
TAMKANG JOURNAL OF MATHEMATICS 
Volume 26, Number 2, Summer 1995 

QUALITATIVE THEORY OF PARTIAL DIFFERENCE EQUATIONS (III): 
FORCED OSCILLATIONS OF PARABOLIC TYPE 

PARTIAL DIFFERENCE EQUATIONS 

SUI SUN CHENG, SHENG-LI XIE AND BING-GEN ZHANG 

Abstract. Parabolic type partial difference equations with a forcing term is stud 
ied in this paper. By means of three averaging techniques, the problem of oscillation 
of these equations is reduced to that of recurrence relations in one variable. A vari 
ety of oscillation criteria is given for these recurrence relations which in turn yield 
oscillation criteria for the partial difference equations. 

1. Introduction 

Oscillation properties of functional parabolic equations have been studied by a num 
ber of authors (see for example [1, Chapter 6]). In contrast, partial difference equations 
do not seem to have drawn as much attention. In [2], oscillation criteria have been 
derived for homogeneous nonlinear partial difference equations of the form 

D.2u(i,j) = a(j)D.iu(i - 1,j) - q(i,j)g(u(i,j - u)), 1 :Si :Sn, j;::: 0. 

In this paper, we are concerned with forced oscillation of solutions of nonhomogeneous 
partial difference equations of the form 

D.2u(i,j) = a(j)D.iu(i -1,j) - p(j)u(i,j - o-) + f(i,j), 1 5 i 5 n, j;::: 0, (1.1) 

where the delay o- is a nonnegative integer, a(j) and p(j) are real functions of integral j 
where j ;::: 0, and f(i,j) is dependent on integral variables which satisfy O :S i :S n + l 
and j ;::: 0. Given a double sequence {v(i,j)}, the partial difference D.2v(i,j) is defined 
by 

D.2v(i,j) = v(i, j + 1) - v(i, j) 
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while 
b..1v(i,j) = v(i + 1,j) - v(i,j). 

The usual difference of a sequence { w( k)} is defined by 

b..w(k) = w(k + 1) - w(k). 
As a consequence, 

b..fv(i - l,j) = b..1(b..1v(i - l,j)) = v(i + l,j) - 2v(i,j) + v(i - l,j). 

A solution u(i, j) of (1.1) is a double sequence defined for O ::;; i ::;; n + 1 and j 2: -<7 

which satisfies (1.1). Given an arbitrary function cp(i,j) defined for -<7 ::;; j ::;; 0 and 
0 ::;; i ::;; n + 1, and arbitrary functions g(j) and h(j) defined for j 2: 1, we can easily 
show that a unique solution of (1.1) exists and satisfies the conditions 

u(O, j) = g(j), j 2: 1 

u(n + l,j) = h(j) j 2: 1 

(1.2) 

(1.3) 

and 
u(i,j) = cp(i,j), -<7::;; j::;; 0, 0::;; i::;; n + 1. (1.4) 

Let w(i, j) be a double sequence defined for O ::;; i ::;; n + 1 and j 2: -(7. Suppose 
there is some nonnegative integer T such that w(i,j) > 0 for 1 ::;; i ::;; n and j 2: T, 
then w(i,j) is said to be eventually positive. An eventually negative w(i,j) is similarly 
defined. The function w(i,j) is said to be oscillatory for 1 ::;; i ::;; n and j 2: 0 if it is 
neither _eventually positive nor eventually negative. 

2. Preparatory lemmas 

We shall be concerned with conditions which imply that every solution of (1.1) is 
oscillatory. For this purpose, we need several preparatory results, the first two of which 
can be found in [4] and [5] respectively. 

Lemma 2 .1. Let 

. . { (n - i + l)j /(n + 1) 
g(i,J) = (n _ j + l)i/(n + 1) 

1 < . < i _)_ 

i:s;j:s;n· (2.1) 

Then g( i, j) is symmetric, positive for l ::;; i, j ::;; n and 

n L g(i, j)b..2v(j - 1) = -v(i) + 8(i), 1 ::;; i ::;; n 
j=l 

(2.2) 
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where 8(1} = nv(O}/(n + 1), b(n) = nv(n + l)/(n + 1} and 8(i) = 0 for 2::; i ::; n - l. 
Lemma 2.2. The eigenvalue problem 

A2w(k-1} + ..\w(k) = 0, l::; k::; n 

w(O) = 0 = w(n + 1) 
is equivalent to the symmetric eigenvalue problem 

(2.3} 

(2.4} 

n 

w(k) = ..\ L,g(k,j)w(j), 1::; k::; n 
j=l 

which possesses the positive eigenvalue 

µ = 4 sin2 
{ 1r } . 
2n+ 2 

(2.5) 

(2.6) 

This eigenvalue is smaller than all other eigenvalues-and its corresponding eigen 
solution w( k) is given by 

w k = { 0 k = 0 or n + l 
( ) sin ( k1r / ( n + l ) ) 1 ::; k ::; n (2.7) 

Note that the reciprocals of the eigenvalue µ are 0.5, 1, 1.707, 2.618, ... for n = 
1, 2, 3, 4, ... respectively. These values form a strictly increasing sequence which diverges 
to infinity. 

Lemma 2.3. Let {w(i)}0 be a sequence and w(i) f. -1 for i ~ 0. Let 
k-1 

E(k) = IJ (1 + w(i)), k ~ l. 
i=O 

(2.8) 

Then 

E(k + 1) { Ah(k) + 1 :~tk) h(k)} = A(E(k)h(k)), k ~ l. (2.9) 

Proof. Since 
k k-1 

AE(k) = IT (1 + w(i)) - IT (1 + w(i)) = w(k)E(k), 
i=O i=O 

thus 

A(E(k)h(k)) = h(k)AE(k) + E(k + l)Ah(k) 

=E(k + 1) { t..h(k) + Ei(~ l) h(k)w(k)} = E(k + 1) { t..h(k) + 1 :~ik) h(k)}. 
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3. Averaging techniques 

There are several averaging techniques which can be used to reduce the problem of 
oscillation of (1.1) to that of recurrence relations in one variable. First, suppose u( i, j) 
is a solution of (1.1-1.4), then the function 

n 

v(j) = L u(i,j)w(i) 
i=l 

(3.1) 

satisfies 
n n 

D.v(j) = a(j) L w(i)D.iu(i - 1,j) - p(j)v(j - u) + L f(i,j)w(i). (3.2) 
i=l i=l 

for all large j. Note that in view of Lemma 2.1, 

n n { n } 
~ w(i)D.iu(i - 1,j) = ~ µ ~ g(s, i)w(s)D.iu(i - 1,j) 

n { n } n =µ ~ ~ g(s, i)D.iu(i - l,j) w(s) = µ ~ {-u(s, j) + bj(s)} w(s) 
n 

= - µv(j) + µ L bj(s )w(s) = -µv(j) + bj(l)w(l) + bj(n)w(n) 
s=l 

= - µv(j) + _n_ {u(O,j)w(l) + u(n + l,j)w(n)} 
n+l 
n = - µv(j) + --(g(j) + h(j) sin(1r /(n + 1)). 

n+l 

Thus from (3.2), we have 

n 
n 7r "°""' D.v(j)+µa(j)v(j)+p(j)v(j-o-) = --

1
a(j)(g(j)+h(j)) sin --

1 
+ L.J f(i,j)w(i). (3.3) 

n + n + i=I 

We summarize these as follows. 

Theorem 3.1. If (1.1-1.4) has an eventually positive (or negative) solution, 
then the fallowing equation, 

D.v(j) + µa(j)v(j) + p(j)v(j - u) = R(j), 

also has an eventually positive ( respectively negative) solution, where 

(3.4) 

n 

R(j) = __!:_l a(j)(g(j) + h(j)) sin _1r_ + """"'f ( i, j)w( i), j ~ 0, (3.5) 
n+ n+l L; 

i=l 
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Note that, in view of Lemma 2.1, 

n 

I:g(t,i)b..ru(i-1,j) = -u(t,j) +rct,j)::;; r(t,j) 
i=l 

where 

I'(l,j) = ng(j) 
n+ l' 

I'(n,j)= nh(j) 
n+ 1' I'(t,j) = 0 for 2 $ t $ n - 1. 

Thus when a(j) 2: 0 for all large j, we obtain from (3.9) that 

n n n 

D..2 Lg(t,i)u(i,j) + p(j) Lg(t,i)u(i,j - <7) $ a(j)I'(t,j) + Lg(t,i)f(i,j) (3.10) 
i=l i=l i=l 

for l $ t $ n and all large j. Summing (3.10) from t = l to t = n, we then obtain 

b..X(j) + p(j)X(j - <7) $ na(j)(~(~); h(j)) + t g(t, i)f(i,j) (3.11) 
t,i=l 

for all large j, where 

n n 

X(j) = LLg(t,i)u(i,j), j 2: 0. 
t=l i=l 

Theorem 3.3. Suppose a(j) 2: 0 for all large j. If (1.1-1.4) has an eventually 
positive solution, then so does the recurrence relation (3.11). If (1.1-1.4) has an 
eventually negative solution, then so does the following relation 

b..X(j) + p(j)X(j - <7) 2: na(j)(g(~); h(j)) + t g(t, i)f(i,j) (3.12) 
t,i=l 

4. Recurrence relations in one variable 

Euqation (3.4) is of the form 

b..x(j) + P(j)x(j) + Q(j)x(j - <7) = 1/J(j), j 2: 0, 

equations (3.7) and (3.11) are of the form 

(4.1). 

6.y(j) + P(j)y(j) + Q(j)y(j - er) ~ 1/J(j), j 2 0, (4.2) 



PARTIAL DIFFERENCE EQUATIONS 183 

while (3.8) and (3.12) are of the form 

Ay(j) + P(j)y(j) + Q(j)y(j - o-) ~ 'lj;(j), j ~ 0, ( 4.3) 

where o- is a nonnegative integer. In order to show that (1.1-1.4) is oscillatroy, we 
need appropriate conditions to ensure that (4.1), (4.2) and (4.3) cannot have eventually 
positive and / or negative solutions. 

In this section, we derive several results which are useful in reducing (4.1), (4.2) and 
( 4.3) into simpler forms. 

Suppose first that P(j) =f l for j ~ 0, let 
k-1 

E(k) = II (1 - P(j))-1, 
j=O 

then in view of Lemma 2.3, (4.1) can be written as 

A(E(j)y(j)) + E(j + l)Q(j)y(j - o-) = 1/J(j)E(j + 1) 
or 

A(E(j)y(j)) + E~~ ~~r) E(j - o-)y(j - o-) = 'lj;(j)E(j + 1). (4.4) 

If we assume further that P(j) < 1 for all large j, and that {y(j)} is an eventually 
positive solution of (4.1), then E(j)y(j) is an eventually positive solution of (4.4). We 
summarize these as follows. 

Lemma 4.1. Suppose P(j) < 1 for all large j. If (4.1) has an eventually 
positive ( or negative) solution, then 

j j-1 

Ax(j) + Q(j) IJ (1 - P(i))-1x(j - o-) = 'lj;(j) II (1 - P(i))-1, (4.5) 
i=j-u i=O 

also has an eventually positive ( respectively negative) solution. 

Lemma 4.2. Suppose (4.1) (or (4.2)) has an eventually positive solution 
{y(j)}, then so does 

f..w(j) + Q(j) { exp ,f. P( i)} w(j - er) :<; ,P(j )exp t. P( i), j 2'. 0. ( 4.6) 

Proof. If we multiply both sides of (4.1) by exp{P(O) + · · · + P(j)}, then it is not 
difficult to s~e that 

I',. { y(j)exp ~ P(i) }- {1- exp(-P(j)) - P(j)} y(j)exp tp(i) 

+ Q(j) { exp ,t_. P( i)} y(j - er )exp i~ 1 P( i) :<; ,P(j)exp t P( i). ( 4. 7) 



184 SUI SUN CHENG, SHENG-LI XIE AND BING-GEN ZHANG 

Since 1 - exp(-x) - x '.SO for all real x, we obtain (4.6) from (4.7), where 

j 

w(j) = y(j)exp L P(i). 
i=O 

Lemma 4.3. Suppose O '.S P(j) < 1 for al large j. If ( 4.1) ( or ( 4.2)) has an 
eventually positive solution {y(j)}, then so does 

. Q(j) . 'l/J(j) 
D.w(J) + 1 - P(j) w(J - o-) ~ 1 - P(jf j 2 0. (4.8) 

Proof. We can write (4.1) in the form 

(1 - P(j))b..y(j) + P(j)y(j + 1) + Q(j)y(j - u) = 'l/J(j), 

from which, we obtain 

(1 - P(j))b.y(j) + Q(j)y(j - o-) 5 1/J(j). 

Lemma 4.4. Suppose P(j) ;::: 0, Q(j) ;::: 0 and 'l/J(j) '.S O for all large j. If 
(4.1) has an eventually positive solution {y(j)}, then P(j) < 1 for all large j (and 
thus (4.5) and (4.8) has eventually positive solutions). 

Proof. We write (4.1) in the form 

y(j + 1) + Q(j)y(j - u) - 1/J(j) = (1 - P(j))y(j). 

Our assumptions imply y(j + 1) + Q(j)y(j - o-) - 'l/J(j) > O so that 1 - P(j) > 0 for all 
large j. 

5. Oscillation criteria of recurrence relations in one variable 

We first deal with the recurrence relation 1·. 

b.y(j) + P(j)y(j) + Q(j)y(j - o-) 5 'l/J(j), j ;::: 0, (5.1) 

where o- is a nonnegative integer. 
An elementary result can be derived as follows. Suppose P(j) ;::: 0 and Q(j) 2 0 for 

all large j. If {y(j)} is an eventually positive solution of (5.1), then for all large j, 

b.y(j) ~ 1/)(j) - P(j)y(j) - Q(j)y(j - a) ~ 7/J(j). 
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t 

y(i + 1) $ y(N) + L 1/J(j). 
j=N 

If the condition 
t 

1iµi inf I: 'I/JU) = -oo i-= 
j=N 

is imposed, a contradiction will be reached since y(i + 1) > 0 for all large i. 

(5.2) 

Theorem 5.1. Suppose P(j) 2: 0 and Q(j) 2: 0 for all large j. Suppose 
further that (5.2) is satisfied for some integer N. Then (5.1) cannot have an 
eventually positive solution. 

In the above result, P(j) is required to be nonnegative. In view of the Lemmas in 
the previous section, we can relax this assumption as followas. For instance, in view of 
Lemma 4.1, Lemma 4.2 and Theorem 5.1, we have the following two corollaries. 

Corollary 5.1. Suppose P(j) < l for j 2: 0 and Q(j) 2: 0 for all large j. 
Suppose further that 

i j 

liµi inf L 1/J(j) TI (1 - P(k))-1 = -oo, 
i-= 

j=N k=O 

then (5.1) cannot have an eventually positive solution. 

Corollary 5.2. Suppose Q(j) 2: 0 for all large j. Suppose further that 
i j 

liminf L 'lj;(j) exp LP(k) = -oo, 
i-= 

j=N k=O 

then (5.1) cannot have an eventually positive solution. 

A slightly more complicated result than Theorem 5.1 can be derived as follows. 

Theorem 5.2. Suppose P(j) 2: 0 and Q(j) 2: 0 for all large j. Suppose 
CX) 

H(j) = L 1/J(k) < oo, j 2: 0. 
k-:::=j 

(5.3) 

If 
t 

liE!~f I: { 1/J(j) - P(j) max{-H(j), O} - Q(j) max{-H(j - <7), O}} = -oo, 
j=N 
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then (5.1) cannot have an eventually positive solution. 

Proof. Suppose to the contrary that {y(j)} is an eventually solution of (5.1). Then 

Ay(j) ::; 'lj;(j) - P(j)y(j) - Q(j)y(j - o-) ::; 1/J(j) 

for all large j. Thus 
00 

y( 00) - y(i) ::; L, 'lj;(j) = H(i), 

which implies 
y(i) ~ max{-H(i), O}. 

From (5.1), we then have 

Ay(j) ::; 'lj;(j) - P(j) max{-H(j), O} - Q(j) max{-H(j - o-), O} 

for all large j. Thus summing the above inequality, we have 

i 

y(i + 1)-y(N) ::; L, { 1/J(j)-P(j) max{-H(j), O} _-Q(j) max{-H(j-o-), O} }, i ~ N, 
j=N 

which is contradictory to our assumption. 

Next, suppose there is a sequence {w(j)} which has a nonpositive subsequence 
{w(jk)} and satisfies Aw(j) = '1/J(j) for all large j. Suppose further that P(j) ~ 0 
and Q(j) ~ 0 for all large j. Then 

A{y(j) - w(j)} ::; -P(j)y(j) - Q(j)y(j - o-) ~ 0 

for all large j. The nonincreasing sequence {y(j) - w(j)} cannot be eventually non posi 
tive, for otherwise 

y(j) - w(j) ~ o 
for all large j. But then 

for large k, which is a contradiction. Thus {y(j) - w(j)} is eventually positive. This 
implies 

y(j) > max{w(j), O} _ w+ (j) 
for all large j. Furthermore, 

~{y(j) - 'l'(j)} S -P(j)y(j) - Q(j)y(j - u) S -P(j)\J!+(j) - Q(j)\J!+(j - <J) 
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for all large j. Summing the above inequality from j = N to j = i, we obtain 
i 

0 > -(y(i + 1) - \Jl(i + 1)) ;::: y(N) - \Jl(N) + L P(j)w+(j) + Q(j)w+(j - u). (5.3) 
j=N 

If the condition 

i 

lim sup L P(j) max{\Jl(j), O} + Q(j) max{\Jl(j - o-), O} = oo (5.4) 
i-+oo j=N 

is imposed, a contradiction will be reached. We summarize these as follows. 

Theorem 5.3. Suppose P(j) 2: 0 and Q(j) ;::: 0 for all large j. Suppose there 
is a sequence {\Jl(j)} which has a nonpositive subsequl'!nce {\Jl(jk)} and satisfies 
D.\Jf(j) = 'lj;(j) for all large j. Suppose further that condition (5.4) is satisfied for 
some integer N. Then (5.1) cannot have an eventually positive solution. 

Two variants of Theorem 5.3 can be derived. Both of them require additional infor 
mation about the sequence {w(j)}. 

Theorem 5.4 .. Suppose P(j) ;::: 0 and Q(j) ;::: 0 for all large j. Suppose there 
is a sequence {w(j)} which satisfies b.w(j) = 'ljJ(j) for all large j and 

Ii~ inf \JI ( i) = - /3, /3 > 0. 
i-+oo 

(5.5) 

Suppose further that the following condition 

i 

li1:11 sup L P(j) max{w(i) + /3, O} + Q(j) max{w(j - o-) + /3, O} = oo (5.6) 
i-oo j=N 

is satisfied for some integer N. Then (5.1) cannot have an eventually positive 
solution. 

Proof. In view of (5.5), {w(j)} has a nonpositive subsequence. As we have seen 
in the derivation of Theorem 5.3, the sequence {y(j) - \Jl(j)} is eventually positive and 
nonincreasing. Thus y(j) - \Jl(j) decreases to a nonnegative constant a. We assert that 
a;::: {3. Indeed, for any E > 0, 

a+€> y(j) - w(j) ;::: a 

for all large j. Thus 
-\J!(j) < y(j) - \J!(j) <a+ E 
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for alll large j' which implies 

{3 = lim sup{-w(j)} $a+€ 
j-+CX> 

as required. As a consequence, 
y(j) 2: w(j) + f3 

for all large j. This implies 

y(j) ~ max{w(j) + {3, O} 

for all large j. The rest of the proof is similar to that of Theorem 5.3 

Theorem 5.5. Suppose P(j) 2: 0 and Q(j) 2: 0 for all large j. Suppose 
there is a sequence {w(j)} which has a constant subsequence {\Jf(jk)} = {h} and 
w(j) 2: h for all large j. Suppose further that b..w(j) = 'lj;(j) for all large j. If (5.1) 
has an eventually positive solution {y(j)}, then so does the foll1Jwing recurrence 
relation 

b..w(j) + P(j)w(j) + Q(j)w(j - <7) $ 0, j 2: 0. (5.7) 

Proof. Since 

b..(y(j) - w(j) + h) = b..(y(j) - w(j)) ::;; -P(j)y(j) - Q(j)y(j - <7) ::;; o, 

the sequence {y(j) - w(j)} is either eventually positive or eventually non positive. We 
assert that the sequence {y(j) - w(j)} satisfies 

y (j) - \JI (j) + h > 0 

for all large j. Otherwise, if y(j) - \JI (j) + h $ 0 for all large j, then 

{5.8) 

for large k, which is a contradiction. If we now set 

w(j) = y(j) - w(j) + h, j 2: o, (5.9) 

then 

b..w(j) + P(j)w(j) + Q(j)w(j - cr) ::;; P(j){h - w(j)} + Q(j){h - w(j - <7)} ::;; O 

for all large j. This completes our proof. 
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We remark that corollaries to Theorems 5.2, 5.3, 5.4 and 5.5 similar to Corollaries 
5.1 and 5.2 can be derived by means of the results in Section 4. Since no new principles 
are involved, the details are omitted. 

We remark also that in order to apply Theorem 5.5 to specific situations, additional 
conditions will be needed which ensure that the recurrence relation (5.7) does not have 
eventually positive solution. Such conditions, however, have been given in [3, Corollary 
2, Corollary 3, Theorem 3], and will not be repeated here. 

We now turn our attention to the recurrence relation 

Ay(j) + P(j)y(j) + Q(j)y(j - o-) ~ 'lj;(j), j ~ 0, (5.10) 

and the recurrence relation 

Ay(j) + P(j)y(j) + Q(j)y(j - o-) = 'lj;(j), j ~ 0, (5.11) 

We are concerned with sufficient conditions under which (5.10) cannot have any eventu 
ally negative solutions, and also sufficient condition under which (5.11) has oscillatory 
solutions only. 

Since a solution {y(j)} of (5.10) is eventually negative if and only if {-y(j)} is an 
eventually positive solution of 

Ax(j) + P(j)x(j) + Q(j)x(j - o-) ::; -'lj;(j), j ~ 0. (5.12) 

In view of Theorem 5.1, we have the following corollary. 

Corollary 5.3. Suppose P(j) ~ 0 and Q(j) ~ 0 for all large j. Suppose 
further that 

i 

li1? sup L, 'lj;(j) = oo. 
i ...... oo j=N 

Then (5.10) cannot have an eventually negative solution. 

The next four corollaries follow from Theorems 5.2, 5.3, 5.4 and 5.5 respectively. 

Corollary 5.4. Suppose P(j) ~ 0 and Q(j) ~ 0 for all large j. Suppose 

00 

K (j) = L, 'lj;(j) < oo, j ~ 0. 
k=j 

If 
i 

lim sup L, 'lj;(j) + P(j) max{K(j), O} + Q(j) max{K(j - o-), O} = oo, 
i ...... oo j=N 

then (5.10) cannot have an eventually negative solution. 
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Corollary 5.5. Suupose P(j) 2: 0 and Q(j) 2: 0 for all large j. Suppose there 
is a sequence {w(j)} which has a nonnegative subsequence {\Jl(ji)} and satisfies 
D. \J!(j) = 'l/J(j) for all large j. Suppose further that 

t 

li~sup L P(j) max{-w(j), O} + Q(j) max{-w(j - o-), O} = oo. 
i-+oo j=N 

Then (5.10} cannot have an eventally negative solution. 

Corollary 5.6. Suppose P(j) ;::: 0 and Q(j) ;::: 0 for all large j. Suppose there 
is a sequence {w(j)} which satisfies D. w(j) = 'lj;(j) for all large j and 

_lim sup \Jl(j) =a> 0. 
J-+OO 

Suppose further that the following condition 

i 

li~ sup L P(j) max{-w(j) + a, O} + Q(j) max{-\Jl(j - o-) + a, O} = oo 
i-+oo j=N 

is satisfied for some integer N. Then (5.10} cannot have an eventually negative 
solution. 

Corollary 5. 7. Suppose P(j) ;::: 0 and Q(j) ;::: O for all large j. Suppose there 
is a sequence {w(j)} which has a constant subsequence {w(ji)} = {q} and w(j) 5 q 
for all large j. Suppose further taht D. \Jl(j) = 'l/J(j) for all large j. If (5.10) has an 
eventually negative solution, then so does the following recurrence relation 

D.w(j) + P(j)w(j) + Q(j)w(j - o-) ;::: 0, j;::: 0. 

We remark that dual results of Corollaries 5.1, 5.2 and other possible corollaries to 
Theorems 5.2-5.5 can also be derived easily. As an example, we have the following dual 
statement of Corollary 5.1, 

Corollary 5.8. Suppose P(j) < 1 for j ;::: 0 and Q(j) ;::: 0 for all large j. 
Suppose further that 

i j 

limsup L w(j) II (1- P(k))-1 = oo, 
i-+oo j=N k=O 

then (5.10) cannot have an eventually negative solution. 

Finally, we remark that oscillation criteria for (5.11) can be derived easily from 
the previous results since sufficient conditions for (5.1) to have no eventually positive 
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. solutions together with sufficient conditions for (5.10) to have no eventually negative 
solutions are sufficient conditions for (5.11) to be oscillatory. 

6. Oscillation criteria for partial difference equations 

According to the results in the previous Sections, it is now easy to obtain oscillation 
criteria for the partial difference equation (1.1) subject to (1.2-1.4). We illustrate the 
principle for obtaining such oscillation criteria as follows. If the conditions 

(i) µa(j) < 1 and p(j) 2: 0 for j 2: O; and 
(ii) liminfi-= L)=N R(j) IT{-::::0(1 - µa(k))-1 = -oo, 
are imposed, then in view of Corollary 5.1, the recurrence relation (3.4) cannot have an 
eventually positive solution. Thus, by Theorem 3.1, the partial difference equation (1.1) 
subject to (1.2-1.4) cannot have an eventually positive solution. Similarly, by means of 
the dual (Corollary 5.8) of Corollary 5.1 and Theorem 3.1, if the conditions 

(i) µa(j) < 1 and p(j) 2: 0 for j 2: O; and 
(ii) limsupi->CX> L:=N R(j) rri=o(l - µa(k))-1 = 00 
are satisfied, then (1.1-1.4) cannot have an eventually negative solution. The following 
Theorem is now clear. 

Theorem 6.1. Suppose the following conditions hold: 
(i) R(j) = n~l a(j)(g(j) + h(j)) sin n~{ + L~=l f(i,j) sin ni;1, j 2: O; 
(ii) µa(j) < 1 and p(j) 2: 0 for j 2: O; 
(iii) liminfi-= L:=N R(j) rri=o(l - µa(k))-1 = -oo, and 
(iv) limsupi ..... = L~=N R(j) TI{-::::0(1 - µa(k))-1 = oo, 
Then every solution of (1.1-1.4) is oscillatory. 

As another example, we can derive the following Theorem from Theorem 3.1, The 
orem 5.3 and Corollary 5.5. 

Theorem 6.2. Suppose the following conditions hold: 
(i) R(j) = n~l a(j)(g(j) + h(j)) sin n~l + L~=l f ( i, j) sin ni_;l, j 2: O; 
(ii) a(j) 2: 0 and p(j) 2: 0 for j 2: O; 
(iii) there is an oscillatory sequence {IJ!(j)} such that b.. lJl(j) = 'lj;(j) for j 2: O; 
(iv) lim supi-= L:=N µa(j) max{\Jl(j), 0} + p(j) max{'1t(j - <7, O} = oo; and 
(v) limi ..... = sup Lj=N µa(j) max{-\Jl(j), O} + p(j) max{-\Jl(j - <7), O} = oo. 
Then every solution of (1.1 - 1.4) is oscillatory. 

As a final example, we can derive the following result from theorem 3.2, 1;'heorem 
5.4 and Corollary 5.7. 
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Theorem 6.3. Suppose the following conditions hold: 
(i) a(j) ~ 0 and p(j) ~ 0 for j ~ O; 
(ii) 'lj;(j) = a(j){h(j) + g(j)} + I::1 f(i, j), j ~ 0; 
(iii) there is a sequence {w(j)} such that Aw(j) = 'lj;(j) for j ~ O; 
(iv) {w(j)} has constant subsequences {hi} and {h2}, and h1 ~ w(j) ::; h2 for j ~ O; 
(v) every solution of the equation 

Aw(j) + p(j)w(j - o-) = 0, j ~ 0 

zs oscillatory. Then every solution of (1.1-1.4) is oscillatory. 

There are many other combinations, the principle, however, is the same. 
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