A NOTE ON A GENERAL CLASS OF ARITHMETIC MEANS

W. C. CHU AND L. C. HSU

Abstract. The object of this note is to introduce a general class of arithmetic means for summing divergent series. A q-analogue is also presented.

Let α and β be two real numbers with $\alpha > 0$ and $\beta > -1$. Linear relations between two sequences $\{s_n\}$ and $\{t_n\}$ of the form

$$t_m = \sum_{k=0}^{mq} s_k \frac{(mq)!(k+\alpha+k\beta)}{(mq-k)!(mq+\alpha)(mq+\alpha+\beta)\cdots(mq+\alpha+k\beta)}$$
(1)

where m = 0, 1, 2, ..., are called relations of the type $P(q, \alpha, \beta)$. It is known that the familiar summability methods due to Vallée-Poussin, Obreshkov, Cesaro and Euler respectively are all of the type $P(q, \alpha, \beta)$ for particular values of the parameters. That the transformation (1) carries the identity sequence $\{1\}$ into itself was investigated earlier by Egorychev [1,2] in his research on combinatorial sums.

In what follows we will consider an extension of (1). Let $\{\lambda_k\}$ be a sequence of real numbers with $\lambda_{k+1} > -k$ (k = 0, 1, 2, ...) such that the following sequence of polynomials

$$\phi(x,k) = \prod_{i=1}^{k} (x+\lambda_i) \tag{2}$$

differ from zero for integer $x \ge 0$, with $\phi(x,0) = 1$. Also we denote $[x]_k = x(x-1)\cdots(x-k+1)$, the falling k factorial with $[x]_0 = 1$. Then in contrast with (1) we may introduce a wider class of linear transformations of the form

$$t_n = \sum_{k=0}^n s_k \frac{[n]_k (k + \lambda_{k+1})}{\phi(n, k+1)},$$
(3)

where n = 0, 1, 2, ... Clearly (1) is included in (3) with n := mq and $\lambda_i := \alpha + (i-1)\beta$. Indeed, (3) offers an extensive class of arithmetic means containing $\{\lambda_k\}$ as a sequence of free parameters.

Received January 7. 1994.

¹⁹⁹¹ Mathematics Subject Classification. 40A05, 40C99, 40D05.

Key words and phrases. Summability methods, regularity, Toeplitz theorem.

Theorem 1. The linear relations defined by (3) yield a class of arithmetic means which are regular, namely $t_n \to s$ $(n \to \infty)$ whenever $s_k \to s$ $(k \to \infty)$.

Proof. In the first place, it is plain that

$$c_{nk} := \frac{[n]_k (k + \lambda_{k+1})}{\phi(n, k+1)} > 0$$
(4)

holds for all $k \leq n(n = 1, 2, ...)$, as $k + \lambda_{k+1} > 0$ and $\phi(n, k+1) > 0$ $(k \leq n)$. Moreover, it is easy to verify the identity

$$\sum_{k=0}^{n} c_{nk} = 1.$$
 (5)

Actually, (5) can be obtained by the summand-splitting

$$c_{nk} = \frac{[n]_k}{\phi(n,k)} - \frac{[n]_{k+1}}{\phi(n,k+1)}$$

and the diagonal-cancelling, noting that $[n]_0 = \phi(n, 0) = 1$ and $[n]_{n+1} = 0$. Finally, since $[n]_k$ and $\phi(n, k+1)$ contained in the left-hand side of (4) are polynomials in n of degrees k and k+1, respectively, it follows that

$$\lim_{n \to \infty} c_{nk} = 0 \tag{6}$$

is true for each fixed $k \ge 0$. Thus, as a consequence of the classic Toeplitz theorem [3] we see that the transformation given by (3) is regular. This completes the proof.

We are now going to construct a q-analogue of (3). For fixed $q \neq 1$, denote by $(x)_k$ the q-rising factorial

$$(x)_k = (1-x)(1-xq)\cdots(1-xq^{k-1}), \quad (x)_0 = 1.$$

Let us define

$$\phi(x,k:q) = \prod_{i=1}^{k} (\mu_i - q^x)$$
(7)

with $\phi(x, 0 : q) = 1$, where $\{\mu_k\}$ is any given sequence of real numbers satisfying the condition

$$\mu_{k+1} < q^k \quad (k = 0, 1, 2, \ldots).$$
(8)

Moreover, in contrast with (4) let us denote

$$c_{nk}^* := \frac{(q^{n-k+1})_k (\mu_{k+1} - q^k)}{\phi(n, k+1:q)} q^{\binom{k}{2}}.$$
(9)

156

Lemma. Let q > 1 and the condition (8) be satisfied. Then the following assertions are valid:

(i) $c_{nk}^* > 0$ for $k \le n$.

- (*ii*) $\sum_{k=0}^{n} c_{nk}^{*} = 1$ for n = 0, 1, 2, ...(*iii*) $\lim_{n \to \infty} c_{nk}^{*} = 0$ for each fixed $k \ge 0$.

Proof. (i) is obvious as the numerator and denominator of the quantity C_{nk}^* are of the same sign $(-1)^{k+1} \cdot (ii)$ can be proved again by the summand-splitting

$$c_{nk}^{*} = \frac{(q^{n-k+1})_{k}}{\phi(n,k:q)} q^{\binom{k}{2}} - \frac{(q^{n-k})_{k+1}}{\phi(n,k+1:q)} q^{\binom{k+1}{2}}$$

and the diagonal-cancelling, noting that $(q^0)_{n+1} = 0$. For proving (iii) it needs only to observe that when $n \to \infty$ (i.e., $q^n \to \infty$) the fraction $(q^{n-k+1})_k/\phi(n,k+1:q)$ is precisely of the order $O(q^{-n})$.

From the Lemma and by the Toeplitz theorem [3] we obtain the following

Theorem 2. The linear transformations (arithmetic means) defined by

$$t_n = \sum_{k=0}^n s_k c_{nk}^*$$
 (10)

are regular provided that the conditions (8) and q > 1 are satisfied.

Remark. It may be of interest to notice that (3) is a limiting case of (10) as $q \to 1^+$. In fact, starting with (10), replacing μ_i by $1 + (1-q)\lambda_i$ and letting $q \to 1^+$ one may find that $c_{nk}^* \to c_{nk}$, and that the condition (8) just turns to be $\lambda_{k+1} > -k$, which is required for (3). The details may be left to the reader.

References

- [1] G. P. Egorychev, Combinatorial Sums and the Method of Generating Functions, Krasnoysrsk Gos. Univ., Krasnoyarsk, 1974 (Russian).
- [2] G. P. Egorychev, "Integral Representation and the Computation of Combinatorial Sums," Transl. AMS Monographs, Vol. 59 (1984), p. 109.
- [3] G. H. Hardy, Divergent Series, Clarendon Press, Oxford, 1949 (Chap. 3).

Institute of Mathematics, Dalian University of Technology, Dalian, Liaoning Province 116024 (China).