ALMOST RIEMANN INTEGRABLE FUNCTIONS

MOUSTAFA DAMLAKHI

Abstract. An arbitrary function f on a bounded interval [a, b] is termed an almost R-integrable function if there exists a Riemann integrable function g such that f = g a.e. In this note a characterization of the class of almost R-integrable functions is obtained.

1. Introduction.

A bounded function f(x) defined on a bounded interval [a, b] is Riemann integrable if and only if f(x) is continuous a.e. But a function which is a.e. equal to a Riemann integrable function on [a, b] need not be Riemann integrable as the characteristic function of the set of rational points in the interval shows. In this note, we characterize the class of functions on [a, b] which are a.e. equal to Riemann integrable functions.

Here, the measure and the integral (unless otherwise specified) are taken in the sense of Lebesgue.

2. Almost *R*-integrable functions:

Definition 1. An arbitrary function defined on a bounded interval [a, b] is said to be *almost R-integrable* if there exists a bounded function g(x) on [a, b] integrable in the sense of Riemann such that f(x) = g(x) a.e.

Example of an unbounded function in [0, 1] that is almost R-integrable is

$$f(x) = \begin{cases} n & \text{if } x = rac{1}{n} \\ 1 & \text{otherwise} \end{cases}$$

Note, however,

 $g(x):\begin{cases} \frac{1}{\sqrt{x}} & \text{if } x \in (0,1)\\ 0 & \text{if } x = 0 \end{cases}$

Received January 18, 1994 revised April 8, 1994. 1991 Mathematics Subject Classification 26A42 Key words and phrases. Almost integrability.

MOUSTAFA DAMLAKHI

is Riemann integrable in the extended sense but not almost R-integrable

Proposition 2. An almost R-integrable function on [a, b] is integrable (in the sense of Lebesgue) but not conversely.

Proof. It is obvious that f is integrable if it is almost R-integrable.

Now, we exhibit an integrable function that is not almost R-integrable.

Let A be a nowhere dense perfect set of measure $\frac{1}{2}$ in [0, 1].

If f(x) is the characteristic function of A, then f is integrable, but not almost R-integrable.

For if f = g a.e. where g is Riemann integrable, we arrive at a contradiction since g is continuous a.e. while f is not continuous at every one of the points of A which is of measure $\frac{1}{2}$.

3. The class \mathcal{E} of functions:

Let \mathcal{E} denote the class of functions f on [a, b] such that f is the limit a.e. of an increasing sequence (φ_n) of step functions.

Theorem: A function f defined on [a, b] is almost R-integrable if and only if $f \in \mathcal{E} \cap -\mathcal{E}$.

Proof: Since every Riemann integrable function is in \mathcal{E} , it is clear that every almost *R*-integrable function $f \in \mathcal{E} \cap -\mathcal{E}$.

Conversely, let us suppose that $f \in \mathcal{E} \cap -\mathcal{E}$. Then f^+ and $f^- \in \mathcal{E} \cap -\mathcal{E}$; we'll therefore assume that f is positive.

There exists then, an increasing sequence that $\{\varphi_n\}$ of step functions and another decreasing sequence $\{\psi_n\}$ of step functions satisfying the conditions: $\sup \varphi_n = f$ a.e. and $\inf \psi_n = f$ a.e.

Remark that for some constants A and B and all n, we have $\int_a^b \varphi_n(x) dx \leq A$ and $\int_a^b \psi_n(x) dx \leq B$.

By Lebesgue's monotone convergence theorem we also have

$$\sup \int_a^b \varphi_n dx = \int_a^b f(x) dx = \inf \int_a^b \psi_n dx.$$

Consequently, given $\mathcal{E} > 0$, we can choose N so that

$$\int_{a}^{b} \psi_{m} dx - \int_{a}^{b} \varphi_{n} dx < \epsilon \quad \text{if} \quad n, m \ge N.$$

232

Now, by hypothesis $\varphi_n \leq \psi_1$ a.e. and since φ_n and ψ_1 are step functions, the sequence $\{\varphi_n\}$ is bounded above.

Let $g(x) = \sup \varphi_n(x)$ on [a, b]. then g(x) is a bounded function such that g = f a.e. Now, it is enough to show that g is Riemann integrable.

Let $\varphi_N(x) = \sum c_k X_{l_k}$

Take now a partition $P: (a = x_0 < x_1 < \cdots < x_n = b)$ of [a, b] such that each I_k is one of the subintervals of P. Then if m_p is the lower Darboux sum of g corresponding to the partition P, we have

$$\int_{a}^{b} \varphi_{N} dx \leq m_{p} \leq \int_{\underline{a}}^{b} g(x) dx, \quad \text{where}$$

 $\int_{\underline{a}}^{b} g(x)dx \text{ denotes the lower integral of } g \text{ in the sense of Riemann.}$ In the same way, if $\inf \psi_n(x) = h(x)$ then $h(x) \ge g(x)$ because $\psi_m \ge \varphi_n$ for any n and m; also we can prove that $\int_{a}^{b} \psi_N dx \ge \int_{a}^{\overline{b}} h(x)dx \ge \int_{a}^{\overline{b}} g(x)dx.$

Consequently,

$$\int_{a}^{\overline{b}} g(x)dx - \int_{\underline{a}}^{b} g(x)dx \leq \int_{a}^{b} \psi_{N}dx - \int_{a}^{b} \varphi_{N}dx < \epsilon.$$

Since ϵ is arbitrary, we conclude that g is Riemann integrable

This completes the proof of the theorem.

Reference

[1] Soo Bong Chae, Lebesgue integration, Marcel Dekker, Inc. 1980.

[2] F. Riesz and B. Sz. Nagy, Functional Analysis, Ungar Publishing Co., Sixth printing, 1972.

Department of Mathematics, King Saud University P.O. Box 2455, Riyadh 11451, Saudi Arabia.