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NONASSOCIATIVE RINGS WITH A SPECIAL DERIVATION 

CHEN-TE YEN 

Abstract. Let R be a nonassociative ring, N, L and G the left nucleus, right 
nucleus and nucleus respectively. It is shown that if R is a prime ring with a 
derivafion d such that ax+ d(x) E G where a E Z, the ring of rational integers, 
or a E G with (ad)(x) = ad(x) = d(ax) and ax= xa for all x in R then either R 
is associative or ad+ d2 = 2d(R)2 = 0. This result is also valid under the weaker 
hypothesis ax+ d( x) E N n L for all x in R for the simple ring case, and we obtain 
that either R is associative or ((ad+ d2)(R))2 = 0 for the prime ring case. 

1. Introduction 

Let· R be a nonassociative ring. We adopt the usual notation for associators : 
(x, y, z) = (xy)z - x(yz). We shall denote the left nucleus, middle nucleus, right nu 
cleus and nucleus by N, M, L and G respectively. Thus N, M, L and G consists of 
all elements n such that (n, R, R) = 0, (R, n, R) = 0, (R, R, n) = 0 and (n, R, R) = 
(R, n, R) = (R, R, n) = 0 respectively. An additive mapping don R is called a derivation 
if d( xy) = d( x )y + xd(y) for all x, y in R. R is called semi prime if the only ideal of 
R which squares to zero is the zero ideal. R is called prime if the product of any two 
nonzero ideals of R is nonzero. R is called simple if R is the only nonzero ideal of R. 
Clearly, a pri~e ring is a semiprime ring. If R is a simple ring, then R2 = 0 or R2 = R; 
in the former case R is commutative and associative. So, if R is a simple ring then we 
assume that R2 = R. Thus a simple ring is a prime ring. Recently, Suh [3] proved that 
if R is a prime ring with a derivation d such that d(R) ~ G then either R is associative 
or d3 = 0. We generalized and improved Suh's results as follows: 

Theorem A [6). If R is a prime ring with a derivation d such that d(R) ~ 
NnM or d(R) ~ MnL or d(R) ~ NnL, then either R is associative or d2 = 2d = o. 
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Theorem B [8). If R is a prime ring with a derivation d and there exists 
a fixed positive integer n such that dn(R) ~ G, then either R is associative or 
d3n-1 = 0. 

In [7], using the result of [2], we have partially extended Theorem A. The purpose of 
this note is to prove that if R is a prime ring with a derivation d such that ax+d( x) E G for 
all x in R where a is as in the Abstract then either R is associative or ad+d2 = 2d(R)2 = 0. 
This result is also valid under the weaker hypothesis ax+ d(x) E N n L for all x in R for 
the simple ring case, and we obtain that either R is associative or ((ad+ d2)(R))2 = 0 for 
the prime ring case. Rings with associators in the nuclei were first studied by Kleinfeld 
and later by the author. Kleinfeld [1] showed that if R is a semiprime ring such that 
(R, R, R) ~ G and the Abelian group (R, +) has no elements of order 2 then R is 
associative. In [4], we proved that if R is a simple ring of characteristic not two such 
that (R, R, R) ~ N n M or (R, R, R) ~ Mn L then R is associative. In (5], we have 
proved that if R is a semiprime ring such that (R, R, R) ~ N n M or (R, R, R) ~ Mn L 
or (R, R, R) ~ N n L then N = M =Land 2(R, R, R) = 0. Thus E. Kleinfeld's result 
can be improved. 

Let R be a ring with a derivation d. A nonempty subset S of R is called d-invariant 
if d(S) ~ S. 

2. Results 

Let R be a nonassociative ring. In every ring one may verify the Teichmiiller identity 

(wx, y, z) - (w, xy, z) + (w, x, yz) = w(x, y, z) + (w, x, y)z for all w, x, y, z in R. (1) 

Suppose that n E N. Then with w = n in (1) we obtain 

(nx, y, z) = n(x, y, z) for all n in N, 

Assume that m EL. Then with z =min (1) we get 

and all x, y, z in R. (2) 

(w, x, ym) = (w, x, y)m for all min L, and all w, x, yin R. (3) 

As consequences of (1), (2) and (3), we have that N, M, L, N n M, Mn L, N n Land G 
are associative subrings of R. 

Definition 1. Let d be a derivation of R, and a E Z, the ring of rational integers, 
or a E G with (ad)(x) = ad(x) = d(ax) and ax= xa for all x in R. 

We assume that R has a derivation d which satisfies 

ax+ d(x) EA for all x in R, where A is a subriil.g of R. 
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Assume that x, y E R. Using the definition of d, Definition 1 and ( * ), and noting that A 
is a subring of R, we get 

a2xy + ad(xy) + d(x)d(y) =(ax+ d(x))(ay + d(y)) EA. 

By Definition 1 and(*), a2xy + ad(xy) = a(a(xy)) + d(a(xy)) EA. Noting that A is a 
subring of R, these two relations imply 

d(x)d(y) EA for all x,y in R. (4) 

Applying Definition 1 and ( * ), we have 

(ad+ d2)(x) · y + d(x)d(y) = (ad(x) + d2(x)) · y + d(x)d(y) = a(d(x)y) + d(d(x)y) E A. 

Combining this with (4) yields (ad+ d2)(x) · y EA. Thus we obtain 

(ad+ d2)(R) · R ~ A. (5) 

By Definition 1, ( *) and symmetry, we get 

R ·(ad+ d2)(R) s; A. (6) 

Using Definition 1 and(*), we have (ad+d2)(x) = ad(x)+d(d(x)) EA. Hence we obtain 

(ad+ d2)(R) s; A. (7) 

Definition 2. The associator ideal I of R is the smallest ideal which contains all 
associators in.R. 

Note that I may be characterized as all finite sums of associators and right (or left) 
multiples of associators, as a consequence of (1). Hence we have 

I= I)R,R,R) + (R,R,R)R = I)R,R,R) + R(R,R,R). (8) 

Lemma 1. Let R be a ring and B an additive subgroup of (R, + ). If B s; G 
and BR+ RB~ N n M or Mn L or N n L, then the ideal E of R generated by B 
is 

E = LB +BR+RB+R· BR. 

Proof. Obviously, E is an additive subgroup of (R, + ). By symmetry, we only 
prove the lemma in case B ~ G and BR+ RB~ N n M. Th.us we obtain 

(R · BR)R = R · (BR)R = R · BR2 s; R · BR 
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and 
R(R · BR) = R(RB · R) = (R · RB)R = R2 B · R ~ RB· R = R · BR. 

Hence E is an ideal of R. 

Lemma 2. If R is a ring with a derivation d such that ad+ d2 = 0, then 
2d(R)2 = 0. 

Proof. Assume that x, y ER. Because of ad+ d2 = 0, we obtain 

- ad(xy) = d2(xy) = d2(x)y + 2d(x)d(y) + xd2(y) 
= - ad(x)y + 2d(x)d(y) - axd(y) = -ad(xy) + 2d(x)d(y). 

Thus 2d(x)d(y) = 0, as desired. 
Let A~ N. Applying (2), (5) and (7) , we get (ad+ d2)(R) · (R, R, R) = 0. By this 

and (7), we have (ad+ d2)(R) · ((R, R, R)R) = 0. Using these and (8), we obtain 

(ad+ d2)(R) ·I= 0 if A~ N. (9) 

Let A~ L. Applying (3), (6), (7) and (8), we have 

I · ( ad + d2 )( R) = 0 if A~ L. (10) 

Theorem 1. If R is a simple ring with a derivation d such that ax+ d(x) E 
N n L for all x in R, then either R is associative or ad+ d2 = 2d(R)2 = 0. · 

Proof. If I = 0, then R is associative. Assume that I =I= 0. By the simplicity of R, 
we get I= R. By (9) and (10), we have (ad+d2)(R)·R = 0 and R·(ad+d2)(R) = 0. Thus, 
the ideal of R generated by (ad+d2)(R) is I)ad+d2)(R). Hence, I)ad+d2)(R) ·R = 0 
implies I:(ad + d2)(R) = 0. By Lemma 2, 2d(R)2 = 0, as desired. 

Theorem 2. If R is a prime ring with a derivation d such that ax+ d(x) E 
N n L for all x in R, then either R is associative or ((ad+ d2)(R))2 = 0. 

Proof. Let f = ad+d2. By the hypothesis, (5), (6) and (7), we have f(R) ~ NnL, 
f(R)R ~ N n Land Rf(R) ~ N n L. Applying these, and with x E f(R) and y E f(R),. 
and with x E f(R) and y E f(R)R, and with x E Rf(R) and y E f(R) in (1) respectively, 
we all get xy E M. Combining the above results, we obtain /(R)2 ~ G, f(R) · J(R)R ~ G 
and Rf(R) · f(R) ~ G. Using these and Lemma 1, we see that the ideal C of R generated 
by f(R)2 is 

C = L f(R)2 + f(R)2 R + RJ(R)2 + R · f(R)2 R. 

By (9), we have C · I = 0. Thus by the primeness of R, this implies C = 0 or I = 0. 
Hence either R is associative or ((ad+ d2)(R))2 = 0, as desired. 
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Theorem 3. If R is a prime ring with a derivation d such that ax+ d( x) E G 
for all x in R, then either R is associative or ad+ d2 = 2d(R)2 = 0. 

Proof. Let f = ad+ d2. By the hypothesis, (5), (6) and (7), we get f(R) ~ G, 
J(R)R ~ G and Rf (R) ~ G. Using these and Lemma 1, we have that the ideal F of R 
generated by f(R) is 

F = L f(R) + f(R)R + Rf(R) + R. f(R)R. 

By (9), we obtain F · I = 0. Thus by the primeness of R, this implies F = 0 or I = 0. 
Hence either R is associative or ad+ d2 = 0. By Lemma 2, 2d(R)2 = 0. This completes 
the proof of Theorem 3. 

In the course of the proof of Theorem 3, we obtain the 

Corollary. If R is a semiprime ring with a derivation d such that ax+d(x) E 
G and ad(x) + d2(x) E J for all x in R, then ad+ d2 = 2d(R)2 = 0. 

A simple calculation shows that d(x,y,z)) = (d(x),y,z) + (x,d(y),z) + (x,y,d(z)) 
for all x, y, z in R. Applying this we have that all the above associative subrings of R 
are d-invariant. Thus d(G) ~ G. Hence we can give another proof of Theorem 3. 

Another proof of Theorem 3. For all x, y in R, we have 

a(xy) + d(xy) = x(ay + d(y)) + d(x)y = (ax+ d(x))y + xd(y) E G. 

Then with x E G, or y E G in this equality respectively, and using the hypothesis, and 
noting that G is a subring of R, we obtain d(x)y E G and xd(y) E G. Thus, we get 
d(G)R + Rd(G) ~ G. Hence by Lemma 1, the ideal Hof R generated by d(G) is 

H = L d(G) + d(G)R + Rd(G) + R. d(G)R. 

Applying d(G) ~ G, (2), (8) and d(G)R + Rd(G) ~ G, we have d(G) ·I= 0. Thus, we 
get H ·I= 0. By the primeness of R, this implies H = 0 or I= 0. If I= 0, then R is 
associative. Assume that H = 0. Then d(G) = 0 and so (ad+ d2)(x) = ad(x) + d2(x) = 
d(ax + d(x)) = 0 for all x in R. Hence, R is associative or ad+ d2 = 0. 

Finally, we pose the following more general 

Problem. If R is a prime ring with a derivation d and there exists a polynomial 
f(t) E Z[t) such that f(d)(x) E G for all x in R, then either R is associative or g(d) = 0 
for some g(t) E Z[t]. 

By Theorems A, Band 3, we know that this problem is true when f(t) = t, tn, a+t, 
and g(t) = 2t, t3n-l and (a+ t)t respectively. 
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For the problem, we have the following remark by using the standard argument in 
linear algebra. 

Remark. If R is a nonassociative algebra over a field F and d is a derivation of R 
such that f(d)(R) s; G, where 

if i fj, i,j E {1,2,···,n}, 

then R = I::1 Riis a vector subspaces sum, where 

and 
n 

Ri n L Rj = G, 
j=/:ij=l 

i = 1,2,···,n. 

Moreover, if mi = 1 and GRi + RiG s; Ri, i 
Theorem 3 we have 

1, 2, · · ·, n, then as another proof of 

d(G)Ri+Rid(G) s; G, i = 1, 2, · · ·, n, 
and so 

d(G)R + Rd(G) s; G. 

Thus, if R is prime then as above we can prove that R is associative or d( G) = 0 which 
implies f(d)d = 0. For the general case, if char(R) = 0 then we may consider the tensor 
algebra R ®FE, where Eis the algebraic closure of F. 

We note that Theorem 3 can be generalized to skew derivation. Some lemmas and 
theorems of [6] have extended to s-derivations d with sd = ds. The above results will 
be a part of my doctoral thesis at Taiwan University under the guidance of Professor 
Pjek-Hwee Lee. I thank him very much and I also thank my teacher Professor Tsiu-Kwen 
Lee. Finally, the author thanks the referee for careful comments. 
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