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A NOTE ON A GENERAL CLASS OF ARITHMETIC MEANS

W. C. CHU AND L. C. HSU

Abstract. The object of this note is to introduce a general class of arithmetic
means for summing divergent series. A g-analogue is also presented.

" Let a and 8 be two real numbers with o > 0 and B > —1. Linear relations between
two sequences {s,} and {t»} of the form

L= (mq)\(k + o + kB)
tm—,CZ:OSk(mq—k)!(mq+a)(mq+a+ﬂ)...(mq+a+kﬂ) (1)

where m = 0,1,2,..., are called relations of the type P(q,a, ). It is known that the
familiar summability methods due to Vallée-Poussin, Obreshkov, Cesaro and Euler re-
spectively are all of the type P(q,a, ) for particular values of the parameters. That the
transformation (1) carries the identity sequence {1} into itself was investigated earlier
by Egorychev [1,2] in his research on combinatorial sums.

In what follows we will consider an extension of (1). Let {\x} be a sequence of
rea]l numbers with dgp1 > —k (k = 0,1,2,...) such that the following sequence of
polynomials

k
o(z,k) = [J(= + ) (2)
=1

differ from zero for integer > 0, with ¢(z,0) = 1. Also we denote [z]i = 2(z—=1) (2~
k + 1), the falling k factorial with [z]o = 1. Then in contrast with (1) we may introduce
a wider class of linear transformations of the form

= [n]e(k 4 A1)
tn—kzzosk ¢(n,k+1+) ) (3)

wheren = 0,1,2,.... Clearly (1) is included in (3) with n := mq and A; := a+(3-1)8.
Indeed, (3) offers an extensive class of arithmetic means containing {Ax} as a sequence
of free parameters.
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Theorem 1. The linear relations defined by (3) yield a class of arithmetic
means which are reqular, namely t, — s (n — co) whenever s — s (k — o0).

Proof. In the first place, it is plain that

L [n]k(k'i‘)\k 1)
Cnk 1= ¢(TL, LT ]3 >0 (4)

holds for all k < n(n =1,2,...), as k+Ag41 > 0and ¢(n, k+1) >0 (k< n). Moreover,
it is easy to verify the identity
> e =1 (5)
k=0

Actually, (5) can be obtained by the summand-splitting

JR 0 S (S
" g(nk)  #(n,k+1)

and the diagonal-cancelling, noting that [n]o = ¢(n,0) = 1 and [n]a4+1 = 0. Finally, since
[n]x and ¢(n,k+ 1) contained in the left-hand side of (4) are polynomials in n of degrees
k and k + 1, respectively, it follows that

lim ¢, =0 (6)

n—00

is true for each fixed k > 0. Thus, as a consequence of the classic Toeplitz theorem (3]
we see that the transformation given by (3) is regular. This completes the proof.

We are now going to construct a g-analogue of (3). For fixed ¢ # 1, denote by ()
the g-rising factorial

(@) = (1—2z)(1 —2g)--- (L —2¢*7"), (z)o=1.
Let us define

k
o(z,k : q) = _H(m -q°) (7)

with ¢(z,0 : ¢) = 1, where {u} is any given sequence of real numbers satisfying the
condition

pey <6 o=0,1.2::) (8)

Moreover, in contrast with (4) let us denote

(@ ")k (prrr — a%) (3) .
Mnktlg .

* . —
Cnk =
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Lemma. Let ¢ > 1 and the condition (8) be satisfied. Then the following
assertions are valid:
(i) ctp >0 for k< nr
() Trochy=1forn=01,2,....
(4i) limp—co Chp = 0 fOT each fized k > 0.

Proof. (i) is obvious as the numerator and denominator of the quantity C7, are
of the same sign (—1)¥*! - (i7) can be proved again by the summand-splitting

* (qn‘k+1)k ; (q“‘k)kH k42—1
“nk = p(nk : Q)q( i p(n,k+1: q)q( )

and the diagonal-cancelling, noting that (¢°)n+1 = 0. For proving (iii) it needs only to
observe that when n — oo (ie, ¢" — oo) the fraction ("% )/p(n,k + 1 ¢ q) is
precisely of the order O(g™™).

From the Lemma and by the Toeplitz theorem [3] we obtain the following

Theorem 2. The linear transformations (arithmetic means) defined by
B, = }: SkCnk (10)
k=0

are regular provided that the conditions (8) and ¢ > 1 are satisfied.

Remark. It may be of interest to notice that (3) is a limiting case of (10) as
g — 17. In fact, starting with (10), replacing p; by 1+ (1 —g)\; and letting ¢ — 1% one
may find that cj,; — Cnk, and that the condition (8) just turns to be Ags1 > —k, which
is required for (3). The details may be left to the reader.
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