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ON THE DEGREE OF APPROXIMATION OF
FUNCTIONS BELONGING TO THE
LIPSCHITZ CLASS BY (¢,c) MEANS

U. K. SHRIVASTAVA AND S. K. VERMA

Abstract. In the present paper, we obtain the degree of approximation of feLipa
(0 < @ <1) by (e, c) means (c > 0) of its Fourier Series.

1. Introduction

Let Car be the space of all 27-periodic and continuous functions defined on [—7, +m7],
which is a Banach space under the “sup” norm.
A function feLipa (0 < a < 1) if

f(z +h) - f(z) = O(||*) (1)
For each fecy, let the Fourier series be given by
8(z) = Z Crm exp(im ) (2)

where, C,,/, are Fourier coefficients. Let the nt? partial sum of the series (2) be
Sa(fiz) = ) Cmexp(imz)
m=—n

A series 3"~° a, with the sequence of partial sum {Sn} is said to be summable (e, c),
(c > 0) if (see [4])

i = T, s i - (3)
n—soo * n-eo \ TN P n Ttk

k=—o0
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exists, where it is to be understood that S,4r =0, when n + k < 0.

The (e, ¢) summability method is regular for ¢ > 0. It is interesting to note that this
method includes several other methods of summability, namely, Borel, (E, g), (v, k) etc.
(For details see Hardy [3] Theorem 159).

We shall write
Itz — fll= sup |to(f;z) — f(2)| (4)
—n<z<m
where t(f;z) is n'"(e, c)-means of the Fourier series of f at z.

Degree of approximation by Borel means and (FE, q)-means were obtained by Chan-
dral [1]&[2] respectively. Since (e,c)-method includes (B,ca) and (E,q) method, it is
natural to ask, what will be the result if we apply (e,c)-means to obtain the degree of
approximation for feLipa (0 < a < 1)?

We shall prove the following theorem.

Theorem: Let fecor NLipa, 0<a <1
Then

lits, — fll = O(n=/?)

2. Inequalities

In the proof of our theorem, we shall use the following inequalities

co k2
E k exp(—c—) < ﬁexp(—-cn) (5)
n 2c
k=n+1

k2 1
E exp(—-c—) sin(n + k + =)t
n 2
k=n+1

nt

<
= Pe

exp(—cn) (6)

oo

Z exp(—cniz)cos(kt) =0 {M} (7)

t
k=n+1

1+2 Z exp(—-%) cos(kt) = \/?{exp(—%) 4 O(exp(——%))} (8)

k=1

The inequality (6) follows from (5), (7) may be obtained by using Abel’s Lemma, and (8)
may be obtained by the classical formula for theta function (see Siddiqui [5]). Thus we
prove only (5).

Proof of (5) We observe that Y exp(—c—;{i) is non-increasing for Y > /7= and
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hence
Z k exp(——— )< [ Y exp(—)dy
- n
k=n+1
n [ d
5 [ #ea-Ta
=2 ex (—cn)
T

This completes the proof of (5)

3. Proof of Theorem

Following Titchmarsh [6] p.403, we have

Sa(f;z) — f(z) = /7r ::Etﬁ)) sin (n + -;—)t dt
0 2

where
26.(t) = f(z +1) + f(z — ) - 2f(x)
then
oo 2
ts(f;z) — ‘/ﬂ'n /0 s(frfét) l: exp(—%)sin(n +k+ %)t dt

1 T ot k . 1
=;\/%/0 s(ipngi)) [{1+22exp(—%)cos(kt)}sm(n+E)t

2
+ Z exp( —%—)51n(n+k+ )t] dt

k=n+41

=%\/§ [/0" ;lpnz((ti) [{1+2iexp(-—c—?)cos(kt)}sin(n+ %)t‘

ck? = ck? 1
-2 exp(——) cos(kt) sin(n + =)t + exp(——)sin(n + k + =)t| dt
k;-i-l p( ) (kt) sin( ) k_;“ p( n) ( 2)] }

=1 + I, + I3, sa

Hence
[t (F) = Fll < | + [|22]] + || 2] (9)
Now

o0

2
1

E exp(—i)sin(n+k+ —)t| dt
n v

k=n+1

1Bl =0(n=112) [ go
0
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=0(n'/?) /n t® exp(—cn)dt + O(n_1/2)/ t*~2 exp(—cn) dt
¢ g

nl=* for0<a<l1

e » -3 =
=0(n~ 2" %exp(—cn)) + O(n™2) exp( Cn){logn fora=1

- { O(n%:"‘ exp(—cn)) for0<a<l1 (10)
O(n~2exp(—cn)logn) fora=1
Similarly
O(n*~*exp(—cn)) for0<ax<1l
122]] = { (11)
O(n~% exp(—cn)log n) fora=1

Finally by (8), we have

_ [T es(t) L S /W te=l6) | - —=
) _/0 sin(n + 2)t exp( i )dt + O(1) 4 sin(n + 2)15 exp( e )dt

sin(t/2) sin(t/2)
=11+ 11,2 say (12)

Now

11121l =O(exp(~7)) [ /0% . /_w] -

=0 {n_‘" exp(—Z—:)} + O{exp(—Z—:)} - (13)

|
sin(n + §)tl di

and

—o(1) [t exp(-"E
Msall =0) [ ¢t exp(=T5)

1
sin(n + §)t| dt

s -‘7’: a—1 —1 " a—zg x _Eﬁ
o(1) /0 214t + O(n1) /ﬁt - [e o( )] it
—0(n=/?) (14)

Collection of (9), (10), ... (14) completes the proof of the theorem.
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