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ON CERTAIN SUBCLASSES OF 
MEROMORPHICALLY MULTIVALENT FUNCTIONS 

NAK EUN CHO 

Abstract. The object of the present paper is to introduce a new class Jn,p(o:) of 
meromorphically multivalent functions defined by a multiplier tranformation and 
to investigate some properties for the the class ln,p(o:). Our results include or 
improve some known results. 

1. Introduction 

Let Lp denote the class of functions of the form 

(a-p # 0, p EN= {1,2, ... }) 

which are regular_ in the punctured disk D = {z: 0 < lzl < l}. For any integer n, let the 
operator 1n operating on f E Lp be defined by 

Obviously, we have 

for all integers m and n. For any nonpositive integer n and p = 1, the operators Jn are 
the differential operators studied by Uralegaddi and Somanatha (6,7]. Also the operators 
In are closely related to the multiplier transformations introduced by Flett (2]. 

For any integer n, let Jn,p(o:) denote the class of functions f E Lp satisfying the 
condition 

un-1 f(z))' - (p + 1)} < -Q Re{ rr"" .£1_,,, (0 ~ a < p, z E U = {z: lzl < 1} ). 
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In this paper, it is shown that the integral operator Fe defined by 

(c 2'.: 1) 

belongs to the class Jn,p(a), whenever f E Jn,p(a). From this result, we also prove 
that for the classes ln,p(a) of functions in ~P' ln,p(a) C ln+i,p(a) holds. Since lo,p(o.) 
equals to the class of meromorphically p-valent convex functions of order a, all members 
in ln,p(a) are p-valent convex for any nonpostive integer n [4). Our results generralize 
some results of Bajpai [1], Goel and Sohi [3]. 

2. Main results 

We begin with the statement of the following lemma due to Miller and Mocaun [5]. 

Lemma. Let ¢( u, v) be a complex valued function, </) : R - C, R c C2 ( C is 
the complex plane), and let u = u1 + iu2, v = v1 + iv2• Suppose that the function 
¢( u, v) satisfies the following condition: 

(i) <f>(u, v) is continuous in R; 
(ii) (1, 0) E R and Re{ </>(l, O)} > O; 
(iii) Re{ ¢(iu2, vi)} $ 0 for all (iu2, vi) E R such that v1 $ -(l~u~), 

Let r(z) = 1 + r1z + r2z2 + · · · be regular in U such that (r(z), zr'(z)) E R for all 
zE U. If 

Re{</)(r(z), zr'(z))} > 0 

then Re{r(z)} > 0 (z E U). 

With the aid of above lemma, we derive 

Theorem 1. Let f E ln,p(a) and let 

(z EU), 

c 1z Fc(z) = c+p tc+p-l J(t)dt 
z 0 

(c 2'.: 1). (2.1) 

Then Fe E ln,p(/3), where 

f3 _ 2(p +a)+ 2c + 1 - ./(2(p - a) - 2c + 3)2 + 8(2(p + 1 - o.)(c - 1) + 1) 
- 4 . (2.2) 

Proof. Let f E ln,p(a). Then we have 

un-1 !(~))' 
Re{ , Tn u _\\J - (p + 1)} < -Q. (2.3) 
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From the definition of Fe, we obtain 
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(2.4) 

and also 
z(InFc(z))' = 1n-lFc(z)-(p+ l)InFc(z). 

Using (2.4) and (2.5), the condition (2.3) may be written as 

(2.5) 

(In-2 Fc(z))' 
(In-iFc(z))' + (c - 1) 

Re{ (InFc(zU' - (p + 1)} < -a. 1 + ( C - 1) , -- , , .. 

Define the function r(z) by 

(In-1 Fc(z))' - + (1 - ) ( ) . -1 1rz, 

(2.6) 

(2.7) 

where 

_ 2(p - a) - 2c + 3 + ./(2(p - a) - 2c + 3)2 + 8(2(p + 1 - a)(c - 1) + 1) ( ) 
,- 4 ,>l. 

(2.8) 
Then r(z) = 1 + r1z + r2z2 +···is regular in U. Differentiating (2.7) logarithmically and 
simplifying, we have 

(r-2 Fc(z))' 
(In-Ipc(z))' + (c - 1) 

(InFc(z))' - (p + 1) = - (p + 1) + 1 + (1 - 1)r(z) l+(c-1),- ,_, ... 

+ __ (1_-_,)_zr_'_(z_) __ 
(, + c-1) + (1·- ,)r(z) (2.9) 

It follows from (2.9) that 

~r-2 F ~zH' ( l) 
[n-lp: z ' + c - _ ( + 1) + a} 

- Re{ 1 + (c- 1) ,E"fd~H'.. P 

(1 - ,)zr'(z) } = Re{p + 1 - (a+,) - (1 - ,)r(z) - ', + c - 1) + (1 - ,)r(z\ 
>0. (2.10) 

If we define the function ¢( u, v) by 

(1 - ,)v </>(u,v)=p+l-(a+,)-(1--y)u- ,_, _ 
1
,, ,

1 
_,_, (2.11) 
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then ¢( u, v) satisfies 
(i) ¢( u, v) is continuous in R = (C - { '>'~~-;:-1}) x C; 
(ii) (1, 0) E Rand Re{ ¢(1, O)} = p - a:> O; 
(iii) for all (iu2, v1) ER such that v1 $ -<1:;u~), 

. (,+c-l)(l-1)v1 
Re{¢(iu2,vi)}=p+l-(a+1)-( l)2 (l )2 2 

1 + C - + - 1 U2 

(, + C - 1)(1 - 1)(1 + U~) 
$ p + 1 - (a:+ 1) + 2{(, + C - 1)2 + (1 - 1)2un 
$0. 

Since </>(u, v) satisfies the conditions in Lemma, we have that Re{r(z)} > 0 (z EU). This 
proves that 

(z EU) (2.12) 

or 
(Jn-l Fe(z))' 

Re{ (JnFe(z))' - (p + 1)} < -,B 

where ,B is given by (2.2). That is, Fe E Jn,p(,B). 
Since ,B - a: > 0 in Theorem 1, we have 

( z E U, 0 $ ,B < p), (2.13) 

Corollary 1. If f E Jn,p(o:), then the integral operator Fe defined by (2.1) 
belongs to the class Jn,p(o:). 

Taking n = 0, p = land a:= 0 in Corollary 1, we obtain the following corresponding 
result of Goel and Sohi [3]. 

Corollary 2. If f(z) = a~l + I:~o akzk (a_1 # 0) is meromorphically convex, 
than so is the integral operator Fe defined by (2.1). 

Putting c = 1 in Corollary 2, we obtain the following result of Bajpai (1]. 
Corollary 3. If f(z) = a~l + L~o akzk (a_1 # 0) is meromorphically convex, 

then so is 
l 1z F1(z) - 2 tj(t)dt. 
z 0 

(2.14) 

Next, we prove 

Theorem 2. If f E ln,p(o:), then f E Jn+i,p(,B), where 

,B = 3 + 2(p + a:) - \/'(2(p - a:)+ 1)2 + 8. 
4 (2.15) 
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Proof. For c = 1, the identities (2.4) and (2.5) reduce to In f(z) = 1n-l F1(z) and 
hence 1n+1J(z) = InF1(z). Therefore 

(In f(z))' 
(Jn+l f(z))' 

(In-1 F1 (z) )' 
(JnF1(z))' (2.16) 

Since f E ln,p(o.), the result follows from Theorem 1. 

Similarly, from Theorem 2, we have 

Corollary 4. ln,p(a) c ln+1,p(a) for any integer n. 
Remark. Since lo,p(a) is the class of meromorphically p-valent convex functions of 

order a [4], we can see from Corollary 3 that all members in ln,p(a) are meromorphically 
p-valent convex of order a for any nonpostive integer n. 

We state the following theorem which is proved by a similar method of Theorem 2. 

Theorem 3. f E ln,p(a) if and only if the integral operator F1 defined by 
(2.16) belongs to the class ln-l,p(a). 
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