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GLOBAL ATTRACTIVITY IN 
A NONAUTONOMOUS DELAY-LOGISTIC EQUATION 

SHEN JIANHUA AND WANG ZHICHENG 

Abstract. Consider the nonautonomous delay-Logistic equation 

x'(t) = r(t)x(t)[l - b1x(t - r1) - b2x(t - r2)], t 2: 0 

we obtain sufficient conditions for the positive steady state x* = l/(b1 +b2) to be a 
global attractor. An application of our result also solves a conjecture of Gopalsamy. 

1. Introduction 

In this paper, we are concerned with the global attractivity of the nonautonomous 
delay-Logistic equation 

x'(t) = r(t)x(t)[l - b1x(t - 71) - b2x(t - 72)], t 2: 0 

Throughout this paper, we let the following two hypotheses hold: 
(i). b1,b2,71,T2 E (0,oo); 
(ii). r(t) E C([-r,oo),R+,r(t) > 0 and fa°° r(t)dt = oo,r = max(71,72)- 
Suppose also that the initial conditions for (1) are of the type 

x(s) = </>(s) 2: 0, s E [-r,O], 
</> E C([-7, O], R+), ¢(0) > 0. 

Eq.(1) with r(t) = r E (0, oo), say 
x'(t) = x(t)[r - a1x(t - 71) - a2x(t - 72)], t 2: 0 

(1) 

(2) 

(3) 
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The scalar autonomous ordinary differential equation 

x'(t) = rx(t) [1 - x~)], k > 0 (4) 

commonly known as the Logistic equation is most frequently employed in modelling the 
dynamics of populaton of single species with x( t) denoting the density ( or biomass) of the 
population at time t. An analysis of (4) indicates that its solutions are monotone func­ 
tions oft and that limt_.00 x(t) =kif x(O) > 0. On the other hand, it has been observed, 
however, that population densities usually have a tendency to fluctuate around an equi­ 
librium, and when there is a convergence to a positive equilibrium, such a convergence 
is rarely monotonic (See for example Nicholson [5]). To incorporate such oscillations in 
population model systems. Hutchinson [6] suggested the following modification of (4) 

(5) 

Eq.(5) commonly known as the delay-Logistic equation and has been extensively 
investigated for the global attractivity (See for example Gopalsamy [3] and the references 
cited therein). 

In an attempt to introduce a environmental negative feedback effect, (5) has been 
modified and generalized to Eq.(3). For some recent discussions of (3), we refer to 
Gopalsamy [1,3], Lenhart and Travis [2]. In [1] (also see [3]), by using Liapunov functional 
method Gopalsamy obtained the following theorem which provides a sufficient condition 
for the global attractivity of Eq.(3)-(2). 

Theorem A. Assume that r,a1,a2,T1,T2 E (O,oo). Then 

(6) 

implies that all positive solutions of Eq.(3) - (2) have asymptotic behavior 

Limx(t) = x*, x* = r/(a1 + a2). 
t-+CXJ 

(7) 

In particular, Gopalsamy put forth the following conjecture in [3, p60]: 

Conjecture B. Theorem A is also true if condition (6) is relaxed as 

(8) 

Main aim in this paper is giving sufficient condition for the global attractivity of 
Eq.(1)-(2). In particular, an application of our result to Eq.(3)-(2) not only solve above 
Conjecture B but also further improve condition (8). 

'I 



A NONAUTONOMOUS DELAY-LOGISTIC EQUATION 161 

2. Main Results 

The following theorem provides a sufficient condition for the global attra.ctivity of 
Eq.(1)-(2). 

Theorem 1. Assume that condition (i) and (ii) hold. Then 

lim suplt r(s)ds ~ 1, T = max(r1,r2) 
t->OO t-'T 

(9) 

implies that all positive solutions of Eq.(l) - {2) have asymptotic behavior: 

lim x(t) = x*, x* == l/(b1 + "2). 
t ..... oo 

Proof. Let x(t) be any a positive solution of (1)-(2). There are only two cases to 
consider. 

Case 1. x(t) is nonoscillatory about x*. We shall assume that x(t) ~ x* eventually. 
The case where x(t) :::; x* eventually is similar and will be omitted. Then it follows from 
(1) that x(t) is eventually decreasing and so the limit limt ...... 00 x(t} = L exists and is 
finite. Thus, from (1) we see that eventHally 

x'(t) ~ r(t)x(t)[l - L(b1 + b2)], 

which, together with L ~ x* and (ii), implies that L = x*. The proof is complete for the 
case 1. 

Case 2. x(t) is oscillatory_ about x*. Let { tn} be a sequence of .zeros of the x(t)-x* 
such that tn -+ oo as n -+ oo and that x(t) ~ x*, t E {hn-1, t2nl, and x(t) ~ x*, t E 
[t2n, t2n+1L n = l, 2, .... Also let t~ E (t2n-l, t2n), s~ E (t211, t2n+1) be such that 

x(t~) = max(x(t) : t2n-l ~ t ·::; t2n), 
x(s~) = min(x(t) : t2n :::; t ~ t2n+1}. 

Then for n = l, 2, ... , x(t~) > x* and x'(t~) = 0. While x(s~) < x* and x'(s~) = 0. Thus 
we obtain by (1) 

1 - b1x(t~ - 71) - b2x(t~ - 72) == 0, 
which shows that there exists at least one io E {1, 2} such taht x(t;. - Ti0) ~ x• a.nd so 
x(t) - x* has at least one zero on [t~ - 7, t~]- Let bn E (t~ - 7, t~I be such tha.t x((5n) = x* 
and x(t) > x* fort E (6n,t~]. Similarly, there exist rn E ,{s;-r,s;] such ta.ht x(r"') =x* 
and x( t) < x* for t E ( r n, s~]. In the following discussion, for convenience, when we 
write a functional ( or sequential) inequality without specifying its domain of validity. 
We assume that it holds for all sufficiently large t ( or n). 
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Now we rewrite Eq.(1) in the form 

d dt ln [x(t)] = r(t)[l - b1x(t - 7i) - b2x(t - r2)] 

and by integrating the both sides of (10) from On to t~ we find 

t· t· 

ln [x(t~)/x*] < lnn r(s)ds::; 1;,~T r(s)ds::; 1, 
i.e., x(t~) < x*e := Mo. Set mo = 0, then 

mo < x(t) < mo. 

Again integrating (10) from Tn to s~ and by using (11) we have 

In [x(s~)/x'J > 1:; r(s)[l - b1Mo - b,Mo]ds 

2:[1 - Mo(b1 + b,)] r~T r(s)ds 2: 1 - Mo(b1 + b,), 
n 

i.e., x(s~) > x* exp [1 - Mo(b1 + b2)] := m1, and so 

x(t) > m1. 

Similarly, integrating (10) from On tot~ and using (12) we get 

t· 

ln [x(t~)/x*] < [1 - m1 (b1 + b2)] 1. ~7" r(s )ds ::; 1 - m1 (b1 + b2), 
n 

i.e., x(t~) < x* exp [1 - m1 (b1 + b2)] := M1, and so 

x(t) < M1. 

Also integrating (10) from r n to s~ and applying (13) we obtain 

x(s~) > x* exp [1 - M1(b1 + b2)] := m2, 

which yields, 
x(t) > m2. 

Therefore, by the mathematical induction we can get in general that 

mn < x(t) < Mn, 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 
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where {mn}~=O and {Mn}~=O are defined as 

mo= 0, mn = x* exp [1 - Mn-1(b1 + b2)], n = 1, 2, . 
Mo= x*e, Mn= x* exp [l - mn(b1 + b2)], n = 1, 2, . 

(16) 

Clearly, M1 < Mo, which implies m1 > m0. In general, by the induction, it is easy to 
prove that 

Mo > M1 > · · · > Mn > Mn+i > · · · > x*, 
mo < m1 < · · · < fin < mn+l < · · · < x* · 

Set m = limn-+cx:i mn, M = limn-+oo Mn. Then m ~ x* ~ M. 
Next, by taking limit on (16) we get 

m = x* exp [1 - M(b1 + b2)], M = x* exp [1 - m(b1 + b2)], (17) 

which shows that the system of equations 

{ 
u = x* exp [1 - (b1 + b2)v] 
v = x* exp [l - (b1 + b2)u] 

(18) 

has a solution u = m, v = M. Clearly, u = v = x* also is a solution of (18). Now we will 
prove that (18) has only a unique solution u = v = x* in the region D = { ( u, v) : u ~ 
x*, v ~ x* }. To this end, we rewrite (18) in the form 

{ 

v = x* exp [1 - (b1 + b2)u] 
1 u 

v=- ln- 
b1 + b2 x*e 

(19) 

and set 
f(u) = x* exp[l-(b1 +b2)u] + i.. 

1 
b In~- 

1 + 2 x*e 

Then, it suffices to prove that f(u) = 0 has only a unique solution u = x* on [x*, oo). 
Since 

J'(u) ={1 - x*(b1 + b2)2u exp [1 - (b1 + b2)u]}/(b1 + b2)u 
: = g(u)/(b1 + b2)u, 

it follows that for u ~ x*, f'(u) and g(u) are of uniform sign. From 

(20) 

we see that x* = 1/(b1 + b2) is a unique root of g'(u) = 0, and g'(u) > 0 for u > x*. 
Noting g(x*) = O, which yields g(u) > 0 for u > x*. Therefore, we have f'(x*) = 0 and 
f' ( u) > 0 for u > x*. This implies that f ( u) = 0 has only a unique solution u = x* on 
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[x*, oo) and so M = m = x*. Now by (15) we obtain lim,_.00 x(t) = x*. The proof is 
complete for the case 2. 

Combining the cases 1 and 2 we complete the proof of Theorem 1. 

Corollary 1. Theorem A is true if condition (6) is replaced by 

TT ::; 1, T = max( 'T1' T2). (21) 

In fa.ct, set r(t) = r > 0,rb1 = a1,r~ = a2. Then Eq.(1) reduces to Eq.(3) and 
condition (9) reduces to (21). The conclusion of the corollary 1 follows from Theorem 1. 

Remark 1. Corollary 1 not only gives a proof of Conjecture B but also further 
improve condition (8). In fact, from the fact that rr > 1 implies the r(r1 +r2) exp [r(r1 + 
r
2
)] > r7 exp (rr) > e > 3/2, it follows that (8) implies (21). On the other hand, if we 

chooser == ,1 = r2 = 1, then (21) holds, but(S) does not satisfy. 

Remark 2. The results of this pa.per a.re extendble to the delay-Logistic equation 
of the form 

x'(t) = r(t)x(t) (1- t,b,x(t - r,)] . 
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