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SOME NONLINEAR VARIATIONAL INEQUALITIES

MUHAMMAD ASLAM NOOR

Abstract. In this paper, we introduce and study a new class of variational in-
equalities. Using the auxiliary principle technique, we prove the existence of a
solution of this class of variational inequalities and suggest a new and novel itera-
tive algorithm. Several special cases, which can be obtained from the main results,
are also discussed.

1. Introduction and Formulation

An elegant theory of variational inequalities has been developed since the early six-
ties, which has greatly stimulated the research in pure and applied sciences. In the last
thirty years remarkable progress has been made in the field of variational inequalities.
Variational inequalities arise in models for a large number of mathematical, physical,
regional, engineering and other problems. The theory of variational inequalities has led
to exciting and important contributions to pure and applied sciences which includes work
on differential equations, contact problems in elasticity, fluid flow through porous me-
dia, general equilibrium problems in economics and transportation, unilateral, obstacle,
moving and free boundary problems, see [1-22]. Inspired and motivated by the recent
research work going on in this field, we introduce and consider some new classes of vari-
ational inequalities. We remark that the projection method and its variant form cannot
be applied to study the existence of a solution of these new variational inequalities.
This fact motivated us to use the auxiliary principle technique of Glowinski, Lions and
Tremolieres [6] and Noor [13,14,16-18] to study the problem of the existence of these
variational inequalities. This technique deals with an auxiliary variational inequality
problem and proving that the solution of the auxiliary problem is the solution of the
original variational inequality problem. This technique is quite general and flexible. In
recent years, the auxiliary principle technique has being used to suggest unified descent
algorithms for solving variational inequalities. It has been shown by Noor [17] that this
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technique can be used to formulate the equivalent differentiable optimization problems
for variational inequalities. In this paper, we use this technique to suggest an iterative
algorithm for variational inequalities.

To be more precise, let H be a real Hilbert space on which inner product and norm
are denoted by < .,. > and || . || respectively. Let K be a nonempty closed convex set
in H. Given T,g,A : H — H continuous operators, we consider the problem of finding
weH such that g(u)eK and

< Tu— A(w),v — g(u) > +b(u,v) — b(u,g(u)) >0, for all veK, (1.1)

where the form b(.,.) : Hx H — Ris non-differentiable and satisfies the following:
(i) b(u,v) is linear in the first argument.
(ii) b(w, ) is bounded, that is, there exists a constant v > 0 such that

b(u,v) < vllullllvll, for all u,veH. (1.2)

(iii) b(u,v) — b(u, w) < b(u,v —w), for all u,v, weH.

The inequalities of the type (1.1) are called the strongly nonlinear mixed variational
inequalities. We now discuss some special cases.
1. Note that if ¢ = I, the identity operator, then problem (1.1) is equivalent to finding
uweK such that

< Tu— A(u),v —u > +b(u,v) — b(u,u) >0, for all veK, (1.3)
a problem considered and studied by Noor [13].
IT. If b(u,v) = j(v) is a convex, lower semi- continuous, proper and non-differentiable
functional, then the problem (1.1) is equivalent to finding ueH such that g(u)eK and

< Tu— A(u),v — g(u) > +j(v) — j(g(u)) 2 0, for all veK, (1.4)
which is called the mixed variational inequality problem and appears to be new.
NI If b(v,u) = 0, and A(u) = 0, then problem (1.1) reduces to the problem of finding
ueH such that g(u)eK and

< Tu,v — g(u) >> 0, for all veK, (1.5)

a problem introduced by Oettli[20], Isac[8] and Noor[12] in different contexts and appli-
cations.

IV. If b(u,v) = 0, K* = {ueH; < u,v > 0 for all veK} is a polar cone of the convex
cone K in H, then problem (1.1) is equivalent to finding ueH such that

g(u)eK, Tu-—A(u)eK* and <Tu- A(u), g(u) >=0, (1.6)
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which is known as the general nonlinear complementarity problem. The problem (1.6)
is quite general and includes many previously known classes of linear and nonlinear
complementarity problems as special cases.

For appropriate and suitable choice of the operators T, A, g, the form b(.,.) and the
convex set K, one can obtain a number of known and unknown classes of variational
inequalities and complementarity problems as special cases from the problem (1.1). In
brief, it is clear that the problem (1.1) is the most general and unifying one, which is one
of the main motivation of this paper.

Definition 1.1 A mapping T : H — H is said to be
(a) Strongly monotone, if there exists a constant a > 0 such that

< Tu—Tv,u—v>>allu—v|? for all u,veH.
(b) Lipschitz continuous, if there exists a constant B > 0 such that

|Tu - Tv| < Bllu—7l, for all u,veH.

In particular, it follows that a < .
Concerning the unique solution of the variational inequality (1.1), we need the fol-
lowing assumptions.

Condition M. We assume that k(y + p) < a, where a > 0 is the strongly
monotonicity constant of the nonlinear operator T, is the boundedness constant of the
form b(u,v), s > 0 is the Lipschitz continuity constant of the operator A and k = 151 =4,
Here 7> 0 and £ > 0 are the strongly monotonicity and Lipschitz continuity constants
of the operator g.

Condition L. We assume that v < o, where a > 0 is the strongly monotonicity
constant of T and v = 8+/1 — 20 + £2+£&(y+p). Here n > 0 s the strongly monotonicity
constant of the operator g, £ > 0, p > 0 are the Lipschitz continuity constants of the
operators g and A respectively and y > 0 is the boundedness constant of the form b(.,.).

We like to point out that if the operator g = I, the identity operator, then k=1=
¢ = n. Consequently the condition M and condition L are exactly the same condition
N in Noor [13]. This shows that the condition M and condition L are compatible with
condition N.

2. Main Results

In this section, we prove the existence of a unique solution of the mixed variational

inequality problem (1.1) by using the auxiliary principle technique and this is the main
motivation of our next result.



100 MUHAMMAD ASLAM NOOR

Theorem 2.1. Let the operators T,g : H — H be both strongly monotone
Lipschitz continuous and the form b(.,.) : H x H — H satisfy the conditions (i)-
(iii). Let the operator A : H — H be a Lipschitz continuous with constant p > 0.
If the condition M and condition L hold, then there ezists a unique solution ueH
such that g(u)eK and (1.1) holds.

Proof.
(a) Unigueness. Let uy,uzeH, u1 # uz be two solutions of the variational inequality
(1.1). Then

< Tuqy — A(ur),v — g(ur) > +b(u1,v) — b(u, g(uy) >0 for all vek, (2.1)
and
< Tus — A(ug),v — guz) > +b(uz,v) — b(ug, g(uz) >0 for all veK. (2.2)

Taking v = g(us) in (2.1) and v = g(u1) in (2.2) and adding the resultant inequalities,
we obtain

< Tuy—Tug, g(u1)—g(usz) >< bur—uz, g(u2)—g(u1))+ < A(ua)—A(uz), 9(u1)—g(uz) >,

which can be written as

< Tuy — Tusg,uy —ug >< < Tuy — Tug, up — us — (g(ua) — guz)) >
+ b(uy — ug, g(uz) — g(u1))
+ < A(ug) — A(uz), g(ur) — g(uz) > .

Using the strongly monotonicity of T, (1.2) and applying the Cauchy- Schwartz
inequality, we have

allu; —ug||®* € < Tug — Tug,uy — ug >
< Tuy — Tugllllur — uz2 — (g(u1) — glu))l| + vllur — uzllllg(us) — g(us)|l
+ [|A(ur) — A(uz)|llg(ur) — g(uz)|l
<|lur — ualllluy — w2 — (g(u1 — glu2))|| + vEllug — ualf?
+ pélluy — uz|)?, (2.3)

where 8 > 0, > 0 and £ > 0 are the Lipschitz continuity constants of the operators
T, A and g respectively. '
Since g is a strongly monotonicity Lipschitz continuous operator, so

llua — ug = (g(u1) — g(u))II* =llur — 2| — 2 < g(w1) — gluz), w1 — uz >
+llg(ur) — g(uz)|I*
<(1 - 20+ €2)llus — uell. (2.4)
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From (2.3) and (2.4), we have

aflur — ual® <{BV1 =20+ €2 + £(v + ) Hlur — ualf?

=v|lu; — u3||?>, by condition L.

Thus
(a — v)||ur — ua|? <0,

which implies that u; = uz, the uniqueness of the solution, since ¥ < a by condition L.

(b) Ezistence. We now use the auxiliary principle technique to prove the existence of a
solution of (1.1) using the ideas of Glowinski, Lions and Tremolieres [6] and Noor [13,16].
For a given ueH such that g(u)eK, we consider the problem of finding a unique weH
such that g(w)eK, (see[6]), satisfying the auxiliary variational inequality

< w,v — g(w) > +pb(u,v) — pb(u, g(w)) > < u,v — g(w) >
—p < Tu — Au,v — g(w) >, (2.5)

for all veK, where p > 0 is a constant.

Let wq,ws be two solutions of (2.5) related to u;,uzeH respectively. It is enough
to show that the mapping u — w has a fixed point belonging to H satisfying (1.1). In
other words, it is sufficient to show that for well chosen p > 0,

lwi — wa|| < 6llur — usl|,

with 0 < 6 < 1, where 8 is independent of u; and ug. Taking v = g(ws) (respectively
g(wy)) in (2.5) related to u; (respectively u,), we have

< wy, g(wz) = g(w1) > +pb(u, g(w2)) — pb(ur, g(w1))
> < w1, g(w2) — glwr) > —p < Tuy — A(wr), g(wz) — g(wr) >
and
< wg, g(w1) — glwa) > +pb(uz, g(w1)) — pb(uz, g(w2))
> < ug, glwr) — g(wz) > —p < Tug — A(uz), g(wr) — g(w2) > .

Adding these inequalities and using (iii), we have

< wi —wz,g(w1) — g(wz) >
< <y — ug, g(wi) — g(wz) > +pb(u1 — uz, g(w2) — g(w1))
- p < Tuy — Tug, g(w1) — g(wz) > +p < A(wr) — A(u2), g(w1) — g(w2) >
= < uy — uz — p(Tuy — Tua), g(w1) — g(wa) > +pb(u1 — uz, g(wz) — g(wi))
+p < A(ur) — A(uz), g(wr) — g(ws) >,
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from which using (1.2) and the strongly monotonicity of g, we obtain

nllws — wall? <{Jlur — w2 — p(Tu1 — Tus)||
+ pyllur — uz|l + pllA(u1) — A(u2)||}Hlg(w1) — g(w2)]|
<&{|lur — uz — p(Tur — Tug)|| + pyllus — uz|
+ plluy — w?|}Hlwr — w2, (2.6)
where n > 0 and £ > 0 are the strongly monotonicity and Lipschitz continuity constants

of the operator ¢ and g > 0 is the Lipschitz continuity constant of A.
Since T is a strongly monotone Lipschitz continuous operator, so

llr — w2 — p(Tur — Tug)||?
<lluy — us|)® — 2p < uy — ug, Tuy — Tug > +p2||Tuy — Tus||? (2.7)
<(1 = 2pa + p?B%)|lur — ua*.

Combining (2.6) and (2.7), we obtain

llwy — wa <{p(7+u)+\/1—2ap+ﬂ2p2}

k |lw1 — ug]|, where k= g- £ 0.

=0|u; — uz|,

with 8 = 2lr+ 1) +1(p) and t(p) = /1 — 2ap + ($%p?

We have to show that @ < 1. It is clear that t(p) assumes its minimum value for

p = 5 with t(p) = /1 — (-52-). For p = p, p(y + p) + t(p) < k implies that p(y + p) < k.
Thus it follows that 6 < 1 for all p with

|p— &= k(7+ﬂ)| V(e —k(y + u)? — (B2 (7+u)2)(1—k2)
B2 — (v + p)? B2 — (v + p)?

and p(y+ u) < k by condition M, showing that the mapping v — w defined by (2.5) has
a fixed point, which is the solution of (1.1), the required result.

Remark 2.1. If g =1 and A(u) = 0, the identity operator, then problem (2.5) is
equivalent to finding weH for a given ueH such that

<w,v—w > +pb(u,v) — pb(u,w) 2<u,v—w > —p < Tu,v —w >, (2.8)

for all veK and p > 0, is a constant. From the proof of Theorem 2.1, we see that k =1
and 8 = py + t(p) <1lfor0<p<2z=2, 7<aandpy<l1,so the mapping v — w
defined by (2.4) has a fixed point, which is the solution of the variational inequality
(1.3) studied by Kikuchi and Oden [9] in elasticity. Similarly for appropriate choice of
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the operators T, g, A, the form b(u,v) and the convex set K, we can apply Theorem 2.1
to prove the existence of a unique solution for various classes of variational inequalities
studied previously.

Remark 2.2. It is clear that if w = v, then w is the solution of the variational
inequality (1.1). This observation enables us to suggest an iterative algorithm for finding
the approximate solution of the variational inequality (1.1) and its various special cases.

Algorithm 2.1.

(a) At n = 0, start with some initial wo.

(b) At step n, solve the auxiliary problem (2.5) with v = Wn. Let wny41 denote the
solution of the problem (2.5).

(c) For given € >0, if ||wni1 — wall < &, stop. Otherwise repeat (b).

Remark 2.3. It is worth mentioning that many previously known methods in-
cluding projection techniques and its variant forms, linear approximation, relaxation,
descent and Newton algorithms that have been proposed for solving various classes of
variational inequalities and complementarity problems can be derived as special cases
from the auxiliary principle technique, see Noor [16,17,18]. It is known [17] that the
auxiliary principle technique can be used to formulate the equivalent (non) differentiable
optimization problems for variational inequalities. For illustration purpose, we consider
a special case of the mixed variational inequality (1.1). Let g =1, the identity operator
and b(u,v) = 0, then for a given wek, the auxiliary variational inequality problem (2.5)
is equivalent to finding a unique weK such that

<wv—w>2< U,V —wWw> —p <Tu— A(u),v—w >, for all veK, (2.9)
where p > 0 is a constant.

It is obvious that the problem (2.9) is equivalent to finding the minimum of the
functional I[w] on the convex set K in H, where

1
I[w]=§<w—u,w—u>+p<Tu—A(u),w—u>, (2.10)
which is an auxiliary quadratic differential functional associated with the problem (2.9).
Using the technique of Fukushima [5], one can prove that the variational inequality
problem of finding ueK such that

< Tu— A(u),v —u>>0, forall veK, (2.11)

is equivalent to finding the minimum of the functional F[u] on K in H, where

Flu] = = < u—w(w),wlu) —u >+ < Tu— Alw),u - w(w) >, (2.12)

b
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where w = w(u) is the solution of the auxiliary variational inequality (2.9). The func-
tional F[u] defined by (2.12) is known as the gap (merit) function associated the vari-
ational inequality (2.11). These gap (merit) functions can be used to develop general
framework for descent and Newton methods with line search to solve the variational in-
equalities of the type (2.11). For recent developments in this direction, see Larsson and
Patriksson [11], Zhu and Marcotte [22] and Noor [17,18].

Using the ideas and techniques of Noor [16], we can propose and analyze a general
algorithm. For a given ueK, we introduce the following general auxiliary problem of
finding the minimum of the functional N[w] on K in H, where

Niw] =E(w)— < E'(u),u > +p < Tu — A(u),w >,
=E(w)- < E'(u),w—u>+p<Tu— A(u),w —v>
+o<Tu—Au),v > - < E'(u),v >
=E(w) - E(uw)— < E'(u),w —v > +p < Tu— A(w),w — u > +E(u)
+p<Tu—Au),u>— < E'(u),u > .

This implies that for a given ueK, we consider the minimum of the auxiliary functional
M[w] on K in H, where

M[w] = E(w) — E(u)— < E'(u),w —n > +p <Tu— A(w),w —u >,

Here E(w) is a differentiable convex function. Thus we can associate to (2.11), the
equivalent optimization problem

max{M[w],weK},

which is called the variational principle for the variational inequality (2.11), see Blum
and Oettli [3] for more details. This shows that by a suitable choice of the auxiliary
problem, one can suggest a large number of equivalent differentiable optimization prob-
lems for various classes of variational inequalities and complementarity problems. It is
an open problem to find the equivalent differentiable optimization problem for the mixed
variational inequality (1.1). This needs further research. We remark that if the convex
set K also depends on the solution itself implicitly or explicitly, then the mixed varia-
tional inequality (1.1) is known as the mixed quasi variational inequality. Extending the
auxiliary principle technique for quasi variational inequalities is still an open problem
and this constitute an important and interesting area of the future research.
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