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OSCILLATION OF PARTIAL FUNCTIONAL-DIFFERENTIAL 
EQUATIONS WITH DEVIATING ARGUMENTS 

NORIO YOSHIDA 

Abstract. A class of partial functional-differential equations with deviating argu 
ments including parabolic equations, hyperbolic equations and· beam equations is 
studied, and sufficient conditions are derived for all solutions of certain boundary 
value problem to be oscillatory in a cylindrical domain. 

There has been an increasing interest in studying the oscillation of parabolic or 
hyperbolic equations with deviating arguments. We refer the reader to (3, 5, 10, 11] 
for the forced oscillation of parabolic equations with deviating arguments, and to (6, 
12] for the forced oscillation of hyperbolic equations with deviating arguments. We 
mention in particular the paper of Onose and Yokoyama [8) which deals with higher order 
partial differential equations without deviating arguments. However, there appears to 
be no known results about oscillation of higher order partial differential equations with 
deviating arguments. 

We are concerned with the oscillatory behavior of solutions of the higher order partial 
functional-differential equations with deviating arguments 

!, ( u(x, t) + t, h,(t)u(x, p;(t))) (1) 

[

N k N · ] 
- ~ a1(t).1~.iu(x, t) + ~ ~ bi1(t)61u(x, ai1(t)) 

+ c(x, t, u(x, t), u(x, r1 (t)), ... , u(x, rm(t)), z1 [u](x, t), z2[u](x, t)) 
=f(x,t), (x,t) E 11 = G x (O,oo), 

where G is a bounded domain of Rn with piecewise smooth boundary BG, 6 is the 
Laplacian in Rn and t:i_J is the j-th iterated Laplacian. We consider the boundary 
condition 

61u = 1Pi+i on BG x (0, oo) (j = 0, 1, ... , N - 1), (2) 
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where 'lPi+l E C(8G x (0, oo); R1) (j = 0, 1, ... , N - 1). 
Our objective is to derive sufficient conditions for every solution of the boundary 

value problem (1), (2) to be oscillatory in n. 
It is assumed throughout this paper that: 

(Hi) hi(t) E Ce((O, oo); (0, oo)) (i = 1, 2, ... , M), 
ai(t) E C((O, oo); R1) (j = 1, 2, , N), 
bij(t) E C((O,oo);R1) (i= 1,2, ,k;j = 1,2, ... ,N) 
and f(x, t) E C(f!; R1 ); 

(H2) Pi(t) E Ce((O, oo); R1 ), limt_,oo Pi(t) = oo (i = 1, 2, , M), 
O"ij(t) E C((O, oo); R1 ), limt_,00 O"ij(t) = oo (i = 1, 2, , k;j = 1, 2, ... , N), 
Ti(t) E C((O, oo ); R1 ), limt_,00 Ti(t) = oo (i = 1, 2, , m); 

(H3) z1 [u](x, t) = maxsEM(t) u(x, s ), 
z2[u](x, t) = I:j=l fa Kj(x, t, y )hj( u(y, Tj (t)) )dy, 
where M(t) is a closed bounded set of [O, oo) such that limt_,oo minsEM(t) s 
oo,Kj E C(n x G),Kj ~ 0 inn x G (j = 1,2, ... ,m), and hj(s) are continuous, 
odd functions in R1 which are nonnegative in [O, oo); 

(H4) c(x,t,,,'TJI,--·,'TJrn,(1,(2) E C(n X Rrn+3;R1), 

c(x,t,,,'TJI,···,'TJm,(1,(2) ~ 0 inn X [O,oo)rn+3, 
c(x, t, ,, 'T/1, ... , 'TJrn, (1, (2) ::; 0 in f! X (-oo, Q]m+3, 
where (0, oo )i = (0, oo) x (0, oo )i-1 and (-oo, op = (-oo, O] x (-oo, O]i-l 
(j = 1, 2, ... , m + 3). 
Definition 1. By a solution of the boundary value problem (1), (2) we mean a 

function u(x,t) E cK(G x [L1,oo);R1) n C(G x [L1,oo);R1) which satisfies (1), (2), 
where K = max{f,2N}, 

t_1 = min { min {inf Pi(t)}, min {inf <Tij(t)} ,o}, l<i<M t>O l<i<k t>O 
- - - l~j?N - 

L 1 = min { min { inf Ti ( t)} , 0} 1$i$rn t~O 

Definition 2. A solution u of the boundary value problem (1), (2) is said to be 
oscillatory in n if u has a zero in G x (t, oo) for any t > 0. 

It is known that the first eigenvalue >.1 of the eigenvalue problem 

-6.w = >.w in G, 

w = 0 on BG 

is positive and the corresponding eigenfunction <P(x) may be chosen so that <P(x) > 0 in 
G. 
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The following notation will be used: 

U(t) = l u(x, t)<I>(x)dx, t ~ 0, 

F(t) = l f(x, t)<I>(x)dx, t ~ 0. 

Lemma 1. Let u be a solution of the boundary value problem (1), (2). Then 
the following identity holds: 

j-1 1 (l:,Ju)<I>(x)dx = - "z:)-.X1)PWj-p(t) + (-.Xi)JU(t), t > 0, (j = 1, 2, ... , N), (3) 
a p=O 

where 

1 8<1> 
Wj-p(t) = 'I/Jj-p-

8 
(x)dS 

8G V 
(p = 0, 1, ... ,j - l;j = 1, 2, ... , N), 

v being the unit exterior normal vector to 8G. 

Proof. · It follows from Green's formula that 

l(6ju)<I>(x)dx = laa (:v(6j-1u)<I>(x)-(6j-lu)~:(x)) dS (4) 

+ l (6j-1u)6<I>(x)dx 

= - f 'I/Jj 8
8

<1> (x)dS - .X1 f (6j-1u)<I>(x)dx. laa v la 
Analogously we obtain 

f (6j-1u)<I>(x)dx = - f 'I/Jj-l 8
8

<1> (x)dS - .X1 f (6j-2u)<I>(x)dx. (5) la lac v le 
Combining (4) with (5) yields 

f (6Ju)<I>(x)dx = - f 'I/Jj B<I> (x)dS - .X1 (- f 'I/Jj-l B<I> (x)ds) le laa av laa av 

+ (-.X1)2 l (6j-2u)<I>(x)dx. 
Repeating this procedure, we have 

1 j-1 ( 1 8<1> ) 1 (6/u)~(x)dx = I)-A1)P - Wi-P av (x)dS + (-A1)j u~(x)dx, 
a p=O 8G G 



134 NORIO YOSHIDA 

which is the desired identity (3). 

Lemma 2. If u > 0 in G x (to, oo) for some to > 0, then U(t) is a positive 
solution of the differential inequality 

de ( M ) k N dte y(t) + ~ hi(t)y(pi(t)) + A(t)y(t) + ~ ~ Bi1(t)y(aii(t)) s; Q(t) 

in [T, oo) for some T 2:'.: t0, where 
N 

A(t) = - La1(t)(-,\1)1, 
j=l 

(6) 

Bij(t) = -bii(t)(-,\1)1, 
N j-1 

Q(t) =F(t) - LL ai(t)(-,\1)P\JI j-p(t) 
j=lp=O 

k N j-1 - LL L bij(t)(-,\1)P\Jlj-p(<Tij(t)). 
i=l j=l p=O 

\ 

Proof. The hypotheses (H2) and (H3) imply that u(x, 7i(t)) > 0 (i = 1, 2, ... , m), 
Zi[u](x, t) 2:'.: 0 (i = 1, 2) in G x [T, oo) for some T 2:'.: t0. Hence, it follows from the 
hypothesis (H4) that 

Bf. ( M ) Bti u(x, t) + ~ hi(t)u(x, Pi(t)) 

[ 

N k N ] 
- ~ aj(t)61u(x, t) + ~ ~ bi1(t)61u(x, CTi1(t)) 

s;f(x, t), (x, t) E G x [T, oo). 

(7) 

Multiplying (7) by ~(x) and then integrating over G, we observe, .using Lemma 1, that 

df. ( M ) dti U(t) + ~ hi(t)U(pi(t)) 

- [t,ai(t) (- ~(-A1)"1i;-,(t) + (-A1)iU(t)) 

k N ( j-1 )] + ~ ~ bij(t) - ~(-,\1)PWj-p(<Tij(t)) + (-,\1)1U(CTij(t)) 

~F(t), t ~ T, 
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which is equivalent to 

di ( M ) N dte U(t) + ~ hi(t)U(pi(t)) - ~ ai(t)(->.1)iU(t) 

k N - LL bij(t)(->.1)JU(<Tij(t)) :s; Q(t), t ~ T. 
i=l j=l 

The above inequality shows that U(t) is a positive solution of (6) in [T, oo). 

Theorem 1. Assume that (H1)-(H4) hold. If the differential inequalities 

(8) 

have no eventually positive solutions, then every solution u of the problem (1), (2) 
is oscillatory in n. 

Proof. Suppose to the contrary that there is a solution u of the problem (1), (2) 
which has no zero in G x (to, oo) for some t0 > 0. First we suppose that u > 0 in 
G x (to, oo ). Lemma 2 implies that U(t) is an eventually positive solution of (6). This 
contradicts the hypothesis. If u < 0 in G x (to, oo), then -U(t) is a positive solution of 
the differential inequality 

for some T ~ t0. This contradicts the hypothesis and the proof is complete. 

Lemma 3. The differential inequality (6) has no eventually positive solution 
if for some to > 0 

A(t)~O in[to,oo), 
Bij(t) ~ 0 in [to,oo) (i = 1,2, ... ,k; j = 1,2, ... ,N), 

1t ( 8)e-1 liminf 1 - - Q(s)ds = -oo for all large T. 
t-+oo T t 

Proof. Suppose that there is a positive solution y(t) of (6) in [To, oo) for some 
To > 0. From the hypothesis we see that 

t ~ T, (9) 
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for some T ~ max{to, To}. Integrating (9) over [T, t] yields 

y(e-1)(t) - y(e-1)(T) ~ lt Q(s)ds, t ~ T, 

where Y(t) = y(t) + L:!i hi(t)y(pi(t)). We integrate (10) over [T, t] to obtain 

y(e-2>(t) - y(e-2>(T) - y(e-l)(T)(t - T) ~ J: (l52 

Q(si)ds1) ds2, t ~ T. 

Repetition of this procedure yields finally the inequality 

(10) 

e-1 (t T)i 1t 1st 1s2 Y(t) - L -: y{i)(T) ~ · · · Q(s1)ds1 · · · dse-1dse, 
. i! T T T i=O 

t ~ T. (11) 

It is easily seen that 

t rt r2 1 t Jr Jr · · · lr Q(s1)ds1 · · · dse-1dse = (f _ l)! lr (t - s)e-1Q(s)ds. 

Substituting (12) into (11) and then dividing (11) by e-1, we obtain 
(12) 

Y(t) ~ y(i}(T) (1 - T)i 1_ < 1 t (1 - ~)e-1 Q(s)ds, 
te-1 - LJ i! t te-i-l - (e - 1)! lr t 

i=O 

t ~ T. (13) 

Since Y(t) > 0 in (T1, oo) for some T1 ~ T, the left hand side of (13) is bounded from_ 
below in [T1, oo). However, the hypothesis implies that the left hand side of (13) is not 
bounded from below. The contradiction establishes the theorem. 

Next we consider the case where Q(t) - 0, hi(t) = 0 (i = 1, 2, ... , M), i. e. 

de k N 

dtey(t) + A(t)y(t) +LL Bij(t)y(<Tij(t)) ~ 0. 
i=l j=l 

(14) 

Lemma 4. Let f be a positive even integer. The differential inequality (14) 
has no eventually positive solution if for some t0 > 0 

A(t) > 0 in [to, oo), 
Bij(t) ~ 0 in [t0,oo) (i = 1,2, ... ,k;j = 1,2, ... ,N), 

/

00 

te-i-e A(t)dt = oo for some E > 0. 

Proof. By the hypothesis the differential equation 

de 
dtiy(t) + A(t)y(t) = 0 
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has no eventually positive solution (see Mikusiriski [4]). Using the results of Kartsatos 
[2} and Onose (7], we observe that the differential inequality 

df. 
dti y(t) + A(t)y(t) s; O 

has no eventually positive solution. Since Bi1(t) 2:'.: 0 (i = 1, 2, ... , k; j = 1, 2, ... , N) in 
[to, oo), (14) has no eventually positive solution. 

Theorem 2. Assume that (H1) - (H4) hold. Every solution u of the problem 
(1),(2) is oscillatory inn if for some to> 0 

A(t) 2:'.: 0 in [to, oo ), 
Bi1(t)~O in[t0,oo) (i=l,2, ... ,k;j=l,2, ... ,N), 

it ( 8)e-1 liminf 1 - - Q(s)ds = -oo for all large T, 
t-+OO T t 

1t( s)e-1 lim sup 1 - - Q( s )ds = oo for all large T. 
t-+OO T t 

Proof. Since 

1t ( s)f.-1 liminf 1 - - (±Q(s))ds = -oo, 
t-+oo T t 

the conclusion follows from Theorem 1 and Lemma 3. 

Theorem 3. Assume that (H1)-(H4) hold. Let Q(t) = 0, hi(t) = 0 (i = 
1, 2, ... , M), and let£ be a positive even integer. Every solution u of the problem 
(1), (2) is oscillatory in n if for some to > 0 

A(t) > 0 in [to, oo ), 
Bi1(t) ~ 0 in [t0,oo) (i = 1,2, ... ,k;j = 1,2, ... ,N), 

/

00 

tf.-l-E: A(t)dt = oo for same E. > 0. 

Proof. Since (8) reduces to (14), the conclusion follows from Theorem 1 and 
Lemma 4. 

Remark 1. If f = N = 2, n = 1, a2(t) = -a (a is a positive constant), then the 
equation (1) reduces to the beam equation with deviating arguments 

82 ( M ) k Bt2 u(x, t) +; hi(t)u(x, Pi(t)) + aUxxxx(x, t) - ~ bi2(t)Uxxxx(x, CTi2(t)) 

k 

- a1(t)uxx(x, t) - L bil (t)uxx(x, <TiI (t)) 
i=l 

+ c(x, t, u(x, t), u(x, r1 (t)), ... , u(x, 7m(t)), z1 [u](x, t), z2[u](x, t}) = J(x, t) 
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for (x, t) E (0, L) x (0, oo ), where L is a positive number. In case 'l/)1 = 'l/J2 = 0 on 
8G x (0, oo), the boundary condition (2) reduces to the hinged ends 

u(O, t) = Uxx(O, t) = u(L, t) = Uxx(L, t) = 0, t > 0. 

The above beam equation without deviating arguments was studied by Feireisl and Her 
rmann [1] and the author [9]. 

Remark 2. We cannot apply Theorem 2 to the case where f(x, t) = 0 inn and 
'!/Ji O on BG x (O,oo) (j = 1,2, ... ,N). However, Theorem 3 can be applied to this 
case. 

Remark 3. In the case where hi(t) 0 in (0, oo) (i = 1, 2, ... , N), f(x, t) = 0 
inn, 'l/)1 - 0 on 8G x (0, oo) and N = l, the equation (1) is closely related to the higher 
order partial differential equation which was investigated by Onose and Yokoyama [8]. 

Remark 4. When specialized to the case where e = M = N = k = l, Theorems 
1 and 2 reduce to Theorems 2 and 5 of Mishev [5], respectively. When e = 2, M = N = 
k = l, Theorems 1 and 2 reduce to Theorems 1 and 4 of Mishev [6], respectively. 

Remark 5. If e = N = l, Theorem 2 is closely connected with a result of the 
author [11, Theorem l]. 

Example 1. Let us consider the problem 

E)3 ( 7r ) [ 3 ] 3 7r ot3 u(x, t) + u(x, t - 2) - Uxx(x, t) + Uxx(x, t - 21r) + t u(x, t - 2) (15) 

=(sinx)t3sint, (x,t) E (0,1r) x (O,oo), 

u(O, t) = u(1r, t) = 0, t > 0. (16) 

Here n = l,G = (0,1r),e = 3,M = N = k = m = l,h1(t) = a1(t) = bu(t) = 1, 
P1(t) = t- i,0"11(t) = t- !1r,r1(t) = t - i,f(x,t) = (sinx)t3sint and 'l/)1 = 0. It is 
easily seen that >.1· = 1, <P(x) = sin x, '1'1 (t) = 0 and Q(t) = F(t) = it3 sin t. A simple 
calculation shows that 

lt (1- I )2 Q(s)ds = 1rtcost + B(t,T), 
where B(t,T) is bounded as t tends to infinity. Since A(t) = >.1a1(t) = 1 > O,B11(t) = 
>.1 b11 ( t) = 1 > 0 and 

liminf t (1 - ~)2 Q(s)ds = -oo, 
t-,oo lr t 

limsup f (1 - ~)2 Q(s)ds = oo 
t-,oo lr t 
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for all large T, it follows from Theorem 2 that every solution u of the problem (15), {16) 
is oscillatory in (0,1r) x (0,oo). One such solution is u = sinx · cost. 

Example 2. We consider the problem 

84 Bt
4
u(x,t)-[-Uxxxx(x,t)-Uxxxx(x,t-1r)]+u(x,t-1r) =0,(x,t) E (0,1r)x(O,oo), (17) 

u(O, t) = Uxx(O, t) = u(1r, t) = Uxx(1r, t) = 0, t > 0. (18) 

Here n = 1, G = (0,1r), e = 4, N = 2, k = m = 1, a1(t) = 0, a2(t) = -1, b11(t) = 0, 
b12(t) = -1, <T12(t) = T1 (t) = t - 1r, f(x, t) = 0, 'I/J1 = 'I/J2 = 0 and ..\1 = 1. Since 
A(t) = -..\ia2(t) = 1 > 0, B11 (t) = 0, B12(t) = -..\ib12(t) = 1 > 0, Q(t) = 0 and 

/

00 

t4-i-e A(t)dt = oo 

for any E with O < c ~ 4, Theorem 3 implies that every solution u of the problem (17), 
(18) is oscillatory in (0, 1r) x (0, oo ). Indeed, u = sin x · sin t is such a solution. 
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