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ALMOST RIEMANN INTEGRABLE FUNCTIONS 

MOUSTAFA DAMLAKHI 

Abstract. An arbitrary function f on a bounded interval [a, b] is termed an almost 
R-integrable function if there exists a Riemann integrable function g such that 
f = g a.e. In this note a characterization of the class of almost R-integrable 

functions is obtained. 

1. Introduction. 
A bounded function /(x) defined on a bounded interval [a, b] is Riemann integrable 

if and only if f(x) is continuous a.e. But a function which is a.e. equal to a Riemann 
integrable function on [a, b] need not be Riemann integrable as the characteristic function 
of the set of rational points in the interval shows. In this note, we characterize the class 
of functions on [a, b] which are a.e. equal to Riemann integrable functions. 

Here, the measure and the integral (unless otherwise specified) are taken in the sense 

of Lebesgue. 

2. Almost R-integrable functions: 

Definition 1. An arbitrary function defined on a bounded interval [a, b] is said 
to be almost R-integrable if there exists a bounded function g(x) on [a, b] integrable in 
the sense of Riemann such that /(x) = g(x) a.e. 

Example of an unbounded function in [O, 1] that is almost R-integrable is 

f(x) = { ~ if X = .!. n 
otherwise 

Note, however, 
g(x):{~ 

if X€(0, 1) 
if X = 0 
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is Riemann integrable in the extended sense but not almost R-integrable 

Proposition 2. An almost R-integrable function on [a, b] is integrable (in 
the sense of Lebesgue) but not conversely. 

P.roof. It is obvious that f is integrable if it is almost R-integrable. 

Now, we exhibit an integrable function that is not almost R-integrable. 

Let A be a nowhere dense perfect set of measure ! in [O, l]. 
If J(x) is the characteristic function of A, then f is integrable, but not almost 

R-integrable. 

For if f = g a.e. where g is Riemann integrable, we arrive at a contradiction since 
g is continuous a.e. while f is not continuous at every one of the points of A which is of 

1 measure 2. 

3. The class £ of functions: 

Let £ denote the class of functions f on [a, b] such that f is the limit a.e. of an 
increasing sequence ( 'Pn) of step functions. 

Theorem: A function f defined on [a, b] is almost R-integrable if and only 
if Jc£ n -£. 

Proof: Since every Riemann integrable function is in £, it is clear that every almost 
R-integrable function j€£ n -£. 

Conversely, let us suppose that j€£ n -£. Then j+ and J-t£ n -£; we'll therefore 
assume that f is positive. 

There exists then, an increasing sequence that { 'Pn} of step functions and another 
decreasing sequence { '!Pn} of step functions satisfying the conditions: sup 'Pn = f a.e. 
and inf '!Pn = f a.e. 

Remark that for some constants A and B and all n, we have J: cpn(x)dx ~ A and 
J: '!Pn(x)dx ~ B. 

By Lebesgue's monotone convergence theorem we also have 

sup J.' <p.dx = J.' f(x)dx = inf J.' ,J,.dx. 
Consequently, given £ > 0, we can choose N so that 

J.' ¢=dx - J.' <p.dx < ,· if n, m ~ N. 
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Now, by hypothesis 'Pn ::S 'lj.;1 a.e. and since 'Pn and 1/J1 are step functions, the 
sequence { 'Pn} is bounded above. 

Let g( x) = sup 'Pn ( x) on [a, b]. then g( x) is a bounded function such that g = J a.e. 
Now, it is enough to show that g is Riemann integrable. 

Take now a partition P : ( a = xo < x1 < · · · < Xn = b) of [a, b] such that each h is 
one of the subintervals of P. Then if mp is the lower Darboux sum of g corresponding 
to the partition P, we have 

J.' <pNdx :', m, :', i' g(x)dx, where 

J: g(x)dx denotes the lower integral of gin the sense nf Riemann. 
- In the same way, if inf 1/Jn ( x) = h( x) then h( x) 2: g( x) because 1Pm 2: 'Pn for any n 
and m; also we can prove that J: 1/JNdx 2: J: h(x)dx 2: J: g(x)dx. 

Consequently, 

b lb lb lb 1 g(x)dx - !!. g(x)dx ::S a 1/JNdx ~ a 'f)Ndx < c. 

Since c is arbitrary, we conclude that g is Riemann integrable 
· This completes the proof of the theorem. 
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