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PRIME IDEALS IN STRUCTURAL MATRIX NEAR-RINGS

ENOCH K. S. LEE

Abstract. This paper studies different types of prime ideals and their radicals in
structural matrix near-rings. Relationships between various types of prime ideals
of a near-ring and the corresponding structural matrix near-ring are given.

1. Introduction

Matrix near-rings were first studied by Heatherly [5] and Ligh [6] in the context
of distributive and n-distributive near-rings. In 1986, Meldrum and van der Walt [9]
defined a matrix near-ring over a near-ring as a subnear-ring of a transformation near-
ring. Certain prime ideals and their associated radicals have been studied since then. (See
Booth and Groenewald [1] and Groenewald [4].) Furthermore, van der Walt and van Wyk
[11] initiated the study of structural martix near-rings (see also [12]). A structural matrix
near-ring “Mn (B, R)”, which depends virtually on the structure of the Boolean matrix
“B” is a subnear-ring of the matrix near-ring “M, (R)”. In this paper, we study several
types of prime ideals and their radicals in structural matrix near-rings over a near-ring
with identity . We also provide a different way of describing the set (R™(j, L) : R™(j, R)),
which was studied in [11], [12], and [13]. For basic properties concerning near-rings and
matrix near-rings, we refer to [3], [7], [9], and [10].

2. Preliminaries

Throughout this paper, a near-ring will be a right zero-symmetric near-ring with
identity, while a subnear-ring will always be a subnear-ring with the identity. By an
ideal of a near-ring we will mean a two-sided ideal. R will be a generic symbol for a
near-ring (except where noted). Let n be a fixed natural number and let n denote the set
{1,2,...,n}. R™ will denote the direct sum of n copies of (R, +), and elements of R™ will
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be represented by u, 7, etc., and considered as n-tuples, for instance, T = (u1,- -, un).
If w,7 € R™, we define the product @ 7 = (ujv1, - -,unvs); if also a € R, let wa =
(u1a,- -, una). Denote the n-tuple with 1 in the i¢-th component and 0 elsewhere by €;.

Recall that M(G) is the near-ring of all zero-preserving mappings of (G, +) into
itself for any group (G,+). The mappings ¢; and 7; will denote the j-th coordinate
injection and projection, respectively. That is ¢j(u) = (0,---,u,---,0) where u is in
the j-th position and 7;(ui,...,un) = uj. For 7 € R, let f* € My(R) be defined by
f7(s) = rs for all s € R. We define f; : R* — R" where f/; = ;f"n; for 1,5 € n and
T € R.

Definition 2.1 [9] The subnear-ring of My(R") generated by the set {ff|r €
R;i,7 € n} is called an n X n matriz near-ring over R, denoted by M, (R), and each
element of M, (R) is called a matriz.

An n x n matrix B = [b;;] will be a generic symbol for a Boolean matriz of size n,
i.e., b;; =0or 1 for ¢,5 € n. We shall henceforth assume the Boolean matrix B satisfies
the conditions: (1) b;; = 1 for each ¢ € n; and (2) if b;; = bjx = 1, then b;z = 1. Let
w, U € R™. We wirte:

u ~; U if and only if 7;% = 7;7 for all j such that b;; = 1.

Remark. If b;; =0, then €; ~; 0 where 0 = (0,---,0).

Definition 2.2. [11] Let M,(B,R) = {X € M,(R)|(Y;: € n,Va,7 € R™)(T ~;
v = mXu = mXv)}. We call M,(B,R) the n x n structural matrix near-ring over R
with respect to B.

Van der Walt and van Wyk [11] showed that M, (B, R) is also the subnear-ring of
Mn(R) generated by the set {f7|r € R and b;; = 1}. In view of this result, we can
now introduce the concept of representations of structural matrices. Let E,(B, R) be
the subset of words over the alphabet of symbols { %lr € Rand b;; = 1} U {(,),+},
recursively defined by the following rules:

(1) f; € En(B,R) for all r € R and for ¢,j € n with b;; = 1;
(2) f X and Y € E,(B,R), then X +Y € E,(B, R);
(3) if X and Y € E, (B, R), then (X)(Y) € E.(B, R).

The length of an element X of E,(B, R) is defined as the number of f7; in X such that
b;; = 1. (Note: there might be more than one expression for any matrices. The “length”
is defined on expressions of matrices, not on matrices.) The weight, w(A), of a matrix A
of M,(B, R), is the length of an expression in E, (B, R) of minimal length representing
A. Observe that for any matrix A of M, (B, R) with 1 < w(A), there exist matrices
C,D € My(B,R) of minimal length representing A. Observe that for any matrix A of

Mx (B, R) with 1 < w(C), w(D) < w(A) such that A=C + D or CD.
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The following results will be useful throughout this paper.

Lemma 2.3.
(1) [Lemma 2.1,1] If X € Mn(R), s € R and u € R, then X (us) = (Xu)s.
(2) [Proposition 2.2,11] Let X € M (B,R). For any@ and v € R", if u ~; v, then
Xu ~; X7.
(3) [Lemma 2.3,11] Let 4,5 € n. Then bi; =1 1f and only if f; € Mn(B, R) for all
r € R.

Definition 2.4. Let £ C M, (B, R) and j € n. Then:
(1) IIgR,5) = {(u1,---,un) € R™u; =01if b;; = 0}.
2) L;jBl={z€eR|(3X € L)(Fz € [[5(R, 5))(x = 7;Xw)}.
If there is no ambiguity, we write II(R, j) and L, for []5(R, ) and L(;[B], respec-
tively.

Remark.
(1) If X € Mn(B,R) and 4,j € n, then fLX fi; = f% where z = m X¢;.
(2) (Mn(B,R))ui =Riorien.

Suppose H is a subset of R such that RH C H. Then we say H is a left invariant
subset. Right invariant and two-sided invariant subsets can be defined in a similar
way.

Lemma 2.5.
(1) Let @ = (u1,-,un) € [1g(R, 7). Then = (31_; fii)E-
(2) Let Y be a right invariant subset of Mn(B,R) and j € n. If X € Y and
@ € [15(R,j), then there is Y € Y such that Xu = YF;.

Proof. Since (u1,---,un) € [[(R,J), if b;j = 0 then u; = 0. Therefore we have
part (1). Part (2) follows immediately from part (1) and the fact that & € [[(R, j).

Proposition 2.6. Let £ be a two-sided invariant subset of M,(B,R) and
i € n. Then x € Ly if and only if f& € L. Moreover, if also bij; = bji = 1, then
Eig= L
(®) )

Proof. Note that z € L(;) if and only if z = 7; X for some X € £ and u € J[(R,%).
By Lemma 2.5(2), there is a Y € L such that X7 = Y€ and so z = mY€. Thus
= fLY fL € L. Conversely, from the fact that €; € [I(R,%) and =z = m; fj;€;, we have:
1f G EL, then € Ly.
Suppose also that b;; = bj; = 1. Since f5 € £ if and only if f}; =
then have the desired result.

larl
i € L, we

Proposition 2.7. Let £ be an ideal of Mn(B,R). Then L(; is an ideal of
R for any i € n.
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Proof. Suppose z,y € L(;) and r,s € R. We have f;"¥ = f% — f; isin L. Hence
z —yisin L;). Using a similar argument, we can show 7 +x — 7, zr, s(z + 1) — sr are
in L(;). Therefore L; is an ideal of R.

Observe that whenever £ is an ideal of M, (B, R), we have: L is a proper ideal if
and only if L(;) is a proper ideal for some i € n.

Proposition 2.8. If j € n and X € M,(B,R), then X([[5(R,7)) C [I15(R,37)-

Proof. In view of Lemma 2.5, we note that it suffices to show that m;Xe; = 0
whenever X € M, (B, R) and b;; = 0. But this follows immediately from the fact that
€; ~i 0 whenever b;; = 0. (See the remark after Definition 2.1.)

Definition 2.9. Let i € n and L C R. Then:
() Tl B == Pl 1+ it} € By € I 56 Big = 1
(2) LO[B] = {X € Ma(B,R)X([15(R.)) € [0 L)}

If no confusion can occur, we write [[(i,L) and L() for [[5(¢,L) and L()[B], re-
spectively.

Remark.

(1) Let X € M,(B,R) and L C R. We have X € L(Y) if and only if 7; X% € L whenever
u € [[(R,?) and b;; = 1.

(2) R®) = M,(B,R) for any i € n.

Lemma 2.10. let L be a left ideal of R and i € n. Then [[5z(:,L) is an
M (B, R)-ideal of R™. (Here we consider R™ as an M, (B, R)-module.)

Proof. Obviously [[(¢,L) is a normal subgroup of R*. We prove X (z+v) — X7 is
in [J(¢,L) forz € [[(3,L), 7 € R*, X € M,(B, R) by means of induction on the weights
of matrices. In fact, it suffices to show 7;(X (¥ +7) — X@) € L for all j such that b;; = 1.
So assume b;; = 1. If w(X) =1, then X = f], with bnr = 1. We have:

0 if j #h,
r(ug +ve) —rvR if j=h.

wi (FulE +7) — fLT) = {

If j = h, then by = b;jbjx = 1 and hence ux € L. Therefore we have n;(f7, (u +
V) — fr,v) € L. For purposes of induction, we assume X (% + ¥) — Xv is in [[(3, L)
for X € Mn(B,R) with 1 < w(X) < m. Now if w(X) = m + 1, then there are
C,D € M,(B,R) with 1 < w(C), w(D) < m such that either X = C+ D or CD. In the
first case we have X (¥ +7v) — X0 = C(T +7) + (D(¥ +v) — Dv) — Cv is in [](3,L). In
the second case we have X (@ +7) — Xv = C((D(a+79) — Dv) + Dv)—CDv is in [[(3, L).
By the principle of induction, we have that [](z, L) is an M, (B, R)-ideal of R™.

Observe that if we assume that L is a left R-subgroup in the above lemma, then we
can show that X([[z(¢,L)) C [15(¢, L) for X € M,(B, R).

Proposition 2.11.



(1)
(2)

PRIME IDEALS IN STRUCTURAL MATRIX NEAR-RINGS 35

If L is an ideal of R, then L is an ideal of M,(B,R) for i € n.
If L is a left R-subgroup, then L% 45 g two-sided M, (B, R)-subgroup fori € n.

Proof. Proposition 2.8 and Lemma 2.10 give part (1). Use proposition 2.8 and the

observation after Lemma 2.10 to obtain part (2).

(1)
(2)

Lemma 2.12.
Let L be a right invariant subset of R. Then f& € L if and only if x € L.
Let L be a proper two-sided R-subgroup and byr = 1. Then f;, € LY if and

only lf b,;k =0 or bhi 0.

(1)

(2)

Proof.
Suppose f% € L. Since & € [[(R,%), we have fZ€; € [[(4,L). In particular,
z = m;f%€ € L. Suppose now £ € L, T = (u1,---,us) € [[(R,1), and bin = 1.

Then: _ ‘

= {0 Th#

v ru; i h=4.

So 7 f&u € L. This yields fZu € [](i, L) and hence ff € i,
Assume f}, € L(). For purposes of contradiction, suppose b;x = bp; = 1. Thus i
fL. € Mn(B,R). This implies f} = fL f,fr; € L'); hence 1-€ L from part (1).
So L is not proper. This proves the result one way. Conversely, assume b;z = 0 or
br; = 0. Let T € [[(R,?) and b;, = 1. Then:

j 0 if m # k,
T fen¥ = {uh if mi ==k,
If m = k, then b;x = 1. Thus from the assumption, we have by; = 0. Since
T € [J(R,3), we have up, = 0. (See Definition 2.4.) Then m,,f},% = 0 € L. This
yields f1, @ € ]1(s,L). Hence f}, € L.

Proposition 2.13.
Let L be a proper two-sided R-subgroup and k € n. Then we have:

% R Zfb, =0 OTbiZO,
(L) = {L if b,: = by = y

Let L be a left invariant subset of Mn(B,R). Then L C (L;)\9) for j € n.

Proof.
Note that L and (L)), are two-sided R-subgroups. (See Propositions 2.11(2)
and 2.6.) Suppose bz = 0 or by; = 0. Lemma 2.12(2) gives fi, € L), From
Proposition 2.6, we have 1 € (L(i))(k). Therefore (L(i))(k) = R. Suppose now
bik = bx; = 1. Proposition 2.6 implies (L(i))(i) = (L™)x). Note z € (L) if and
only if fZ € L if and only if € L. Hence (L)) = L.

~
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(2) Observe that if w € [J(R,j) and A € L, then 7;A% € L(;). Soif bj; =1 and X € L,
then fj; € Mn(B,R) and hence f};X € £ for X € L. This implies that whenever
7 € [1(R, j) we have m X% = ; f,XT € L(;). This yields X7 € [1(j, L(;)- Hence
X € (C(j))(j).

Lemma 2.14.
(1) Let UCV CR. ThenU® CcV® forien.
(2) Let L CKC M, (B.R). Then Ligy © /C(z-) fori € n.
(3) Let T be a collection of subsets of R. Then (NyerU)) = NyerU®Y for i€ n.
(4) Let Q be a collection of two-sided invariant subsets of Mn(B,R). Then
(Ngeal)uy = Neeal(y for i € n. Furthermore, if £,K € Q, then LK) C (LK)
fori€n.

Proof. Parts (1), (2), and (3) follow immediately from definitions. We only show
part (4). Use Proposition 2.6 to obtain that x € (Nceal)y) if and only if f € Nceal
if and only if z € L(;) for £ € Q. Thus we have (Ngeal)i) = Nceal(s)- Furthermore,
suppose £,K € Q. If z € L(;) and y € K(;), then f% € £ and f; € K. Since f;;¥ =

ZfY € LK, we have zy € (LK)(y).

Lemma 2.15. Let L and H be proper two-sided R-subgroups. Then L) =
HU) if and only if L = H and b;; = bj;; = 1.

Proof. Suppose L = H and b;; = bj; = 1. Observe that [J(R,7) = [[(R,J) and
11G, L) = [](5, L) will suffice to show L() = HU). If w € [[(R,i) and bx; = 0, then
bri = 0 and so mx% = 0. Thus @ € [[(R,j) and hence [][(R,?¢) C [[(R, 7). Similarly, we
have [J(R,j) C [I(R,?). Therefore [[(R,:) = [[(R,7). If v € [[(3,L) and bjx = 1, then
bir =1 and so 7T € L. Thus ¥ € [[(j,L). This gives [[(¢,L) C [1(j,L). We then have
[1G,L) = [1(j,L). This proves the result one way. Conversely, suppose L() = HU),
From Proposition 2.13, we have:

i : N ifbi'=001‘b'1'—'——‘0,
L= (LW, =(HD), = {H if b,-j- =bj; = 11

This yields L = H and b;; = bj; = 1.

3. Prime Ideals And Radicals

Recall that a proper ideal P of R is called

(1) a prime ideal if for any ideals U and V of R such that (UV C P) = (U C P) or
(V C P).

(2) a 1-prime ideal if for any a, b € R such that (aRb C P) = (a € P) or (b € P).

(3) an equiprime ideal if for any a € R\P, z and y € R such that (Vr € R,arz —ary €
P) = (z —y) € P. (See [1] and [2].)
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(4) a completely prime ideal if for any a, b € R such that (ab € P) = (a € P) or
(be P).
We write P, (R) and Spec, (R) for the intersection and the collection of all proper
prime, 1-prime, equiprime, or completely prime ideals of R according to whether v =
0,1,e, or 2.

Theorem 3.1. Let P be a prime (resp. 1-prime, equiprime) ideal of R. Then
P is a prime (resp. 1-prime, equiprime) ideal of Mn(B,R) for i € n.

Proof. Let P be a prime ideal of R and U, V ideals of M (B, R) such that
Uy C P&, We want to show U C P® or ¥ C P, Use Proposition 2.13 and Lemma
2.14 to obtain the following sequentially: (UV)u C (P(i))(,;), UnViy © P, Uz € P
or Vi € P,and U C P® or YV C P®. Thus we are done. Now suppose P is a 1-
prime ideal of R and X, Y € M, (B,R) such that X, Y & P(). We want to show
X Mn(B,R)YY € P%). From definitions, there are @, 7 € J[(R,?) and h, k € n with
b;, = bix = 1 such that a = 7, Xu ¢ P and b = 7. YT ¢ P. Therefore there exists
r € R such that arb & P. Since 7, ((X@)rb) = (mpX@)rb = arb ¢ P, we have (Xa)rdb ¢
[1(:, P). Furthermore, (X@)rb = X (urb) by Lemma 2.3 (1), so X(urd) ¢ [I(i,P).
Observe that @rb = (usr, -, ua?)(mY) = (37— f;" )Y where @ = (u1,- e Up)-
Since X (37— fii )YT = X (urd) ¢ [1(:, P), we have XMq(B,R)Y ¢ PY. Hence P
is 1-prime. The proof of the equiprime case is similar to that of the 1-prime case. (See
also [Proposition 2.2, 1].)

Theorem 3.2. Let Q be a 1-prime (resp. equz’p'rz’me,' completely prime) ideal
of Mn(B,R). Then Qg is a 1-prime (resp. equiprime, completely prime) ideal
of R for i € n.

Proof. We will prove the 1-prime case. Suppose Q is a 1-prime ideal of M (B, R).
Let a and b € R such that aRb C Q(;). Then f2® € Q for all7 € R. Now if X €
Mn(B,R) and ¢ = m;X¢ then faXfh = f2** € Q. This implies f; € Q or b g O
Hence a € Q(;) or b € Q(;)- Similarly, we can prove the equiprime and completely prime
cases.

Lemma 3.3. Let Q be an ideal of M,(B,R) and A € M,(B,R). Then the
following are equivalent:
(1) Ae(Qu);
(2) Ifue H(R,I) and b;p, =1, then AT € Q(i),'
(3) Ifﬂ [ H(R,’I,) and b;p, =1, then % € Q where ap = 7 Au.

1

Proof. The equivalence of (1) and (2) follows directly from Definitions 2.4 and 2.9.
The equivalence of (2) and (3) is obtained by using Proposition 2.6.

Theorem 3.4. Let Q be a 1-prime ideal of M,(B,R). Then there ezists a
k € n such that (Q(k))(k) = Q. Hence ﬂ?zl(g(i))(i) = 0.
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Proof. We have shown that Q C (Q(;))*”) for any i € n. Now suppose X ¢ Q.
Since (f{; +---+ f1.)X = X ¢ Q, there exists k € n such that f}, X € Q. Furthermore
from the fact that Q is 1-prime, we can find T € M, (B, R) such that f}, XTfL, X ¢ Q.
This implies f, XTfi, ¢ Q. Note that ff, = fLXTfl, ¢ Q where t = 7, XT%.
Apply the preceding lemma to obtain XT ¢ (Qk))*¥). So X ¢ (Qx))®). This yields
(Q(k))(k) = Q. The last part is now an immediate consequence.

Observe that in the above proposition if also bjr = bx; = 1, then (Q(;))) = Q. (See
Proposition 2.6 and Lemma 2.15.) Theorems 3.1, 3.2, and 3.4 lead to our next results:

Theorem 3.5.
(1) Specy(Mn,(B,R)) 2 {PY|P € Specy(R) for i€ n}.
(2) Spec,(M.(B,R)) ={PY|P e Spec,(R) foricn} forv=1,e.

Theorem 3.6. P,(M,(B,R)) =n™,(P,(R))® forv=1ore.
To end this section, we study the cardinalities of Spec, (M, (B, R)) for v = 0, 1, e.
But first we let |[W| be the cardinal of W for any set W.

Definition 3.7 Let = be a relation on n (with respect to B) defined via:
7 f-b"] if and only if b,;j = bji =i1.

Obviously, ~ is an equivalence relation on n. For convenience, denote by B the
number of the equivalence classes induced by ~ on n. For instance, if B is an upper
triangular matrix, then ¢ = j if and only if i = j. Hence 3 = n.

Theorem 3.8.
(1) [Specy(Mn(B,R))| > |Specy(R)| - B.
(2) ISpec, (Ma(B, R))| = |Spec, (R)|- B for v=1or e.

Proof. See Lemma 2.15 and Theorem 3.5.

4. Concluding Remarks

In [11], van der Walt and van Wyk defined the set R™(j, L) to be:

{ﬂ € R™u; =0 if bjx =1 and br; =0, and uy, € L if bjr = bx; = 1},
where L C R and j € n (see also [12] and [13]). They investigated the set (R4, L) ¢
R™(7,R)) and proved that:

JZ(MTL(‘B’ R)) = rj?:l (Rn(]’ J2(R)) : Rn(ja R))
We show that (R™(j, L) : R"(j, R)) coincides with L), This implies that we obtain a de-

scription of, for example, P; (M, (B, R)) analogous to the description of J2(Mn(B, R))
mentioned above. Without loss of generality, assume 0 € L, otherwise both (R™(4,L) :
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R™(j,R)) and L1 are empty. We need the following observations, the proofs are imme-
diate from definitions:

(1) B*(,L) < 116, D);

(2) TI(R.j) C R*(G, R);

(3) B*(j,L) = B*(j, ) n 11G, L). |

Use (1) and (2) to obtain (R™(j,L) : R*(4, R)) € (I1(5, L) : [1(R,4)) = Lu),

Assume X € LU). To complete the proof, we need to show that X(R"(j, R)) C
R™(j, L). However, from part (3) and the fact that R™(j, R) is an M, (B, R)-ideal of
R™ [Corollary 3.6, 11], it suffices to show X (R"(j, R)) C [1(5,L). This is equivalent to
showing that 7, X% € L whenever @ € R"(j, R) and bjx = 1. Assume T = (u1,- -, Un) €
R™(j,R) and b;r = 1. Furthermore if we could find an element 7 of TI(R,7) such that
T ~j U, then Lemma 2.3 (2) yields X% ~; X¥ and so mX®w = mXv € L. (Since
X € LY and 7 € [[(R, ), we have Xv € [](4,L).)

Let 7 = (v1,-+,vn) € R™ such that v, = um if bp; = bjm = 1, and v, = 0
otherwise. Thus ¥ is an element of [J(R,j). Suppose bxm = 1. We then have bjm =1
(since bjx = 1). Therefore there are two possible cases: bpj =1 0r byj = 0. If by =1,
then v, = Um. If bp; =0, then v, =0 and u,, = 0 (since bjm =1 and b,,; = 0). This
implies & ~ T. We are done.

Veldsman [14] used an example (of a finite near-ring R) given by Meldrum and
Meyer [8] to show that Po(M,(R)) could be strictly contained in (Po(R))". (Note that
Mn(R) = Mn(B, R) where B = [b;;] with b;; = 1 and (Po(R))" = (Po(R))™*) for any
k € n.) It would be interesting to determine the prime radical and all prime ideals of
any matrix near-ring (or structural matrix near-ring).

The author thanks the referee for many helpful comments.
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