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ASYMPTOTIC BEHAVIOUR 
OF SECOND ORDER NEUTRAL DIFFERENTIAL EQUATIONS 

WITH "MAXIMA" 

D. BAINOV, V. PETROV AND V. PROYTCHEVA 

Abstract. In the paper the asymptotic behaviour of nonoscillatory solutions of 
neutral equations with "maxima" is considered. Examples are given showing the 
difference between the equations with "maxima" and the corresponding neutral 
equations without "maxima". 

1. Introduction 

Consider the equation 

[x(t) + p(t)x(t - r)]" - q(t) max x(s) = 0 
[t-u,t] 

(1) 

Though differential equations with "maxima" are often met in the applications, for in 
stance in the theory of automatic control ([3], [4]), the qualitative theory of these equa 
tions is relatively lit-tie developed. The existence of periodic solutions of the equations 
with "maxima" is considered in (5] and [6]. The asymptotic stability of the solutions is 
investigated in [7). The only paper in which the oscillatory properties of equations with 
"maxima" are considered is [1]. 

The main goal of the present paper is the investigation of the asymptotic behaviour 
of the nonoscillatory solutions of (1). An example is given showing the difference between 
equations with "maxima" and the corresponding equations without "maxima". 

2. Auxiliary Assertions 

We shall say that conditions (H) are met if the following conditions hold. 
HI. T, (! E IR+ 
H2. p(t)EC([to,oo),IR) 
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H3. q(t) E C([to,oo),m+) 
H4. J/; q(t)dt = oo 

By a solution of (1) we mean a continuous function x on the interval [to, oo) such 
that x(t)+p(t)x(t-r) is continuously differentiable and x satisfies (1). As is customary, a 
solution of (1) is said to be oscillatory if it has arbitrarily large zeros, otherwise it is said 
to be nonoscillatory. In the sequel, for convenience, we will assume that inequalities 
concerning values of functions are satisfied eventually, that is for all large t. Define the 
function z( t) as follows 

z(t) = x(t) + p(t)x(t - r) (2) 

Then (1) implies that 
z"(t) = q(t) max x('s) 

[t-u,t) 

z'(t) = z'(to) - it q(s) max x(v)ds 
to [s-u,s] 

(3) 

(4) 

Lamma 1. Let conditions (H) hold and 

p ~ p(t) ~ 0 

Then, if x(t) is a positive solution of (1), then either 

(5) 

z(t) > 0, z'(t) > 0, z"(t) ;::: 0 and lim z(t) = lim z'(t) = oo t-.oo t->oo (6) 

or 
z(t) > 0, z'(t) < 0, z"(t) ;::: 0 and lim z(t) = lim z'(t) = 0 t-.oo t->oo (7) 

Proof. From (3) it follows that z"(t) ;::: 0 and z'(t) is a nondecreasing function. 
On the other hand, H4 implies that z'(t) "¢ 0 eventually. Thus either z'(t) > 0 or 
z'(t) < 0 .. Let z'(t) > 0. Since z'(t) is a nondecreasing function, limt-+oo z(t) = oo. 
From (4) we obtain that limt-+oo z'(t) = oo. Hence if z'(t) > 0, then (6) is valid. Let 
z'(t) < 0. From the fact that z'(t) is a nondecreasing function it follows that there exists 
limt-,00 z'(t) = c ~ 0. Suppose that c < 0. Then z'(t) < c and limt-.oo z(t) = -oo. From 
(2) it follows that the inequality 

z(t) > p(t) x(t - r) > px(t - r) 

is valid and therefore limt-+oo x(t) = oo. From ( 4) we obtain that limt-+oo z'(t) = -oo. 
The contradiction obtained shows that limt-.oo z'(t) = 0 and since z'(t) is a nondecreasing 
function, z'(t) < 0 and z(t) is a decreasing function. Suppose that there exists the finite 
limit limt-+oo z(t) = L. Let L > 0. The inequality x(t) > z(t) implies that x(t) > L. 
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From H4 and (4) it follows that the relation limt_,<Xl z'(t) = oo is valid and we get to a 
contradiction. Thus L ::=; 0. Let L < 0. The estimate 

L 
2 > z(t) = x(t) + p(t) x(t - r) > p(t) x(t - r) > px(t - T) 

is valid. From the inequality x(t - r) > 21;, > 0 as above we obtain that limt_,<Xl z'(t) = 
oo. Thus L = 0 and since z(t) is a decreasing function, then z(t) > 0. Suppose that 
limt ...... <Xl z(t) = -oo. As above the inequality x(t- r) > z~) holds and limt-<Xl x(t) = oo. 
From (4) it follows that lim z'(t) = oo and we get to a contradiction. Thus if z'(t) < 0, 
then (7) is realized. 

Lemma 2. Let conditions (H) and (5) hold. 
Then, if x(t) is a negative solution of (1), then either 

z(t) < 0, z'(t) < 0, z"(t) ::S; 0 and lim z(t) = lim z'(t) = -oo t-><Xl t-><Xl (8) 

OT 

z(t) < 0, z'(t) > 0, z"(t) ::S; 0 and lim z(t) = lim z'(t) = 0 t-><Xl t-+<Xl 
(9) 

The proof of Lemma 2 is analogous to that of Lemma 1. 

Lemma 3. The function x(t) is a negative solution of equation (1) if and 
only if -x(t) is a positive solution of the equation 

[y(t) + p(t)y(t - r)]" - q(t) min y(s) = 0 [t-o-,t] 
(1') 

The assertion of Lemma 3 is verified immediately. 

3. Main results 

Theorem 1. Let conditions (H) hold and 

p ::S; p(t) ::S; -1 

Then for each nonoscillatory solution x(t) of (1) limt-+<Xl lx(t)I = oo. 
Proof. Let x(t) < 0. Lemma 2 implies that (8) or (9) is valid. Suppose that (8) 

holds. Then from the inequality x(t) < z(t) it follows that limt-+(X) x(t) = -oo and the 
assertion of Theorem 1 is proved. Suppose that (9) is valid and let c = limsupt-+<Xl x(t). 
If c < 0, then x(t) < ~ and from ( 4) we obtain that limt_,<Xl z'(t) = -oo which contradicts 
the relation limt ...... <Xl z'(t) = 0 proved in Lemma 2. Hence c = 0, i.e. limsupt--<Xl x(t) = 0. 
There exists a sequence {tn}1 such that limn-+(X) tn = oo, limn-.(X) x(tn) = 0 and 

(10) 

max x(s) = x(tn) 
[t1 ,tn] 

(11) 
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On the other hand, since z(t) < 0, then 

x(t) < -p(t) x(t - r) ::; x(t - r) 

But the inequality x(tn) < x(tn - r) contradicts (11). Thus under the conditions of 
Theorem 1 of the two relations (8) and (9) only (8) is valid and limt-+oo x(t) = -oo. The 
case when x(t) > 0 is considered analogously. 

Corollary 1. Let conditions (H) and (IO) hold. Then each bounded solution 
of (I) is oscillatory. 

Theorem 2. Let conditions (H) hold and 

-1 < p :s; p( t) :s; 0 (12) 

Then, if x(t) is a nonoscillatory solution of (I), then either limt-+oo x(t) = 0 
or limt~oo lx(t)I = oo 

Proof. Let x(t) > 0 and suppose that x(t) is a bounded function. Obviously in 
this case of the two relations (6) and (7) only (7) is realized and thus limt-+oo z(t) = 
0. Suppose that c = limsupt-+oox(t) > 0. There exists a sequence {tn}00, such that 
limn-+oo tn = oo and limn-+oo x(tn) = c. Let d = lim supn-+oo x(tn) (it is clear that 
d :s; c). Choose a subsequence {nk} ~ {n} such that limk-+oo x(tnk - r) = d. From (2) 
and (12) the inequality 

z(t) ::::,: x(i) + px(t - r) 

follows. We pass to the limit in the inequality 

as k - oo and obtain 
0::::,: c +pd::::,: c +pc= (1 + p)c > 0 

The contradiction obtained shows that lim supt-+oo x(t) = 0 and limt-+oo x(t) = 0. Let 
us assume that x(t) is an unbounded solution of (1). We shall show that in this case 
relation (6) is valid. Suppose that this is not true. Since x(t) is an unbounded func 
tion, there exists a sequence { an} such that limn-+oo an = oo, limn-+oo x(an) = oo and 
max[ai,an] x(s) = x(an). The following estimate is valid 

z(an) = x(an) + p(an) x(an - r) ::::,: x(an) + p(an) x(an) 
= x(an)(l + p(an)) ::::,: x(an)(I + p) 

Inequalities (12) imply that limn..,...00 z(an) = oo which contradicts the relation 
limt-+oo z(t) = 0. Hence (6) is valid and limt-+oo z(t) = oo. From the inequality 
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x(t) > z(t) it follows that limt-.00 x(t) = oo. The <;:ase when x(t) is a negative solu 
tion of ( 1) is considered analogously. 

Theorem 3. Let conditions (H) hold and 

0 ~ p(t) ~ p < l (13) 

Then for each nonoscillatory solution of (l) either limt-+oo x(t) = 0 or 
limt-+oo lx(t)j = oo. 

Proof. Let x(t) > 0. From (3) it follows that z"(t) ;::: 0 and z'(t) is a nondecreasing 
functions. H4 implies that either z'(t) > 0 or z'(t) < 0. Let z'(t) > 0. Obviously 
limt-+oo z(t) = oo and z(t) is an increasing function. From (2) there follow the equalities 

z(t + r) = x(t + r) + p(t + r) x(t) 
p(t + r)z(t) = p(t + r)x(t) + p(t)p(t + T)x(t - T) 

From the above two equalities we obtain the equality 

z(t + T) - p(t + T)z(t) = x(t + T) - p(t)p(t + r)x(t - T) 
On the other hand, 

z(t + r) - p(t + r)z(t) 
= p(t + r)(z(t + T) - z(t)) + (1 - p(t + r))z(t + r) 
=p(t + T)T z'(~(t)) + (1 - p(t + r))z(t + r) > (1 - p)z(t + r) 

Hence the inequality 
x(t + r) > (1 - p)z(t + T) 

is valid and since limt-+oo z(t) = oo, then limt-+oo x(t) = oo. Let z'(t) < 0. In this case 
z(t) is a decreasing positive function. If limt-+oo z'(t) = c < 0 then limt-.00 z(t) = -oo. 
Therefore limt-+oo z'(t) = 0. Suppose that d = limt-+oo z(t) > 0 and consider the equality 

p(t + r)r z'(~(t)) + (1 - p(t + r))z(t + r) = x(t + r) - p(t)p(t + r)x(t - r) 
Since limt .... oo z'(t) = 0 and limt-+oo ~(t) = oo, then from the above equality it follows 
that for t large enough the inequality -c: + (1 - p)d < x(t + r) is valid, where c: is 
an arbitrarily small positive number. From the last inequality and ( 4) it follows that 
limt-+oo z'(t) = oo. The contradiction shows that limt .... 00 z(t) = 0. Then (2) implies the 
relation limt--+oo x(t) = 0. 

Theorem 4. Let conditions (H) hold and p(t) = l. 
Then if x(t) is an unbounded nonoscillatory solution of (l), limt-+oo lx(t)I = oo 
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Proof. Let x(t) be a positive unbounded solution of (1). Then z(t) is also an 
unbounded function. As above, either z'(t) > O,or z'(t) < 0. If we assume that z'(t) < 0, 
then z(t) is a decreasing positive function which contradicts the fact that it is unbounded. 
Thus z' ( t) > 0 and z( t) is an increasing function. Since z' ( t) is increasing, there exists 
a positive constant d such that z'(t) ~ d > 0. Define the function w(t) as follows: 
w(t) = z(t) - z(t - r). Then 

w(t) = x(t) - x(t - 2T) (14) 

We sum up the equalities 

w(t + 2kT) = x(t + 2kT) - x(t + 2(k - l)T), k = 1, 2, ... , n 
and obtain 

n L w(t + 2kT) = x(t + 2nT) - x(t) 
k=l 

(15) 

Let lim inft-.oo x(t) = c (0 < c < oo ). Then the inequality x(t) > ~ holds eventually. 
From the definition of w(t) it follows that for each k E N there exists o:k such that 
o:k E [t + (2k - l)T, t + 2kr] and w(t + 2kT) = T z'(o:k), Therefore for t ~ I (I is large 
enough) the inequality w(t + 2kr) ~ dT holds. By virtue of the last inequality and 
(15) we obtain that for each t ~ I and each n E N we have x(t + 2nT) ~ ndT. Choose a 
seque.nce {tk}k=:1 such that limk-+oo tk = oo and limk-+oo x(tk) = c. Hence for sufficiently 
large k the inequality x( tk) < 2c holds. Let n E N be such that !!dT > 2c. For that 
fix~d n choose the positive integer m such that tm - 2nT > I. Set I= t.!.11 - 2nr. Then 
x(! + 2nT) = x(tm) < 2c. On the other hand, from the choice of n and tit follows that 
x(t + 2nT) > ndT > 2c. The contradiction obtained shows that either c = 0 or c = oo. 
Suppose that c = 0, i.e. lim inft-+oo x( t) = 0. · There exists a sequence {.Bn} 1 such that 
limn-+oo .Bn = oo, limn-+oo x(.Bn) = 0 and min[.Bi,.Bnl x(s) = x(.Bn). Using the definition 
of w(t) and the fact that z(t) is an increasing function, we obtain that w(t) > 0. Then 
(14) implies that x(t) > x(t - 2T). This inequality, however, contradicts the relation 
min[.Bi,.Bn] x(s) = x(.Bn). Hence lim inft-+oo x(t) = oo and lim x(t) = oo. The case when 
x(t) is a negative solution of .(1) is considered analogously. 

Theorem 5. Let conditions Hl-H3 hold and p(t) = l. Let the function q(t) · 
also satisfy the condition: 

HS. f
00 

q(t)dt = oo, where q(t) = min {q(t), q(t + T)} lto 
Then for each bounded positive solution x(t) of (1) limt-.oo x(t) = 0 
Proof. Since x(t) > 0, then z"(t) ~ 0 and z'(t) is a nondecreasing function. H5 

implies that q(t) 'I:- 0 eventually. Thus either z'(t) > 0 or z'(t) < 0. If z'(t) > 0, then 
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limt-+oo z(t) = oo, which contradicts the boundedness of x(t). Hence z'(t) < O and z(t) 
is a positive decreasing function. Let c = limt-+oo z(t) and suppose that c > 0. From (3) 
it follows that 

z"(t) + q(t - r) max x(s) = q(t) max x(s) + q(t - r) max x(s) 
[t-u-r,t-r] [t-u,t] . [t-u-r,t-r] 

Then, making use of the definition of ij(t) and of (2), we obtain that 

z"(t) + q(t - T) max x(s)::::,: ij(t - r)[ max x(s) + max x(s)] 
[t-u-r,t-r] [t-u,t] · [t-u-r,t-r] 

= ij(t - r)[ max x(s) + max x(s - T)] 
[t-u,t] [t-u,t] 

::::,: ij(t - r) max (x(s) + x(s - T)) 
[t-u ,t] · 

= ij(t - r) max z(s) = ij(t - T)z(t - C!) (t-u,t] 

Since z(t) is a decreasing function and limt-+oo z(t) = c, then z(t) > c and the above 
inequality takes on the form 

z"(t) + q(t - r) max x(s) > cij(t - T) 
[t-u-r,t-r] 

We integrate the last inequality from t1 to t and obtain 

z'(t) - z'(t1) + it q(s - r) max x(v)ds > cit ij(s - T)ds 
ti [s-r-u,s-r] ti 

z'(t) - z'(t1) + f-r q(s) max x(v)ds > cit-r ij(s)ds (16) 
}ti -T [s-u,s] t1 -T 

Since z'(t) is a negative nondecreasing function, then z'(t) is a bounded function. On 
the other hand, H5 implies that the right-hand side of (16) tends to infinity as t --+ oo. 
Thus from (16) we obtain that 

100 

q(t) max x(s )dt = oo 
ti [t-u,t] 

Integrating (3) from t1 to t, we obtain the equality 

z'(t) - z'(t1) = it q(s) max x(v)ds 
ti [s-u,s] 

(17) 

Then (17) implies the relation limt-+oo z'(t) = oo. 'I'.he contradiction obtained shows that 
c = 0, i.e. limt-+oo z(t) = 0. But from the inequality x(t) < z(t) it follows immediately 
that limt-+oo x( t) = 0 and the proof is complete. 
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Remark 1. Theorems 4 and 5 characterize completely the asymptotic behaviour 
of the positive nonoscillatory solutions of (1). In contrast to neutral equations without 
"maxima" the assertion of Theorem 5 is not valid for bounded negative solutions of (1) 
even under the stronger condition q(t) ;::: q > 0. We shall illustrate this fact by the 
following example. 

Example 1. Consider the equation 

[y(t) + y(t - ! )}" - q(t) min y(s) = 0 
2 [t-1,t] 

where 

q(t) = (1 + et) e-t ( min { cp(s) + e-s})-l 
[t-1,t) 

and cp(t) is a 1-periodic function defined by the equality 

cp( t) = { t, t E [~, ! ] 
l-t, tE[2,lJ 

(18) 

A straightforward verification yields that the function y(t) = cp(t)+e-t is a positive solu 
tion of equation (18). Furthermore, obviously liminft-oo y(t) = 0 and limsupt-+oo y(t) = 
! . On the other hand, the inequality 

e-t::; min {cp(s) +e-s}::; e1-t 
[t-1,t] . 

implies that 1tf 12 ~ q( t) ::; 1 + e112. Thus condition H5 is valid (in fact, even the 
stronger condition q(t) ;::: q > 0 holds). Lemma 3 implies that although the conditions 
of Theorem 5 are met, equation (1) could have a negative bounded solution which does 
not tend to zero. 

Theorem 6. Let conditions (H) hold and 

(19) 

Then if x(t) is a bounded nonoscillatory solution of (1), then limt-+oo x(t) = 0. 
Proof. Let x(t) > 0. As in Theorem 5 it is proved that if x(t) is a bounded 

positive solution of (1), then z"(t) ;::: 0, z'(t) < 0 and z(t) > 0. Suppose that d = 
liminft-+oo x(t) > 0. Then x(t) > f From this inequality and from (4) it follows that 
limt-+oo z'(t) = .oo. The contradiction obtained shows that lim inft-+oo x(t) = 0. There 
exists a sequence {tn}r' such that limt-oo tn = oo and limn ..... 00 x(tn - r) = 0. Suppose 
that c = limt-+oo z(t) > 0. Passing to the limit in the equality 
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we obtain that limn-+oo x(tn) = c. On the other hand, 
275 

z(tn + T) = x(tn + r) + p(tn + T)x(tn) > Pl x(tn) 

We pass to the limit in the inequality z(tn + T) > P1 x(tn) and obtain c ~ p1c > c. Hence 
limt-+oo z(t) = 0 and since x(t) < z(t), then limt-+(X) x(t) = 0. The case when x(t) < O is 
considered analogously. 
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