [4] H. E. Bell, "On some commutativity theorems of Herstein," Arch. Math. (Basel), 24 (1973), 34-38.
- [5] H. E. Bell, "On power maps and ring commutativity," Canad. Math. Bull., 21 (1978), 399-404.
- [6] Y. Hirano, Y. Kobayashi and H. Tominaga, "Some polynomial identities and commutativity of s-unital rings," Math. J. Okayama Univ., 24 (1982), 7-13.
- [7] T. P. Kezlan, "A note on commutativity of semi prime PI-rings," Math. Japonica, 27 (1982), 267-268.
- [8] H. Komatsu and H. Tominaga, "Chacron's condition and commutativity theorems," Math. J. Okayama Univ., 31 (1989), 101-120.
- H. Komatsu and H. Tominaga, "Some commutativity theorems for left s-unital rings," Results in Math., 15 (1989), 335-342.
- [10] H. Komatsu, T. Nishinaka and H. Tominaga, "On commutativity of rings," Rad. Mat., 6 (1990), 303-311.
- [11] E. Psomopoulos, "Commutativity theorem for rings and groups with constraints on commutators," Internat. J. Math. & Math. Sci., 7 (1984), 513-517.
- [12] W. Streb, "Zur Struktur nichtkommutativer Ringe," Math. J. Okayama Univ., 31 (1989), 135-140.

Department of Mathematics, Faculty of Science, King Abdul Aziz University, P.O. Box 31464, Jeddah 21497, Saudi Arabia.

Department of Mathematics, Aligarh Muslim University, Aligarh - 202 002 - India.