PRIME IDEALS IN STRUCTURAL MATRIX NEAR-RINGS

ENOCH K. S. LEE

Abstract. This paper studies different types of prime ideals and their radicals in structural matrix near-rings. Relationships between various types of prime ideals of a near-ring and the corresponding structural matrix near-ring are given.

1. Introduction

Matrix near-rings were first studied by Heatherly [5] and Ligh [6] in the context of distributive and *n*-distributive near-rings. In 1986, Meldrum and van der Walt [9] defined a matrix near-ring over a near-ring as a subnear-ring of a transformation nearring. Certain prime ideals and their associated radicals have been studied since then. (See Booth and Groenewald [1] and Groenewald [4].) Furthermore, van der Walt and van Wyk [11] initiated the study of structural martix near-rings (see also [12]). A structural matrix near-ring " $\mathcal{M}_n(B, R)$ ", which depends virtually on the structure of the Boolean matrix "B", is a subnear-ring of the matrix near-ring " $\mathcal{M}_n(R)$ ". In this paper, we study several types of prime ideals and their radicals in structural matrix near-rings over a near-ring with identity. We also provide a different way of describing the set $(\mathbb{R}^n(j,L):\mathbb{R}^n(j,R))$, which was studied in [11], [12], and [13]. For basic properties concerning near-rings and matrix near-rings, we refer to [3], [7], [9], and [10].

2. Preliminaries

Throughout this paper, a near-ring will be a right zero-symmetric near-ring with identity, while a subnear-ring will always be a subnear-ring with the identity. By an ideal of a near-ring we will mean a two-sided ideal. R will be a generic symbol for a near-ring (except where noted). Let n be a fixed natural number and let \underline{n} denote the set $\{1, 2, \ldots, n\}$. R^n will denote the direct sum of n copies of (R, +), and elements of R^n will

Received September 3, 1993; revised January 24, 1994.

¹⁹⁹¹ Mathematics Subject Classification. 16Y30.

Key words and phrases. Near-rings, prime ideals, matrix near-rings.

be represented by $\overline{u}, \overline{v}$, etc., and considered as *n*-tuples, for instance, $\overline{u} = (u_1, \dots, u_n)$. If $\overline{u}, \overline{v} \in \mathbb{R}^n$, we define the product $\overline{u} \ \overline{v} = (u_1v_1, \dots, u_nv_n)$; if also $a \in \mathbb{R}$, let $\overline{u}a = (u_1a, \dots, u_na)$. Denote the *n*-tuple with 1 in the *i*-th component and 0 elsewhere by $\overline{\epsilon}_i$.

Recall that $\mathcal{M}_0(G)$ is the near-ring of all zero-preserving mappings of (G, +) into itself for any group (G, +). The mappings ι_j and π_j will denote the *j*-th coordinate injection and projection, respectively. That is $\iota_j(u) = (0, \dots, u, \dots, 0)$ where *u* is in the *j*-th position and $\pi_j(u_1, \dots, u_n) = u_j$. For $r \in R$, let $f^r \in \mathcal{M}_0(R)$ be defined by $f^r(s) = rs$ for all $s \in R$. We define $f_{ij}^r : \mathbb{R}^n \to \mathbb{R}^n$ where $f_{ij}^r = \iota_i f^r \pi_j$ for $i, j \in \underline{n}$ and $r \in R$.

Definition 2.1 [9] The subnear-ring of $M_0(\mathbb{R}^n)$ generated by the set $\{f_{ij}^r | r \in \mathbb{R}; i, j \in \underline{n}\}$ is called an $n \times n$ matrix near-ring over \mathbb{R} , denoted by $\mathcal{M}_n(\mathbb{R})$, and each element of $\mathcal{M}_n(\mathbb{R})$ is called a matrix.

An $n \times n$ matrix $B = [b_{ij}]$ will be a generic symbol for a *Boolean matrix* of size n, i.e., $b_{ij} = 0$ or 1 for $i, j \in \underline{n}$. We shall henceforth assume the Boolean matrix B satisfies the conditions: (1) $b_{ii} = 1$ for each $i \in \underline{n}$; and (2) if $b_{ij} = b_{jk} = 1$, then $b_{ik} = 1$. Let $\overline{u}, \overline{v} \in \mathbb{R}^n$. We wirte:

 $\overline{u} \sim_i \overline{v}$ if and only if $\pi_j \overline{u} = \pi_j \overline{v}$ for all j such that $b_{ij} = 1$.

Remark. If $b_{ij} = 0$, then $\overline{\epsilon}_j \sim_i \overline{0}$ where $\overline{0} = (0, \dots, 0)$.

Definition 2.2. [11] Let $\mathcal{M}_n(B, R) = \{X \in \mathcal{M}_n(R) | (\forall_i \in \underline{n}, \forall \overline{u}, \overline{v} \in R^n) (\overline{u} \sim_i \overline{v} \Rightarrow \pi_i X \overline{u} = \pi_i X \overline{v}) \}$. We call $\mathcal{M}_n(B, R)$ the $n \times n$ structural matrix near-ring over R with respect to B.

Van der Walt and van Wyk [11] showed that $\mathcal{M}_n(B, R)$ is also the subnear-ring of $\mathcal{M}_n(R)$ generated by the set $\{f_{ij}^r | r \in R \text{ and } b_{ij} = 1\}$. In view of this result, we can now introduce the concept of representations of structural matrices. Let $\mathbb{E}_n(B, R)$ be the subset of words over the alphabet of symbols $\{f_{ij}^r | r \in R \text{ and } b_{ij} = 1\} \cup \{(,),+\}$, recursively defined by the following rules:

(1) $f_{ij}^r \in \mathbb{E}_n(B, R)$ for all $r \in R$ and for $i, j \in \underline{n}$ with $b_{ij} = 1$;

- (2) if X and $\mathbb{Y} \in \mathbb{E}_n(B, R)$, then $\mathbb{X} + \mathbb{Y} \in \mathbb{E}_n(B, R)$;
- (3) if X and $Y \in \mathbb{E}_n(B, R)$, then $(X)(Y) \in \mathbb{E}_n(B, R)$.

The length of an element X of $\mathbb{E}_n(B, R)$ is defined as the number of f_{ij}^r in X such that $b_{ij} = 1$. (Note: there might be more than one expression for any matrices. The "length" is defined on expressions of matrices, not on matrices.) The weight, $\omega(A)$, of a matrix A of $\mathcal{M}_n(B, R)$, is the length of an expression in $\mathbb{E}_n(B, R)$ of minimal length representing A. Observe that for any matrix A of $\mathcal{M}_n(B, R)$ with $1 < \omega(A)$, there exist matrices $C, D \in \mathcal{M}_n(B, R)$ of minimal length representing A. Observe that for any matrix A of $\mathcal{M}_n(B, R)$ with $1 < \omega(A)$, there exist matrices $C, D \in \mathcal{M}_n(B, R)$ of minimal length representing A. Observe that for any matrix A of $\mathcal{M}_n(B, R)$ with $1 < \omega(C)$, $\omega(D) < \omega(A)$ such that A = C + D or CD.

The following results will be useful throughout this paper.

Lemma 2.3.

- (1) [Lemma 2.1,1] If $X \in \mathcal{M}_n(R)$, $s \in R$ and $\overline{u} \in R^n$, then $X(\overline{u}s) = (X\overline{u})s$.
- (2) [Proposition 2.2, 11] Let $X \in \mathcal{M}_n(B, R)$. For any \overline{u} and $\overline{v} \in \mathbb{R}^n$, if $\overline{u} \sim_i \overline{v}$, then $X\overline{u} \sim_i X\overline{v}$.

(3) [Lemma 2.3, 11] Let $i, j \in \underline{n}$. Then $b_{ij} = 1$ if and only if $f_{ij}^r \in \mathcal{M}_n(B, R)$ for all $r \in R$.

Definition 2.4. Let $\mathcal{L} \subseteq \mathcal{M}_n(B, R)$ and $j \in \underline{n}$. Then:

(1) $\prod_B (R,j) = \{(u_1, \cdots, u_n) \in R^n | u_i = 0 \text{ if } b_{ij} = 0\}.$

(2) $\mathcal{L}_{(j)}[B] = \{ x \in R \mid (\exists X \in \mathcal{L}) (\exists \overline{u} \in \prod_B (R, j)) (x = \pi_j X \overline{u}) \}.$

If there is no ambiguity, we write $\Pi(R, j)$ and $\mathcal{L}_{(j)}$ for $\prod_B (R, j)$ and $\mathcal{L}_{(j)}[B]$, respectively.

Remark.

(1) If $X \in \mathcal{M}_n(B, R)$ and $i, j \in \underline{n}$, then $f_{ii}^1 X f_{jj}^1 = f_{ij}^x$ where $x = \pi_i X \overline{\epsilon}_j$.

(2) $(\mathcal{M}_n(B,R))_{(i)} = R$ for $i \in \underline{n}$.

Suppose H is a subset of R such that $RH \subseteq H$. Then we say H is a left invariant subset. Right invariant and two-sided invariant subsets can be defined in a similar way.

Lemma 2.5.

(1) Let $\overline{u} = (u_1, \cdots, u_n) \in \prod_B (R, j)$. Then $\overline{u} = (\sum_{i=1}^n f_{ij}^{u_i}) \overline{\epsilon}_j$.

(2) Let \mathcal{Y} be a right invariant subset of $\mathcal{M}_n(B,R)$ and $j \in \underline{n}$. If $X \in \mathcal{Y}$ and $\overline{u} \in \prod_B(R,j)$, then there is $Y \in \mathcal{Y}$ such that $X\overline{u} = Y\overline{\epsilon}_j$.

Proof. Since $(u_1, \dots, u_n) \in \prod(R, j)$, if $b_{ij} = 0$ then $u_i = 0$. Therefore we have part (1). Part (2) follows immediately from part (1) and the fact that $\overline{\epsilon}_j \in \prod(R, j)$.

Proposition 2.6. Let \mathcal{L} be a two-sided invariant subset of $\mathcal{M}_n(B, R)$ and $i \in \underline{n}$. Then $x \in \mathcal{L}_{(i)}$ if and only if $f_{ii}^x \in \mathcal{L}$. Moreover, if also $b_{ij} = b_{ji} = 1$, then $\mathcal{L}_{(i)} = \mathcal{L}_{(j)}$.

Proof. Note that $x \in \mathcal{L}_{(i)}$ if and only if $x = \pi_i X \overline{u}$ for some $X \in \mathcal{L}$ and $\overline{u} \in \prod(R, i)$. By Lemma 2.5(2), there is a $Y \in \mathcal{L}$ such that $X\overline{u} = Y\overline{\epsilon}_i$ and so $x = \pi_i Y\overline{\epsilon}_i$. Thus $f_{ii}^x = f_{ii}^1 Y f_{ii}^1 \in \mathcal{L}$. Conversely, from the fact that $\overline{\epsilon}_i \in \prod(R, i)$ and $x = \pi_i f_{ii}^x \overline{\epsilon}_i$, we have: if $f_{ii}^x \in \mathcal{L}$, then $x \in \mathcal{L}_{(i)}$.

Suppose also that $b_{ij} = b_{ji} = 1$. Since $f_{ii}^x \in \mathcal{L}$ if and only if $f_{jj}^x = f_{ji}^1 f_{ii}^x f_{ij}^1 \in \mathcal{L}$, we then have the desired result.

Proposition 2.7. Let \mathcal{L} be an ideal of $\mathcal{M}_n(B,R)$. Then $\mathcal{L}_{(i)}$ is an ideal of R for any $i \in \underline{n}$.

Proof. Suppose $x, y \in \mathcal{L}_{(i)}$ and $r, s \in R$. We have $f_{ii}^{x-y} = f_{ii}^x - f_{ii}^y$ is in \mathcal{L} . Hence x - y is in $\mathcal{L}_{(i)}$. Using a similar argument, we can show r + x - r, xr, s(x + r) - sr are in $\mathcal{L}_{(i)}$. Therefore $\mathcal{L}_{(i)}$ is an ideal of R.

Observe that whenever \mathcal{L} is an ideal of $\mathcal{M}_n(B, R)$, we have: \mathcal{L} is a proper ideal if and only if $\mathcal{L}_{(i)}$ is a proper ideal for some $i \in \underline{n}$.

Proposition 2.8. If $j \in \underline{n}$ and $X \in \mathcal{M}_n(B, R)$, then $X(\prod_B (R, j)) \subseteq \prod_B (R, j)$.

Proof. In view of Lemma 2.5, we note that it suffices to show that $\pi_i X \overline{\epsilon}_j = 0$ whenever $X \in \mathcal{M}_n(B, R)$ and $b_{ij} = 0$. But this follows immediately from the fact that $\overline{\epsilon}_j \sim_i \overline{0}$ whenever $b_{ij} = 0$. (See the remark after Definition 2.1.)

Definition 2.9. Let $i \in \underline{n}$ and $L \subseteq R$. Then:

(1) $\coprod_B (i, L) = \{ (u_1, \cdots, u_n) \in \mathbb{R}^n | u_j \in L \text{ if } b_{ij} = 1 \};$

(2) $L^{(i)}[B] = \{X \in \mathcal{M}_n(B, R) | X(\prod_B (R, i)) \subseteq \coprod_B (i, L)\}.$

If no confusion can occur, we write $\coprod(i, L)$ and $L^{(i)}$ for $\coprod_B(i, L)$ and $L^{(i)}[B]$, respectively.

Remark.

- (1) Let $X \in \mathcal{M}_n(B, R)$ and $L \subseteq R$. We have $X \in L^{(i)}$ if and only if $\pi_j X \overline{u} \in L$ whenever $\overline{u} \in \prod(R, i)$ and $b_{ij} = 1$.
- (2) $R^{(i)} = \mathcal{M}_n(B, R)$ for any $i \in \underline{n}$.

Lemma 2.10. let L be a left ideal of R and $i \in \underline{n}$. Then $\coprod_B(i, L)$ is an $\mathcal{M}_n(B, R)$ -ideal of \mathbb{R}^n . (Here we consider \mathbb{R}^n as an $\mathcal{M}_n(B, R)$ -module.)

Proof. Obviously $\coprod (i, L)$ is a normal subgroup of \mathbb{R}^n . We prove $X(\overline{u} + \overline{v}) - X\overline{v}$ is in $\coprod (i, L)$ for $\overline{u} \in \coprod (i, L)$, $\overline{v} \in \mathbb{R}^n$, $X \in \mathcal{M}_n(B, \mathbb{R})$ by means of induction on the weights of matrices. In fact, it suffices to show $\pi_j(X(\overline{u} + \overline{v}) - X\overline{v}) \in L$ for all j such that $b_{ij} = 1$. So assume $b_{ij} = 1$. If $\omega(X) = 1$, then $X = f_{hk}^r$ with $b_{hk} = 1$. We have:

$$\pi_j(f_{hk}^r(\overline{u}+\overline{v})-f_{hk}^r\overline{v}) = \begin{cases} 0 & \text{if } j \neq h, \\ r(u_k+v_k)-rv_k & \text{if } j=h. \end{cases}$$

If j = h, then $b_{ik} = b_{ij}b_{jk} = 1$ and hence $u_k \in L$. Therefore we have $\pi_j(f_{hk}^r(\overline{u} + \overline{v}) - f_{hk}^r\overline{v}) \in L$. For purposes of induction, we assume $X(\overline{u} + \overline{v}) - X\overline{v}$ is in $\coprod (i, L)$ for $X \in \mathcal{M}_n(B, R)$ with $1 \leq \omega(X) \leq m$. Now if $\omega(X) = m + 1$, then there are $C, D \in \mathcal{M}_n(B, R)$ with $1 \leq \omega(C), \omega(D) \leq m$ such that either X = C + D or CD. In the first case we have $X(\overline{u} + \overline{v}) - X\overline{v} = C(\overline{u} + \overline{v}) + (D(\overline{u} + \overline{v}) - D\overline{v}) - C\overline{v}$ is in $\coprod (i, L)$. In the second case we have $X(\overline{u} + \overline{v}) - X\overline{v} = C((D(\overline{u} + \overline{v}) - D\overline{v}) + D\overline{v}) - CD\overline{v}$ is in $\coprod (i, L)$. By the principle of induction, we have that $\coprod (i, L)$ is an $\mathcal{M}_n(B, R)$ -ideal of R^n .

Observe that if we assume that L is a left R-subgroup in the above lemma, then we can show that $X(\coprod_B(i,L)) \subseteq \coprod_B(i,L)$ for $X \in \mathcal{M}_n(B,R)$.

Proposition 2.11.

- (1) If L is an ideal of R, then $L^{(i)}$ is an ideal of $\mathcal{M}_n(B,R)$ for $i \in \underline{n}$.
- (2) If L is a left R-subgroup, then $L^{(i)}$ is a two-sided $\mathcal{M}_n(B,R)$ -subgroup for $i \in \underline{n}$.

Proof. Proposition 2.8 and Lemma 2.10 give part (1). Use proposition 2.8 and the observation after Lemma 2.10 to obtain part (2).

Lemma 2.12.

(1) Let L be a right invariant subset of R. Then $f_{ii}^x \in L^{(i)}$ if and only if $x \in L$.

(2) Let L be a proper two-sided R-subgroup and $b_{kh} = 1$. Then $f_{kh}^1 \in L^{(i)}$ if and only if $b_{ik} = 0$ or $b_{hi} = 0$.

Proof.

(1) Suppose $f_{ii}^x \in L^{(i)}$. Since $\overline{\epsilon}_i \in \prod(R, i)$, we have $f_{ii}^x \overline{\epsilon}_i \in \coprod(i, L)$. In particular, $x = \pi_i f_{ii}^x \overline{\epsilon}_i \in L$. Suppose now $x \in L$, $\overline{u} = (u_1, \dots, u_n) \in \prod(R, i)$, and $b_{ih} = 1$. Then:

$$\pi_h f_{ii}^x \overline{u} = \begin{cases} 0 & \text{if } h \neq i, \\ xu_i & \text{if } h = i. \end{cases}$$

So $\pi_h f_{ii}^x \overline{u} \in L$. This yields $f_{ii}^x \overline{u} \in \coprod (i, L)$ and hence $f_{ii}^x \in L^{(i)}$.

(2) Assume $f_{kh}^1 \in L^{(i)}$. For purposes of contradiction, suppose $b_{ik} = b_{hi} = 1$. Thus f_{ik}^1 , $f_{hi}^1 \in \mathcal{M}_n(B, R)$. This implies $f_{ii}^1 = f_{ik}^1 f_{kh}^1 f_{hi}^1 \in L^{(i)}$; hence $1 \in L$ from part (1). So L is not proper. This proves the result one way. Conversely, assume $b_{ik} = 0$ or $b_{hi} = 0$. Let $\overline{u} \in \prod(R, i)$ and $b_{im} = 1$. Then:

$$\pi_m f_{kh}^1 \overline{u} = \begin{cases} 0 & \text{if } m \neq k, \\ u_h & \text{if } m = k. \end{cases}$$

If m = k, then $b_{ik} = 1$. Thus from the assumption, we have $b_{hi} = 0$. Since $\overline{u} \in \prod(R, i)$, we have $u_h = 0$. (See Definition 2.4.) Then $\pi_m f_{kh}^1 \overline{u} = 0 \in L$. This yields $f_{kh}^1 \overline{u} \in \coprod(i, L)$. Hence $f_{kh}^1 \in L^{(i)}$.

Proposition 2.13.

(1) Let L be a proper two-sided R-subgroup and $k \in \underline{n}$. Then we have:

$$(L^{(i)})_{(k)} = \begin{cases} R & \text{if } b_{ik} = 0 \text{ or } b_{ki} = 0, \\ L & \text{if } b_{ik} = b_{ki} = 1. \end{cases}$$

(2) Let \mathcal{L} be a left invariant subset of $\mathcal{M}_n(B, R)$. Then $\mathcal{L} \subseteq (\mathcal{L}_{(j)})^{(j)}$ for $j \in \underline{n}$.

Proof.

(1) Note that $L^{(i)}$ and $(L^{(i)})_{(k)}$ are two-sided *R*-subgroups. (See Propositions 2.11(2) and 2.6.) Suppose $b_{ik} = 0$ or $b_{ki} = 0$. Lemma 2.12(2) gives $f_{kk}^1 \in L^{(i)}$. From Proposition 2.6, we have $1 \in (L^{(i)})_{(k)}$. Therefore $(L^{(i)})_{(k)} = R$. Suppose now $b_{ik} = b_{ki} = 1$. Proposition 2.6 implies $(L^{(i)})_{(i)} = (L^{(i)})_{(k)}$. Note $x \in (L^{(i)})_{(i)}$ if and only if $f_{ii}^x \in L^{(i)}$ if and only if $x \in L$. Hence $(L^{(i)})_{(k)} = L$.

ENOCH K. S. LEE

(2) Observe that if $\overline{u} \in \prod(R, j)$ and $A \in \mathcal{L}$, then $\pi_j A \overline{u} \in \mathcal{L}_{(j)}$. So if $b_{ji} = 1$ and $X \in \mathcal{L}$, then $f_{ji}^1 \in \mathcal{M}_n(B, R)$ and hence $f_{ji}^1 X \in \mathcal{L}$ for $X \in \mathcal{L}$. This implies that whenever $\overline{u} \in \prod(R, j)$ we have $\pi_i X \overline{u} = \pi_j f_{ji}^1 X \overline{u} \in \mathcal{L}_{(j)}$. This yields $X \overline{u} \in \coprod(j, \mathcal{L}_{(j)})$. Hence $X \in (\mathcal{L}_{(j)})^{(j)}$.

Lemma 2.14.

- (1) Let $U \subseteq V \subseteq R$. Then $U^{(i)} \subseteq V^{(i)}$ for $i \in \underline{n}$.
- (2) Let $\mathcal{L} \subseteq \mathcal{K} \subseteq \mathcal{M}_n(B, R)$. Then $\mathcal{L}_{(i)} \subseteq \mathcal{K}_{(i)}$ for $i \in \underline{n}$.
- (3) Let Γ be a collection of subsets of R. Then $(\cap_{U \in \Gamma} U)^{(i)} = \cap_{U \in \Gamma} U^{(i)}$ for $i \in \underline{n}$.

(4) Let Ω be a collection of two-sided invariant subsets of $\mathcal{M}_n(B, R)$. Then $(\bigcap_{\mathcal{L}\in\Omega}\mathcal{L})_{(i)} = \bigcap_{\mathcal{L}\in\Omega}\mathcal{L}_{(i)}$ for $i \in \underline{n}$. Furthermore, if $\mathcal{L}, \mathcal{K} \in \Omega$, then $\mathcal{L}_{(i)}\mathcal{K}_{(i)} \subseteq (\mathcal{L}\mathcal{K})_{(i)}$ for $i \in \underline{n}$.

Proof. Parts (1), (2), and (3) follow immediately from definitions. We only show part (4). Use Proposition 2.6 to obtain that $x \in (\bigcap_{\mathcal{L} \in \Omega} \mathcal{L})_{(i)}$ if and only if $f_{ii}^x \in \bigcap_{\mathcal{L} \in \Omega} \mathcal{L}$ if and only if $x \in \mathcal{L}_{(i)}$ for $\mathcal{L} \in \Omega$. Thus we have $(\bigcap_{\mathcal{L} \in \Omega} \mathcal{L})_{(i)} = \bigcap_{\mathcal{L} \in \Omega} \mathcal{L}_{(i)}$. Furthermore, suppose $\mathcal{L}, \mathcal{K} \in \Omega$. If $x \in \mathcal{L}_{(i)}$ and $y \in \mathcal{K}_{(i)}$, then $f_{ii}^x \in \mathcal{L}$ and $f_{ii}^y \in \mathcal{K}$. Since $f_{ii}^{xy} = f_{ii}^x f_{ii}^y \in \mathcal{L}\mathcal{K}$, we have $xy \in (\mathcal{L}\mathcal{K})_{(i)}$.

Lemma 2.15. Let L and H be proper two-sided R-subgroups. Then $L^{(i)} = H^{(j)}$ if and only if L = H and $b_{ij} = b_{ji} = 1$.

Proof. Suppose L = H and $b_{ij} = b_{ji} = 1$. Observe that $\prod(R, i) = \prod(R, j)$ and $\prod(i, L) = \prod(j, L)$ will suffice to show $L^{(i)} = H^{(j)}$. If $\overline{u} \in \prod(R, i)$ and $b_{kj} = 0$, then $b_{ki} = 0$ and so $\pi_k \overline{u} = 0$. Thus $\overline{u} \in \prod(R, j)$ and hence $\prod(R, i) \subseteq \prod(R, j)$. Similarly, we have $\prod(R, j) \subseteq \prod(R, i)$. Therefore $\prod(R, i) = \prod(R, j)$. If $\overline{v} \in \prod(i, L)$ and $b_{jk} = 1$, then $b_{ik} = 1$ and so $\pi_k \overline{v} \in L$. Thus $\overline{v} \in \prod(j, L)$. This gives $\prod(i, L) \subseteq \prod(j, L)$. We then have $\prod(i, L) = \prod(j, L)$. This proves the result one way. Conversely, suppose $L^{(i)} = H^{(j)}$. From Proposition 2.13, we have:

$$L = (L^{(i)})_{(i)} = (H^{(j)})_{(i)} = \begin{cases} N & \text{if } b_{ij} = 0 \text{ or } b_{ji} = 0, \\ H & \text{if } b_{ij} = b_{ji} = 1. \end{cases}$$

This yields L = H and $b_{ij} = b_{ji} = 1$.

3. Prime Ideals And Radicals

Recall that a proper ideal P of R is called

- (1) a prime ideal if for any ideals U and V of R such that $(UV \subseteq P) \Rightarrow (U \subseteq P)$ or $(V \subseteq P)$.
- (2) a 1-prime ideal if for any $a, b \in R$ such that $(aRb \subseteq P) \Rightarrow (a \in P)$ or $(b \in P)$.
- (3) an equiprime ideal if for any $a \in R \setminus P$, x and $y \in R$ such that $(\forall r \in R, arx ary \in P) \Rightarrow (x y) \in P$. (See [1] and [2].)

36

(4) a completely prime ideal if for any $a, b \in R$ such that $(ab \in P) \Rightarrow (a \in P)$ or $(b \in P)$.

We write $\mathbb{P}_{\nu}(R)$ and $\mathbf{Spec}_{\nu}(R)$ for the intersection and the collection of all proper prime, 1-prime, equiprime, or completely prime ideals of R according to whether $\nu = 0, 1, e, \text{ or } 2$.

Theorem 3.1. Let P be a prime (resp. 1-prime, equiprime) ideal of R. Then $P^{(i)}$ is a prime (resp. 1-prime, equiprime) ideal of $\mathcal{M}_n(B,R)$ for $i \in \underline{n}$.

Proof. Let P be a prime ideal of R and \mathcal{U} , \mathcal{V} ideals of $\mathcal{M}_n(B,R)$ such that $\mathcal{U}\mathcal{V} \subseteq P^{(i)}$. We want to show $\mathcal{U} \subseteq P^{(i)}$ or $\mathcal{V} \subseteq P^{(i)}$. Use Proposition 2.13 and Lemma 2.14 to obtain the following sequentially: $(\mathcal{U}\mathcal{V})_{(i)} \subseteq (P^{(i)})_{(i)}, \mathcal{U}_{(i)}\mathcal{V}_{(i)} \subseteq P, \mathcal{U}_{(i)} \subseteq P$ or $\mathcal{V}_{(i)} \subseteq P$, and $\mathcal{U} \subseteq P^{(i)}$ or $\mathcal{V} \subseteq P^{(i)}$. Thus we are done. Now suppose P is a 1-prime ideal of R and $X, Y \in \mathcal{M}_n(B,R)$ such that $X, Y \notin P^{(i)}$. We want to show $X\mathcal{M}_n(B,R)Y \not\subseteq P^{(i)}$. From definitions, there are $\overline{u}, \overline{v} \in \prod(R,i)$ and $h, k \in \underline{n}$ with $b_{ih} = b_{ik} = 1$ such that $a = \pi_h X \overline{u} \notin P$ and $b = \pi_k Y \overline{v} \notin P$. Therefore there exists $r \in R$ such that $arb \notin P$. Since $\pi_h((X\overline{u})rb) = (\pi_h X\overline{u})rb = arb \notin P$, we have $(X\overline{u})rb \notin \prod(i, P)$. Observe that $\overline{u}rb = (u_1r, \cdots, u_nr)(\pi_k Y \overline{v}) = (\sum_{j=1}^n f_{jk}^{u_jr})Y \overline{v}$ where $\overline{u} = (u_1, \cdots, u_n)$. Since $X(\sum_{j=1}^n f_{jk}^{u_jr})Y \overline{v} = X(\overline{u}rb) \notin \prod(i, P)$, we have $X\mathcal{M}_n(B,R)Y \not\subseteq P^{(i)}$. Hence $P^{(i)}$ is 1-prime. The proof of the equiprime case is similar to that of the 1-prime case. (See also [Proposition 2.2, 1].)

Theorem 3.2. Let Q be a 1-prime (resp. equiprime, completely prime) ideal of $\mathcal{M}_n(B,R)$. Then $Q_{(i)}$ is a 1-prime (resp. equiprime, completely prime) ideal of R for $i \in \underline{n}$.

Proof. We will prove the 1-prime case. Suppose Q is a 1-prime ideal of $\mathcal{M}_n(B, R)$. Let a and $b \in R$ such that $aRb \subseteq Q_{(i)}$. Then $f_{ii}^{arb} \in Q$ for all $r \in R$. Now if $X \in \mathcal{M}_n(B, R)$ and $x = \pi_i X \overline{\epsilon}_i$ then $f_{ii}^a X f_{ii}^b = f_{ii}^{axb} \in Q$. This implies $f_{ii}^a \in Q$ or $f_{ii}^b \in Q$. Hence $a \in Q_{(i)}$ or $b \in Q_{(i)}$. Similarly, we can prove the equiprime and completely prime cases.

Lemma 3.3. Let Q be an ideal of $\mathcal{M}_n(B, R)$ and $A \in \mathcal{M}_n(B, R)$. Then the following are equivalent:

(1) $A \in (Q_{(i)})^{(i)};$

(2) If $\overline{u} \in \prod(R, i)$ and $b_{ih} = 1$, then $\pi_h A \overline{u} \in \mathcal{Q}_{(i)}$;

(3) If $\overline{u} \in \prod(R, i)$ and $b_{ih} = 1$, then $f_{ii}^{a_h} \in \mathcal{Q}$ where $a_h = \pi_h A \overline{u}$.

Proof. The equivalence of (1) and (2) follows directly from Definitions 2.4 and 2.9. The equivalence of (2) and (3) is obtained by using Proposition 2.6.

Theorem 3.4. Let \mathcal{Q} be a 1-prime ideal of $\mathcal{M}_n(B,R)$. Then there exists a $k \in \underline{n}$ such that $(\mathcal{Q}_{(k)})^{(k)} = \mathcal{Q}$. Hence $\bigcap_{i=1}^n (\mathcal{Q}_{(i)})^{(i)} = \mathcal{Q}$.

ENOCH K. S. LEE

Proof. We have shown that $\mathcal{Q} \subseteq (\mathcal{Q}_{(i)})^{(i)}$ for any $i \in \underline{n}$. Now suppose $X \notin \mathcal{Q}$. Since $(f_{11}^1 + \cdots + f_{nn}^1)X = X \notin \mathcal{Q}$, there exists $k \in \underline{n}$ such that $f_{kk}^1 X \notin \mathcal{Q}$. Furthermore from the fact that \mathcal{Q} is 1-prime, we can find $T \in \mathcal{M}_n(B, R)$ such that $f_{kk}^1 XTf_{kk}^1 X \notin \mathcal{Q}$. This implies $f_{kk}^1 XTf_{kk}^1 \notin \mathcal{Q}$. Note that $f_{kk}^t = f_{kk}^1 XTf_{kk}^1 \notin \mathcal{Q}$ where $t = \pi_k XT\overline{\epsilon}_k$. Apply the preceding lemma to obtain $XT \notin (\mathcal{Q}_{(k)})^{(k)}$. So $X \notin (\mathcal{Q}_{(k)})^{(k)}$. This yields $(\mathcal{Q}_{(k)})^{(k)} = \mathcal{Q}$. The last part is now an immediate consequence.

Observe that in the above proposition if also $b_{jk} = b_{kj} = 1$, then $(\mathcal{Q}_{(j)})^{(j)} = \mathcal{Q}$. (See Proposition 2.6 and Lemma 2.15.) Theorems 3.1, 3.2, and 3.4 lead to our next results:

Theorem 3.5.

- (1) $\operatorname{Spec}_{0}(\mathcal{M}_{n}(B,R)) \supseteq \{P^{(i)} | P \in \operatorname{Spec}_{0}(R) \text{ for } i \in \underline{n}\}.$
- (2) $\operatorname{Spec}_{v}(\mathcal{M}_{n}(B,R)) = \{P^{(i)} | P \in \operatorname{Spec}_{v}(R) \text{ for } i \in \underline{n}\} \text{ for } v = 1, e.$

Theorem 3.6. $\mathbb{P}_{\nu}(\mathcal{M}_{n}(B,R)) = \bigcap_{i=1}^{n} (\mathbb{P}_{\nu}(R))^{(i)}$ for $\nu = 1$ or *e*.

To end this section, we study the cardinalities of $\mathbf{Spec}_{\nu}(\mathcal{M}_n(B,R))$ for $\nu = 0, 1, e$. But first we let |W| be the cardinal of W for any set W.

Definition 3.7 Let \approx be a relation on <u>n</u> (with respect to B) defined via:

 $i \approx j$ if and only if $b_{ij} = b_{ji} = 1$.

Obviously, \approx is an equivalence relation on <u>n</u>. For convenience, denote by β the number of the equivalence classes induced by \approx on <u>n</u>. For instance, if B is an upper triangular matrix, then $i \approx j$ if and only if i = j. Hence $\beta = n$.

Theorem 3.8.

- (1) $|\operatorname{Spec}_0(\mathcal{M}_n(B,R))| \ge |\operatorname{Spec}_0(R)| \cdot \beta.$
- (2) $|\operatorname{Spec}_{\nu}(\mathcal{M}_n(B,R))| = |\operatorname{Spec}_{\nu}(R)| \cdot \beta$ for $\nu = 1$ or e.

Proof. See Lemma 2.15 and Theorem 3.5.

4. Concluding Remarks

In [11], van der Walt and van Wyk defined the set $R^n(j, L)$ to be:

 $\{\overline{u} \in \mathbb{R}^n | u_k = 0 \text{ if } b_{jk} = 1 \text{ and } b_{kj} = 0, \text{ and } u_k \in L \text{ if } b_{jk} = b_{kj} = 1\},\$ where $L \subseteq \mathbb{R}$ and $j \in \underline{n}$ (see also [12] and [13]). They investigated the set $(\mathbb{R}^n(j, L) : \mathbb{R}^n(j, \mathbb{R}))$ and proved that:

$$J_2(\mathcal{M}_n(B,R)) = \bigcap_{j=1}^n (R^n(j, J_2(R)) : R^n(j, R)).$$

We show that $(R^n(j, L) : R^n(j, R))$ coincides with $L^{(j)}$. This implies that we obtain a description of, for example, $\mathbb{P}_1(\mathcal{M}_n(B, R))$ analogous to the description of $J_2(\mathcal{M}_n(B, R))$ mentioned above. Without loss of generality, assume $0 \in L$, otherwise both $(R^n(j, L) :$

- (1) $R^n(j,L) \subseteq \prod (j,L);$
- (2) $\prod(R,j) \subseteq R^n(j,R);$
- (3) $R^n(j,L) = R^n(j,R) \cap \coprod (j,L).$

Use (1) and (2) to obtain $(\mathbb{R}^n(j,L):\mathbb{R}^n(j,R)) \subseteq (\coprod(j,L):\prod(R,j)) = L^{(j)}$.

Assume $X \in L^{(j)}$. To complete the proof, we need to show that $X(R^n(j,R)) \subseteq R^n(j,L)$. However, from part (3) and the fact that $R^n(j,R)$ is an $\mathcal{M}_n(B,R)$ -ideal of R^n [Corollary 3.6, 11], it suffices to show $X(R^n(j,R)) \subseteq \coprod (j,L)$. This is equivalent to showing that $\pi_k X \overline{u} \in L$ whenever $\overline{u} \in R^n(j,R)$ and $b_{jk} = 1$. Assume $\overline{u} = (u_1, \cdots, u_n) \in R^n(j,R)$ and $b_{jk} = 1$. Furthermore if we could find an element \overline{v} of $\prod (R,j)$ such that $\overline{u} \sim_k \overline{v}$, then Lemma 2.3 (2) yields $X \overline{u} \sim_k X \overline{v}$ and so $\pi_k X \overline{u} = \pi_k X \overline{v} \in L$. (Since $X \in L^{(j)}$ and $\overline{v} \in \prod (R, j)$, we have $X \overline{v} \in \coprod (j, L)$.)

Let $\overline{v} = (v_1, \dots, v_n) \in \mathbb{R}^n$ such that $v_m = u_m$ if $b_{mj} = b_{jm} = 1$, and $v_m = 0$ otherwise. Thus \overline{v} is an element of $\prod(R, j)$. Suppose $b_{km} = 1$. We then have $b_{jm} = 1$ (since $b_{jk} = 1$). Therefore there are two possible cases: $b_{mj} = 1$ or $b_{mj} = 0$. If $b_{mj} = 1$, then $v_m = u_m$. If $b_{mj} = 0$, then $v_m = 0$ and $u_m = 0$ (since $b_{jm} = 1$ and $b_{mj} = 0$). This implies $\overline{u} \sim_k \overline{v}$. We are done.

Veldsman [14] used an example (of a finite near-ring R) given by Meldrum and Meyer [8] to show that $\mathbb{P}_0(\mathcal{M}_n(R))$ could be strictly contained in $(\mathbb{P}_0(R))^*$. (Note that $\mathcal{M}_n(R) = \mathcal{M}_n(B, R)$ where $B = [b_{ij}]$ with $b_{ij} = 1$ and $(\mathbb{P}_0(R))^* = (\mathbb{P}_0(R))^{(k)}$ for any $k \in \underline{n}$.) It would be interesting to determine the prime radical and all prime ideals of any matrix near-ring (or structural matrix near-ring).

The author thanks the referee for many helpful comments.

References

- G. L. Booth and N. J. Groenewald, "On primeness in matrix near-rings," Arch. Math., 56 (1991), 539-546.
- [2] G. L. Booth, N. J. Groenewald, and S. Veldsman, "A Kurosh-Amitsur prime radical for near-rings," Comm. Alg., 18 (1990), 3111-3122.
- [3] J. R. Clay, Nearrings: Geneses and Applications, Oxford Science Publications, Oxford, New York, Tokyo, 1992.
- [4] N. J. Groenewald, "Different prime ideals in near-rings," Comm. Alg., 19 (1991), 2667-2675.
- [5] H. E. Heatherly, "Matrix near-rings," J. London Math. Soc., 7 (1973), 355-356.
- [6] S. Ligh, "A note on matrix near-rings," J. London Math. Soc., 11 (1975), 383-384.
- [7] J. D. P. Meldrum, Near-Rings and Their Links with Groups, Pitman, Marshfield, M. A., 1985.
- [8] and J. H. Meyer, "Modules over matrix near-rings and the J₀-radical," Monatsh. Math., 112 (1991), 125-139.
- [9] and A. P. J. van der Walt, "Matrix near-rings," Arch. Math. 47 (1986), 312-319.
- [10] G. Pilz, Near-Rings, 2nd. edition, North-Holland, Amsterdam, 1983.
- [11] A. P. J. van der Walt and L. van Wyk, "The J₂-radical in structural matrix near-rings," J. Algebra, 123 (1989), 248-261.
- [12] L. van Wyk, "The 2-primitive ideals of structural matrix near-rings," Proc. Edinburgh Math. Soc., 34 (1991), 229-239.

ENOCH K. S. LEE

- [13] ----, "Maximal left ideals in structural matrix rings," Comm. Alg. 16 (1988), 399-419.
- [14] S. Veldsman, "Special radicals and matrix near-rings," J. Austral. Math. Soc. (Series A), 52 (1992), 356-367.

Mathematics Department, University of Southwestern Louisiana, Lafayette, LA 70504, USA.

40