A GENERALIZATION OF CERTAIN CLASS OF ANALYTIC FUNCTIONS WITH NEGATIVE COEFFICIENTS

M. K. AOUF AND A. SHAMANDY

Abstract. We introduce the subclass $T^*(A, B, n, \alpha)$ $(-1 \le A < B \le 1, 0 < B \le 1, n \ge 0, \text{ and } 0 \le \alpha < 1)$ of analytic functions with negative coefficients by the operator D^n . Coefficient estimates, distortion theorems, closure theorems and radii of close-to-convexety, starlikeness and convexity for the class $T^*(A, B, n, \alpha)$ are determined. We also prove results involving the modified Hadamard product of two functions associated with the class $T^*(A, B, n, \alpha)$. Also we obtain several interesting distortion theorems for certain fractional operators of functions in the class $T^*(A, B, n, \alpha)$. Also we obtain class perserving integral operator of the form

$$F(z) = \frac{c+1}{z^c} \int_0^z t^{c-1} f(t) dt, \quad c > -1$$

for the class $T^*(A, B, n, \alpha)$. Conversely when $F(z) \in T^*(A, B, n, \alpha)$, radius of univalence of f(z) defined by the above equation is obtained.

1. Introduction

let A_1 denote the class of functions of the form

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k \tag{1.1}$$

which are analytic in the unit disc $U = \{z : |z| < 1\}$, and let S denote the subclass of A_1 consisting of analytic and univalent functions f(z) in the unit disc U. We use Ω to denote the class of analytic functions w(z) in U satisfies the conditions w(0) = 0 and $|w(z)| \leq |z|$ for $z \in U$.

Received September 3, 1993; revised September 26, 1994.

¹⁹⁹¹ Mathematics Subject Classification. 30C45.

Key words and phrases. Analytic, convex, modified Hadamard procuct, fractional calculus.

For a function f(z) in S, we define

$$D^{0}f(z) = f(z), (1.2)$$

$$D^{1}f(z) = Df(z) = zf'(z),$$
 (1.3)

and

$$D^n f(z) = D(D^{n-1} f(z)) \quad (n \in \mathbb{N} = \{1, 2, \ldots\}).$$
 (1.4)

The differential operator D^n was introduced by Salagean [7]. With the help of the differential operator D^n , we say that a function f(z) belonging to S is in the class $S(A, B, n, \alpha)$ $(-1 \le A < B \le 1, 0 < B \le 1, n \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$, and $0 \le \alpha < 1$) if and only if

$$\frac{D^{n+1}f(z)}{D^n f(z)} \prec \frac{1 + [B + (A - B)(1 - \alpha)]z}{1 + Bz}, \quad z \in U.$$
(1.5)

Equivalently, a function f(z) of S belongs to the class $S(A, B, n, \alpha)$ if and only if there exists a function $w(z) \in \Omega$ such that

$$\frac{D^{n+1}f(z)}{D^n f(z)} = \frac{1 + [B + (A - B)(1 - \alpha)]w(z)}{1 + Bw(z)}, \quad z \in U.$$
(1.6)

It is easy to see that the condition (1.6) is equivalent to

$$\left| \frac{\frac{D^{n+1}f(z)}{D^n f(z)} - 1}{B\frac{D^{n+1}f(z)}{D^n f(z)} - [B + (A - B)(1 - \alpha)]} \right| < 1, \quad z \in U.$$

$$(1.7)$$

Let T denote the subclass of S consisting of functions of the form

$$f(z) = z - \sum_{k=2}^{\infty} a_k z^k$$
 $(a_k \ge 0).$ (1.8)

Further, we define the class $T^*(A, B, n, \alpha)$ by

$$T^*(A, B, n, \alpha) = S(A, B, n, \alpha) \cap T.$$
(1.9)

We note that, by specializing the parameters A, B, n, and α , we obtain the following subclasses studied by various authors:

- (1) $T^*(-1, 1, n, \alpha) = T(n, \alpha)$ (Hur and Oh [4]);
- (2) $T^*(-1,1,0,\alpha) = T^*(\alpha)$ and $T^*(-1,1,1,\alpha) = C(\alpha)$ (Silverman [9]);
- (3) $T^*(-\beta,\beta,0,\alpha) = S^*(\alpha,\beta)$ and $T^*(-\beta,\beta,1,\alpha) = C^*(\alpha,\beta)$ $(0 \le \alpha < 1), (0 < \beta \le 1)$ (Gupta and Jain [3]);
- (4) $T^*(A, B, 0, 0) = T_1^*(A, B)$ and $T^*(A, B, 1, 0) = C_1(A, B)$ (Goel and Sohi [2]);
- (5) $T^*(A, B, 0, \alpha) = T_1^*(A, B, \alpha)$ and $T^*(A, B, 1, \alpha) = C_1(A, B, \alpha)$ (Aouf [1]);

- (6) $T^*(-\beta,\mu\beta,0,\alpha) = S^*(\alpha,\beta,\mu)$ and $T^*(-\beta,\mu\beta,1,\alpha) = C^*(\alpha,\beta,\mu)$ $(0 \le \alpha < 1), (0 < \beta \le 1)$ and $(0 \le \mu \le 1)$ (Owa and Aouf [6]);
- (7) $T^*(-\beta, \beta, n, \alpha) = S^*(\alpha, \beta, n)$, where $S^*(\alpha, \beta, n)$ represents the class of functions $f(z) \in T$ satisfying the condition

$$\left| \frac{\frac{D^{n+1}f(z)}{D^n f(z)} - 1}{\frac{D^{n+1}f(z)}{D^n f(z)} + 1 - 2\alpha} \right| < \beta, \quad z \in U,$$
(1.10)

where $0 \le \alpha < 1$, and $0 < \beta \le 1$.

2. Coefficient Estimates

Theorem 1. Let the function f(z) be defined by (1.8). Then $f(z) \in T^*(A, B, n, \alpha)$ $(-1 \le A < B \le 1, 0 < B \le 1, n \in \mathbb{N}_0$, and $0 \le \alpha < 1)$ if and only if

$$\sum_{k=2}^{\infty} C_k a_k \le (B - A)(1 - \alpha),$$
(2.1)

where

$$C_k = k^n \left[(1+B)(k-1) + (B-A)(1-\alpha) \right].$$
(2.2)

The result is sharp.

Proof. Let |z| = 1, then

$$\begin{aligned} & \left| D^{n+1}f(z) - D^n f(z) \right| - \left| BD^{n+1}f(z) - [B + (A - B)(1 - \alpha)]D^n f(z) \right| \\ & = \left| -\sum_{k=2}^{\infty} k^n (k-1)a_k z^k \right| - \left| (B - A)(1 - \alpha)z - \sum_{k=2}^{\infty} k^n \left[B(k-1) + (B - A)(1 - \alpha) \right]a_k z^k \right| \\ & \leq \sum_{k=2}^{\infty} k^n \left[(1 + B)(k-1) + (B - A)(1 - \alpha) \right]a_k - (B - A)(1 - \alpha) \leq 0. \end{aligned}$$

Hence, by the principle of maximum modulus $f(z) \in T^*(A, B, n, \alpha)$.

Conversely, suppose that

$$= \left| \frac{\frac{D^{n+1}f(z)}{D^n f(z)} - 1}{B\frac{D^{n+1}f(z)}{D^n f(z)} - [B + (A - B)(1 - \alpha)]} \right|$$
$$= \left| \frac{-\sum_{k=2}^{\infty} k^n (k - 1) a_k z^k}{(B - A)(1 - \alpha) z - \sum_{k=2}^{\infty} k^n [B(k - 1) + (B - A)(1 - \alpha)] a_k z^k} \right| < 1, \quad z \in U.$$

Since $|Re(z)| \leq |z|$ for all z, we have

$$\operatorname{Re}\left\{\frac{\sum_{k=2}^{\infty}k^{n}(k-1)a_{k}z^{k}}{(B-A)(1-\alpha)z-\sum_{k=2}^{\infty}k^{n}\left[B(k-1)+(B-A)(1-\alpha)\right]a_{k}z^{k}}\right\}<1.$$
 (2.3)

Choose values of z on the real axis so that $\frac{D^{n+1}f(z)}{D^n f(z)}$ is real. Upon clearing the denominator in (2.3) and letting $z \longrightarrow 1^-$ through real values, we obtain

$$\sum_{k=2}^{\infty} k^n (k-1) a_k \le (B-A)(1-\alpha) - \sum_{k=2}^{\infty} k^n \left[B(k-1) + (B-A)(1-\alpha) \right] a_k$$

which implies that

$$\sum_{k=2}^{\infty} k^n \left[(1+B)(k-1) + (B-A)(1-\alpha) \right] a_k \le (B-A)(1-\alpha).$$

The result is sharp for the function

$$f(z) = z - \frac{(B-A)(1-\alpha)}{C_k} z^k \quad (k \ge 2).$$
(2.4)

Using Theorem 1, we have the following:

Corollary 1. Let the function f(z) defined by (1.8) be in the class $T^*(A, B, n, \alpha)$. then we have

$$a_k \le \frac{(B-A)(1-\alpha)}{C_k}$$
 $(k \ge 2).$ (2.5)

The equality in (2.5) is attained for the function f(z) given by (2.4).

Corollary 2. $T^*(A, B, n+1, \alpha) \subset T^*(A, B, n, \alpha)$ for $-1 \leq A < B \leq 1$, $0 < B \leq 1, n \in \mathbb{N}_0$, and $0 \leq \alpha < 1$.

3. Distortion Theorems

Theorem 2. Let the function f(z) defined by (1.8) be in the class $T^*(A, B, n, \alpha)$. Then we have

$$|z| - \frac{2^{i}(B-A)(1-\alpha)}{C_{2}}|z|^{2} \le |D^{i}f(z)| \le |z| + \frac{2^{i}(B-A)(1-\alpha)}{C_{2}}|z|^{2}$$
(3.1)

for $z \in U$, where $0 \le i \le n$. the result is sharp.

Proof. Note that $f(z) \in T^*(A, B, n, \alpha)$ if and only if $D^i f(z) \in T^*(A, B, n-i, \alpha)$, and that

$$D^{i}f(z) = z - \sum_{k=2}^{\infty} k^{i}a_{k}z^{k}.$$
(3.2)

Using Theorem 1, we can get the result. Finally, we note that the equality in (3.1) is attained for the function f(z) defined by

$$D^{i}f(z) = z - \frac{2^{i}(B-A)(1-\alpha)}{C_{2}}z^{2}.$$
(3.3)

This completes the proof of Theorem 2.

Corollary 3. Let the function f(z) defined by (1.8) be in the class $T^*(A, B, n, \alpha)$. Then we have

$$|z| - \frac{(B-A)(1-\alpha)}{C_2}|z|^2 \le |f(z)| \le |z| + \frac{(B-A)(1-\alpha)}{C_2}|z|^2$$
(3.4)

for $z \in U$. The result is sharp for the function

$$f(z) = z - \frac{(B-A)(1-\alpha)}{C_2} z^2.$$
 (3.5)

Proof. Taking i = 0 in Theorem 2, we can easily show (3.8).

Corollary 4. Let the function f(z) defined by (1.8) be in the class $T^*(A, B, n, \alpha)$. Then we have

$$1 - \frac{2(B-A)(1-\alpha)}{C_2}|z| \le |f'(z)| \le 1 + \frac{2(B-A)(1-\alpha)}{C_2}|z|$$
(3.6)

for $z \in U$. The result is sharp for the function f(z) given by (3.5).

Proof. Note that Df(z) = zf'(z). Hence, taking i = 1 in Theorem 2, we have Corollary 4.

4. Closure Theorems

Let the functions $f_{\nu}(z)$ ($\nu = 1, 2$) be defined by

$$f_{\nu}(z) = z - \sum_{k=2}^{\infty} a_{k,\nu} z^k \qquad (a_{k,\nu} \ge 0, \ \nu = 1, 2).$$
(4.1)

Employing the techniques used earlier by Silverman [9], Gupta and Jain [3], Hur and Oh [4] and Owa and Aouf [6], and with the aid of Theorem 1, we can prove the following:

Theorem 3. The class $T^*(A, B, n, \alpha)$ is closed under convex linear combination.

As a consequence of Theorem 3, there exists extreme points of the class $T^*(A,B,n,\alpha)$.

Theorem 4. Let $f_1(z) = z$ and

$$f_k(z) = z - \frac{(B-A)(1-\alpha)}{C_k} z^k \quad (k \ge 2)$$
(4.2)

for $-1 \leq A < B \leq 1$, $0 < B \leq 1$, and $0 \leq \alpha < 1$, Then f(z) is in the class $T^*(A, B, n, \alpha)$ if and only if it can be expressed in the form

$$f(z) = \sum_{k=1}^{\infty} \lambda_k f_k(z), \qquad (4.3)$$

where $\lambda_k \ge 0$ $(k \ge 1)$ and $\sum_{k=1}^{\infty} \lambda_k = 1$.

Corollary 5. The extreme points of the class $T^*(A, B, n, \alpha)$ are the functions $f_k(z)$ $(k \ge 1)$ given by Theorem 4.

5. Modified Hadamard Products

Let the functions $f_{\nu}(z)$ ($\nu = 1, 2$) be defined by (4.1). The modified Hadamard product of $f_1(z)$ and $f_2(z)$ is defined by

$$f_1 * f_2(z) = z - \sum_{k=2}^{\infty} a_{k,1} a_{k,2} z^k.$$
(5.1)

Employing the technique used earlier by Schild and Silverman [8], we can prove the following:

Theorem 5. Let the functions $f_{\nu}(z)$ ($\nu = 1, 2$) defined by (4,1) be in the class $T^*(A, B, n, \alpha)$. Then we have

$$f_1 * f_2(z) \in T^*(A, B, n, \beta(A, B, n, \alpha)),$$
 (5.2)

where

$$\beta(A, B, n, \alpha) = \frac{2^n - (B - A)(2B + 1 - A)\left[\frac{2^n(1 - \alpha)}{C_2}\right]^2}{2^n - \left[\frac{2^n(B - A)(1 - \alpha)}{C_2}\right]^2}.$$
(5.3)

The result is sharp for the functions

$$f_{\nu}(z) = z - \frac{(B-A)(1-\alpha)}{C_2} z^2 \quad (\nu = 1, 2).$$
(5.4)

Theorem 6. Let the functions $f_{\nu}(z)$ ($\nu = 1, 2$) defined by (4.1) be in the class $T^*(A, B, n, \alpha)$. Then the function

$$h(z) = z - \sum_{k=2}^{\infty} \left[a_{k,1}^2 + a_{k,2}^2 \right] z^k$$
(5.5)

belongs to the class $T^*(A, B, n, \gamma(A, B, n, \alpha))$, where

$$\gamma(A, B, n, \alpha) = \frac{2^n - 2(B - A)(2B + 1 - A)\left[\frac{2^n(1 - \alpha)}{C_2}\right]^2}{2^n - 2\left[\frac{2^n(B - A)(1 - \alpha)}{C_2}\right]^2}.$$
(5.6)

The result is sharp for the functions $f_{\nu}(z)$ ($\nu = 1, 2$) defined by (5.4).

6. Radii of Close-to-Convexity, Starlikeness and Convexity

By using Theorem 1, we can prove the following:

Theorem 7. Let the function f(z) defined by (1.8) be in the class $T^*(A, B, n, \alpha)$, then f(z) is close-to-convex of order $\rho(0 \le \rho < 1)$ in $|z| < R_1$, where

$$R_1 = \inf_k \left[\frac{(1-\rho)C_k}{k(B-A)(1-\alpha)} \right]^{\frac{1}{k-1}} \quad (k \ge 2).$$
(6.1)

The result is sharp, with the extremal function f(z) given by (2.4).

Theorem 8. Let the function f(z) defined by (1.8) be in the class $T^*(A, B, n, \alpha)$, then f(z) is starlike of order $\rho(0 \le \rho < 1)$ in $|z| < R_2$, where

$$R_2 = \inf_k \left[\frac{(1-\rho)C_k}{(k-\rho)(B-A)(1-\alpha)} \right]^{\frac{1}{k-1}} \quad (k \ge 2).$$
(6.2)

The result is sharp, with the extremal function f(z) given by (2.4).

Corollary 6. Let the function f(z) defined by (1.8) be in the class $T^*(A, B, n, \alpha)$, then f(z) is convex of order ρ ($0 \le \rho < 1$) in $|z| < R_3$, where

$$R_3 = \inf_k \left[\frac{(1-\rho)C_k}{k(k-\rho)(B-A)(1-\alpha)} \right]^{\frac{1}{k-1}} \quad (k \ge 2).$$
(6.3)

The result is sharp, with the extremal function f(z) given by (2.4).

7. Integral Operators

Theorem 9. Let the function f(z) defined by (1.8) be in the class $T^*(A, B, n, \alpha)$, and let c be a real number such that c > -1. Then the function F(z) defined by

$$F(z) = \frac{c+1}{z^c} \int_0^z t^{c-1} f(t) dt$$
(7.1)

also belongs to the class $T^*(A, B, n, \alpha)$.

Proof. From the representation of F(z), it follows that

$$F(z) = z - \sum_{k=2}^{\infty} b_k z^k,$$

where

$$b_k = \left(\frac{c+1}{c+k}\right)a_k.$$

Therefore,

$$\sum_{k=2}^{\infty} C_k b_k = \sum_{k=2}^{\infty} C_k (\frac{c+1}{c+k}) a_k \le \sum_{k=2}^{\infty} C_k a_k \le (B-A)(1-\alpha),$$

since $f(z) \in T^*(A, B, n, \alpha)$. Hence, by Theorem 1, $F(z) \in T^*(A, B, n, \alpha)$.

Finally by using Theorem 1, we can prove the following theorem:

Theorem 10. Let c be a real number such that c > -1. If $F(z) \in T^*(A, B, n, \alpha)$, then the function f(z) defined by (7.1) is univalent in $|z| < R^*$, where

$$R^* = \inf_k \left[\frac{(c+1)C_k}{k(c+k)(B-A)(1-\alpha)} \right]^{\frac{1}{k-1}} \quad (k \ge 2).$$
(7.2)

The result is sharp for the function

$$f(z) = z - \frac{(c+k)(B-A)(1-\alpha)}{(c+1)C_k} z^k.$$
(7.3)

8. Fractional Calculus

We begin with the statements of the following definitions of fractional calculus (that is, fractional derivatives and fractional integrals) which were defined by Owa [5] and used recently by Srivastava and Owa [10].

Definition 1. The fractional integral of order λ is defined, for a function f(z), by

$$D_z^{-\lambda} f(z) = \frac{1}{\Gamma(\lambda)} \int_0^z \frac{f(\zeta)}{(z-\zeta)^{1-\lambda}} d\zeta \quad (\lambda > 0),$$
(8.1)

where f(z) is an analytic function in a simply-connected region of the z-plane containing the origin, and the multiplicity of $(z - \zeta)^{\lambda-1}$ is removed by requiring $\log(z - \zeta)$ to be real when $z - \zeta > 0$.

Definition 2. The fractional derivative of order λ is defined, for a function f(z), by

$$D_z^{\lambda} f(z) = \frac{1}{\Gamma(1-\lambda)} \frac{d}{dz} \int_0^z \frac{f(\zeta)}{(z-\zeta)^{\lambda}} d\zeta \quad (0 \le \lambda < 1),$$
(8.2)

where f(z) is constrained, and the multiplicity of $(z - \zeta)^{-\lambda}$ is removed, as in Definition 1.

Definition 3. Under the hypotheses of Definition 2, the fractional derivative of order $n + \lambda$ is defined, for a function f(z), by

$$D_z^{n+\lambda}f(z) = \frac{d^n}{dz^n} D_z^{\lambda}f(z) \quad (0 \le \lambda < 1; n \in \mathbb{N}_0).$$
(8.3)

Employing the technique used earlier by Srivastava and Owa [10], we can prove the following:

Theorem 11. Let the function f(z) defined by (1.8) be in the class $T^*(A, B, n, \alpha)$. Then we have

$$|D_{z}^{-\lambda}(D^{i}f(z))| \geq \frac{|z|^{1+\lambda}}{\Gamma(2+\lambda)} \left\{ 1 - \frac{2^{i+1}(B-A)(1-\alpha)}{(2+\lambda)C_{2}} |z| \right\}$$
(8.4)

and

$$|D_{z}^{-\lambda}(D^{i}f(z))| \leq \frac{|z|^{1+\lambda}}{\Gamma(2+\lambda)} \left\{ 1 + \frac{2^{i+1}(B-A)(1-\alpha)}{(2+\lambda)C_{2}}|z| \right\}$$
(8.5)

for $\lambda > 0$, $0 \le i \le n$, and $z \in U$. The result is sharp for the function

$$D_{z}^{-\lambda}(D^{i}f(z)) = \frac{z^{1+\lambda}}{\Gamma(2+\lambda)} \left\{ 1 - \frac{2^{i+1}(B-A)(1-\alpha)}{(2+\lambda)C_{2}} z \right\}$$
(8.6)

or

$$(D^{i}f(z)) = z - \frac{2^{i}(B-A)(1-\alpha)}{C_{2}}z^{2}.$$
(8.7)

Theorem 12. Let the function f(z) defined by (1.8) be in the class $T^*(A, B, n, \alpha)$. Then we have

$$|D_{z}^{\lambda}(D^{i}f(z))| \geq \frac{|z|^{1-\lambda}}{\Gamma(2-\lambda)} \left\{ 1 - \frac{2^{i+1}(B-A)(1-\alpha)}{(2-\lambda)C_{2}}|z| \right\}$$
(8.8)

and

$$|D_{z}^{\lambda}(D^{i}f(z))| \leq \frac{|z|^{1-\lambda}}{\Gamma(2-\lambda)} \left\{ 1 + \frac{2^{i+1}(B-A)(1-\alpha)}{(2-\lambda)C_{2}}|z| \right\}$$
(8.9)

for $0 \le \lambda < 1, 0 \le i \le n-1$, and $z \in U$. The result is sharp for the function f(z) given by

$$D_{z}^{\lambda}(D^{i}f(z)) = \frac{z^{1-\lambda}}{\Gamma(2-\lambda)} \left\{ 1 - \frac{2^{i+1}(B-A)(1-\alpha)}{(2-\lambda)C_{2}}z \right\}$$
(8.10)

or by $D^i f(z)$ given by (8.7).

9. Fractional Integral Operator

We need the following definition of fractional integral operator given by Srivastava, Saigo and Owa [11].

Definition 4. For real numbers $\beta > 0, \gamma$ and δ , the fractional integral operator $I_{o,z}^{\beta,\gamma,\delta}$ is defined by

$$I_{o,z}^{\beta,\gamma,\delta}f(z) = \frac{z^{-\beta-\gamma}}{\Gamma(\beta)} \int_0^z (z-t)^{\beta-1} F(\beta+\gamma,-\delta;\beta;1-\frac{t}{z})f(t)dt$$
(9.1)

where f(z) is an analytic function in a simply-connected region of the z-plane containing the origin with the order

$$f(z) = O(|z|^{\varepsilon}), \quad z \longrightarrow 0,$$

where

$$\varepsilon > \max(0, \gamma - \delta) - 1,$$

$$F(a, b; c; z) = \sum_{k=0}^{\infty} \frac{(a)_k (b)_k}{(c)_k (1)_k} z^k,$$
(9.2)

where $(\nu)_k$ is the Pochhammer symbol defined by

$$(\nu)_{k} = \frac{\Gamma(\nu+k)}{\Gamma(\nu)} = \begin{cases} 1 & (k=0)\\ \nu(\nu+1)\cdots(\nu+k-1) & (k\in\mathbb{N}), \end{cases}$$
(9.3)

and the multiplicity of $(z-t)^{\beta-1}$ is removed by requiring $\log(z-t)$ to be real when z-t > 0.

Remark. For $\gamma = -\beta$, we note that

$$I_{o,z}^{\beta,-\beta,\delta}f(z) = D_z^{-\beta}f(z).$$

In order to prove our results for the fractional integral operator, we have to recall here the following lemma due to Srivastava, Saigo and Owa [11].

Lemma1. If $\beta > 0$ and $k > \gamma - \delta - 1$, then

$$I_{o,z}^{\beta,\gamma,\delta} z^k = \frac{\Gamma(k+1)\Gamma(k-\gamma+\delta+1)}{\Gamma(k-\gamma+1)\Gamma(k+\beta+\delta+1)} z^{k-\gamma}.$$
(9.4)

Employing the technique used earlier by Srivastive, Saigo and Owa [11] and with the aid of the above lemma, we can prove the following:

Theorem 13. Let $\beta > 0, \gamma < 2, \beta + \delta > -2, \gamma - \delta < 2, \gamma(\beta + \delta) \leq 3\beta$. If the function f(z) defined by (1.8) is in the class $T^*(A, B, n, \alpha)$, then

$$|I_{o,z}^{\beta,\gamma,\delta}f(z)| \ge \frac{\Gamma(2-\gamma+\delta)|z|^{1-\gamma}}{\Gamma(2-\gamma)\Gamma(2+\beta+\delta)} \left\{ 1 - \frac{2(B-A)(1-\alpha)(2-\gamma+\delta)}{(2-\gamma)(2+\beta+\delta)C_2} |z| \right\}$$
(9.5)

and

$$|I_{o,z}^{\beta,\gamma,\delta}f(z)| \leq \frac{\Gamma(2-\gamma+\delta)|z|^{1-\gamma}}{\Gamma(2-\gamma)\Gamma(2+\beta+\delta)} \left\{ 1 + \frac{2(B-A)(1-\alpha)(2-\gamma+\delta)}{(2-\gamma)(2+\beta+\delta)C_2} |z| \right\}$$
(9.6)

for $z \in U$, where

$$U_o = \begin{cases} U & (\gamma \le 1) \\ U - \{0\} & (\gamma > 1). \end{cases}$$

The equalities in (9.5) and (9.6) are attained for the function f(z) given by (3.5).

Acknowledgements

The authors would like to thank the referee of the paper for his helpfull suggestions.

References

- M. K. Aouf, "A generalization of multivalent functions with negative coefficients," J. Korean Math. Soc., 25(1988), no. 1, 53-66.
- [2] R. M. Goel and N. S. Sohi, "Multivalent functions with negative coefficients," Indian J. Pure Appl. Math., 12 (1981), no. 7, 844-853.
- [3] V. P. Gupta and P. K. Jain, "Certain classes of univalent functions with negative coefficients," Bull. Austral. Math. Soc., 14 (1976), 409-416.
- [4] M. D. Hur and G. M. Oh, "On Certain class of analytic functions with negative coefficients," Pusan Kyongnam Math. J., 5 (1989), 69-80.
- [5] S. Owa, "On the distortion theorems," I, Kyungpook Math. J., 18 (1978), 53-59.
- [6] S. Owa and M. K. Aouf, "On subclasses of univalent functins with negative coefficients," Pusan Kyongnam Math. J., 4 (1988), 57-73.
- [7] G. S. Salagean, "Subclasses of univalent functions," Lecture notes in Math. (Springer-Verlag), 1013 (1983), 362-372.
- [8] A. Schild and H. Silverman, "Convolutions of univalent functions with negative coefficients," Ann. Univ. Mariae Curie-Sklodowska Sect. A, 29 (1975), 99-107.
- [9] H. Silverman, "Univalent functions with negative coefficients," Proc. Amer Math. Soc., 51 (1975), 109-116.
- [10] H. M. Srivastava and S. Owa, "An application of the fractional derivative," Math. Japon., 29 (1984), 383-389.
- [11] H. M. Srivastava, M. Saigo and S. Owa, "A class of distortion theorems involving certain operators of fractional calculus," J. Math. Anal. Appl., 131 (1988), 412-420.

Department of Mathematics, Faculty of Science, University of Mansoura, Mansoura, EGYPT.