ON CERTAIN SUBCLASS OF UNIVALENT FUNCTIONS $\mathbb{I N} T H E \mathbb{U N I T}$ DISC I

M. K. AOUF, A. SHAMANDY AND M. F. YASSEN

Abstract

The object of the present paper is to derive several interesting properties of the class $P_{n}(\alpha, \beta, \gamma)$ consisting of analytic and univalent functions with negative coefficients. Coefficient estimates, distortion theorems and closure theorems of functions in the class $P_{n}(\alpha, \beta, \gamma)$ are determined. Also radii of close-to-convexity, starlikeness and convexity and integral operators are determined.

1. Introduction

Let T denote the class of functions of the form

$$
\begin{equation*}
f(z)=a_{1} z-\sum_{k=2}^{\infty} a_{k} z^{k} \quad\left(a_{1}>0 ; a_{k} \geq 0\right) \tag{1.1}
\end{equation*}
$$

which are analytic and univalent in the unit disc $U=\{z:|z|<1\}$. For a function $f(z)$ in T, we define

$$
\begin{align*}
& D^{0} f(z)=f(z) \tag{1.2}\\
& D^{1} f(z)=D f(z)=z f^{\prime}(z) \tag{1.3}
\end{align*}
$$

and

$$
\begin{equation*}
D^{n} f(z)=D\left(D^{n-1} f(z)\right) \quad(n \in N=\{1,2, \ldots\}) \tag{1.4}
\end{equation*}
$$

The differential operator D^{n} was introduced by Salagean [4]. With the help of the differential operator D^{n}, we say that a function $f(z)$ belonging to T is in the class $P_{n}(\alpha, \beta, \gamma)$ if and only if

$$
\begin{equation*}
\left|\frac{\left(D^{n} f(z)\right)^{\prime}-a_{1}}{\gamma\left(D^{n} f(z)\right)^{\prime}+(1-2 \alpha \gamma) a_{1}}\right|<\beta \tag{1.5}
\end{equation*}
$$

Received March 9, 1994.
1991 Mathematics Subject Classification. 30C45.
Key words and phrases. Analytic, univalent functions, close-to-convexity, starlikeness.
where $0 \leq \alpha<1,0<\beta \leq 1,0<\gamma \leq 1$, and $n \in N_{0}=N \cup\{0\}$.
We note that, by specializing the parameters α, β, γ, and n, we obtain the following subclasses studied by various authors:
(1) For $a_{1}=1$ and $n=0, P_{0}(\alpha, \beta, \gamma)=P(\alpha, \beta, \gamma)$ (Owa [3]);
(2) For $a_{1}=\gamma=1$ and $n=0, P_{0}(\alpha, \beta, 1)=P^{*}(\alpha, \beta)$ (Gupta and Jain [2]);
(3) For $a_{1}=\beta=\gamma=1$ and $n=0, P_{0}(\alpha, 1,1)=T^{* *}(\alpha)$ (Sarangi and Uralegaddi [5] and A1-Amiri [1]);
(4) For $a_{1}=\gamma=n=1, P_{1}(\alpha, \beta, 1)=P_{1}(\alpha, \beta)$ represents the class of functions $f(z) \in T$ satisfying the condition

$$
\begin{equation*}
\left|\frac{\left(z f^{\prime}(z)\right)^{\prime}-1}{\left(z f^{\prime}(z)\right)^{\prime}+1-2 \alpha}\right|<\beta \tag{1.6}
\end{equation*}
$$

where $0 \leq \alpha<1$ and $0<\beta \leq 1$.

2. Coefficient Estimates

Theorem 1. Let the function $f(z)$ be defined by (1.1). Then $f(z) \in P_{n}(\alpha, \beta, \gamma)$ if and only if

$$
\begin{equation*}
\sum_{k=2}^{\infty} k^{n+1}(1+\beta \gamma) a_{k} \leq \beta(1+\gamma-2 \alpha \gamma) a_{1} \tag{2.1}
\end{equation*}
$$

The result is sharp.
Proof. Let $|z|=1$. Then, we have

$$
\begin{aligned}
& \left|\left(D^{n} f(z)\right)^{\prime}-a_{1}\right|-\beta\left|\gamma\left(D^{n} f(z)\right)^{\prime} \div(1-2 \alpha \gamma) a_{1}\right| \\
= & \left|-\sum_{k=2}^{\infty} k^{n+1} a_{k} z^{k-1}\right|-\beta\left|(1+\gamma-2 \alpha \gamma) a_{1}-\gamma \sum_{k=2}^{\infty} k^{n+1} a_{k} z^{k-1}\right| \\
\leq & \sum_{k=2}^{\infty}(1+\beta \gamma) k^{n+1} a_{k}-\beta(1+\gamma-2 \alpha \gamma) a_{1} \leq 0 .
\end{aligned}
$$

Hence, by the maximum modulus theorem, we have $f(z) \in P_{n}(\alpha, \beta, \gamma)$.
For the converse, assume that

$$
\left|\frac{\left(D^{n} f(z)\right)^{\prime}-a_{1}}{\gamma\left(D^{n} f(z)\right)^{\prime}+(1-2 \alpha \gamma) a_{1}}\right|=\left|\frac{-\sum_{k=2}^{\infty} k^{n+1} a_{k} z^{k-1}}{(1+\gamma-2 \alpha \gamma) a_{1}-\gamma \sum_{k=2}^{\infty} k^{n+1} a_{k} z^{k-1}}\right|<\beta
$$

Since $|\operatorname{Re}(z)| \leq|z|$ for all z, we have

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\sum_{k=2}^{\infty} k^{n+1} a_{k} z^{k-1}}{(1+\gamma-2 \alpha \gamma) a_{1}-\gamma \sum_{k=2}^{\infty} k^{n+1} a_{k} z^{k-1}}\right\}<\beta \tag{2.2}
\end{equation*}
$$

Choose values of z on the real axis so that $\left(D^{n} f(z)\right)^{\prime}$ is real. Upon clearing the denominator in (2.2) and letting $z \rightarrow 1^{-}$through real values, we obtain

$$
\sum_{k=2}^{\infty} k^{n+1} a_{k} \leq \beta(1+\gamma-2 \alpha \gamma) a_{1}-\beta \gamma \sum_{k=2}^{\infty} k^{n+1} a_{k}
$$

This gives the required condition.
Finally, the function

$$
\begin{equation*}
f(z)=a_{1} z-\frac{\beta(1+\gamma-2 \alpha \gamma) a_{1}}{k^{n+1}(1+\beta \gamma)} z^{k} \quad(k \geq 2) \tag{2.3}
\end{equation*}
$$

is an extremal function for the theorem.
Corollary 1. Let the function $f(z)$ defined by (1.1) be in the class $P_{n}(\alpha, \beta, \gamma)$. Then we have

$$
\begin{equation*}
a_{k} \leq \frac{\beta(1+\gamma-2 \alpha \gamma) a_{1}}{k^{n+1}(1+\beta \gamma)} \quad\left(k \geq 2 ; n \in N_{0}\right) \tag{2.4}
\end{equation*}
$$

The equality in (2.4) is attained for the function $f(z)$ given by (2.3).

3. Some Properties of The Class $P_{n}(\alpha, \beta, \gamma)$

Theorem 2. Let $0 \leq \alpha<1,0<\beta \leq 1,0<\gamma \leq 1$, and $n \in N_{0}$. Then

$$
\begin{equation*}
P_{n}(\alpha, \beta, \gamma)=P_{n}\left(\frac{1-\beta+2 \alpha \beta \gamma}{1+\beta \gamma}, 1,1\right) \tag{3.1}
\end{equation*}
$$

More generally, if $0 \leq \alpha^{\prime}<1,0<\beta^{\prime} \leq 1,0<\gamma^{\prime} \leq 1$, and $n \in N_{0}$, then

$$
\begin{equation*}
P_{n}(\alpha, \beta, \gamma)=P_{n}\left(\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\right) \tag{3.2}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\frac{\beta(1+\gamma-2 \alpha \gamma)}{1+\beta \gamma}=\frac{\beta^{\prime}\left(1+\gamma^{\prime}-2 \alpha^{\prime} \gamma^{\prime}\right)}{1+\beta^{\prime} \gamma^{\prime}} \tag{3.3}
\end{equation*}
$$

Proof. First assume that the function $f(z)$ is in the class $P_{n}(\alpha, \beta, \gamma)$, and condition (3.3) holds. Then, by using the assertion (2.1) of Theorem 1 , we readily have

$$
\sum_{k=2}^{\infty} k^{n+1} a_{k} \leq \frac{\beta(1+\gamma-2 \alpha \gamma) a_{1}}{1+\beta \gamma}=\frac{\beta^{\prime}\left(1+\gamma^{\prime}-2 \alpha^{\prime} \gamma^{\prime}\right) a_{1}}{1+\beta^{\prime} \gamma^{\prime}}
$$

which shows that $f(z) \in P_{n}\left(\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\right)$, again with the aid of Theorem 1.
Reversing the above steps, we can similarly prove the other part of the equivalence (3.2) which, for $\beta^{\prime}=\gamma^{\prime}=1$, immediately yields the special case (3.1).

Conversely, the assertion (3.2) can easily be shown to imply the condition (3.3), and the proof of Theorem 2 is thus completed.

Theorem 3. Let $0 \leq \alpha_{1} \leq \alpha_{2}<1,0<\beta \leq 1,0<\gamma \leq 1$, and $n \in N_{0}$. Then

$$
\begin{equation*}
P_{n}\left(\alpha_{2}, \beta, \gamma\right) \subseteq P_{n}\left(\alpha_{1}, \beta, \gamma\right) \tag{3.4}
\end{equation*}
$$

The proof of Theorem 3 uses Theorem 1 in a straight forward manner. The details are omitted.

Theorem 4. Let $0 \leq \alpha<1,0<\beta_{1} \leq \beta_{2} \leq 1,0<\gamma \leq 1$, and $n \in N_{0}$. Then

$$
\begin{equation*}
P_{n}\left(\alpha, \beta_{1}, \gamma\right) \subseteq P_{n}\left(\alpha, \beta_{2}, \gamma\right) \tag{3.5}
\end{equation*}
$$

Proof. By using Theorem 2, we obtain

$$
\begin{equation*}
P_{n}\left(\alpha, \beta_{1}, \gamma\right)=P_{n}\left(\frac{1-\beta_{1}+2 \alpha \beta_{1} \gamma}{1+\beta_{1} \gamma}, 1,1\right) \tag{3.6}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{n}\left(\alpha, \beta_{2}, \gamma\right)=P_{n}\left(\frac{1-\beta_{2}+2 \alpha \beta_{2} \gamma}{1+\beta_{2} \gamma}, 1,1\right) \tag{3.7}
\end{equation*}
$$

Furthermore

$$
\begin{equation*}
0 \leq \frac{1-\beta_{2}+2 \alpha \beta_{2} \gamma}{1+\beta_{2} \gamma} \leq \frac{1-\beta_{1}+2 \alpha \beta_{1} \gamma}{1+\beta_{1} \gamma}<1 \tag{3.8}
\end{equation*}
$$

for $0 \leq \alpha<1,0<\beta_{1} \leq \beta_{2} \leq 1$, and $0<\gamma \leq 1$.
Consequently, by using Theorem 3, we arrive at our assertion (3.5).
Corollary 2. Let $0 \leq \alpha_{1} \leq \alpha_{2}<1,0<\beta_{1} \leq \beta_{2} \leq 1,0<\gamma \leq 1$, and $n \in N_{0}$. Then

$$
P_{n}\left(\alpha_{2}, \beta_{1}, \gamma\right) \subseteq P_{n}\left(\alpha_{1}, \beta_{1}, \gamma\right) \subseteq P_{n}\left(\alpha_{1}, \beta_{2}, \gamma\right)
$$

Corollary 3. $P_{n+1}(\alpha, \beta, \gamma) \subset P_{n}(\alpha, \beta, \gamma)$ for $0 \leq \alpha<1,0<\beta \leq 1,0<\gamma \leq 1$, and $n \in N_{0}$.

Corollary 4. Let $\frac{1}{2} \leq \alpha<1,0<\beta \leq 1,0<\gamma_{1} \leq \gamma_{2} \leq 1$, and $n \in N_{0}$. Then

$$
\begin{equation*}
P_{n}\left(\alpha, \beta, \gamma_{2}\right) \subseteq P_{n}\left(\alpha, \beta, \gamma_{1}\right) \tag{3.9}
\end{equation*}
$$

Proof. Let the function $f(z)$ defined by (1.1) be in the class $\mathbb{P}_{n}\left(\alpha, \beta, \gamma_{2}\right)$. Then, by using Theorem 1,

$$
\begin{aligned}
& \sum_{k=2}^{\infty} k^{n+1}\left(1+\beta \gamma_{1}\right) a_{k} \leq \sum_{k=2}^{\infty} k^{n+1}\left(1+\beta \gamma_{2}\right) a_{k} \\
\leq & \beta\left(1+\gamma_{2}-2 \alpha \gamma_{2}\right) a_{1} \leq \beta\left(1+\gamma_{1}-2 \alpha \gamma_{1}\right) a_{1} .
\end{aligned}
$$

Hence $f(z) \in P_{n}\left(\alpha, \beta, \gamma_{1}\right)$.
Corollary 5. Let $\frac{1}{2} \leq \alpha_{1} \leq \alpha_{2}<1,0<\beta \leq 1,0<\gamma_{1} \leq \gamma_{2} \leq 1$, and $n \in N_{0}$. Then

$$
\begin{equation*}
P_{n}\left(\alpha_{2}, \beta, \gamma_{2}\right) \subseteq P_{n}\left(\alpha_{1}, \beta, \gamma_{1}\right) \tag{3.10}
\end{equation*}
$$

Proof. Let the function $f(z)$ defined by (1.1) be in the class $\mathbb{P}_{n}\left(\alpha_{2}, \beta, \gamma_{2}\right)$. Then, by using Theorem 1,

$$
\begin{aligned}
& \sum_{k=2}^{\infty} k^{n+1}\left(1+\beta \gamma_{1}\right) a_{k} \leq \sum_{k=2}^{\infty} k^{n+1}\left(1+\beta \gamma_{2}\right) a_{k} \\
\leq & \beta\left(1+\gamma_{2}-2 \alpha_{2} \gamma_{2}\right) a_{1} \leq \beta\left(1+\gamma_{1}-2 \alpha_{1} \gamma_{1}\right) a_{1}
\end{aligned}
$$

Hence $f(z) \in P_{n}\left(\alpha_{1}, \beta, \gamma_{1}\right)$.

4. Distortion Theorem

Theorem 5. Let the function $f(z)$ defined by (1.1) be in the class $P_{n}(\alpha, \beta, \gamma)$. Then we have

$$
\begin{equation*}
\left|D^{i} f(z)\right| \geq a_{1}|z|-\frac{\beta(1+\gamma-2 \alpha \gamma) a_{1}}{2^{n+1-i}(1+\beta \gamma)}|z|^{2} \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|D^{i} f(z)\right| \leq a_{1}|z|+\frac{\beta(1+\gamma-2 \alpha \gamma) a_{1}}{2^{n+1-i}(1+\beta \gamma)}|z|^{2} \tag{4.2}
\end{equation*}
$$

for $z \in U$, where $0 \leq i \leq n$. The result is sharp.
Proof. Note that $f(z) \in P_{n}(\alpha, \beta, \gamma)$ if and only if $D^{i} f(z) \in P_{n-i}(\alpha, \beta, \gamma)$, and that

$$
\begin{equation*}
D^{i} f(z)=a_{1} z-\sum_{k=2}^{\infty} k^{i} a_{k} z^{k} \tag{4.3}
\end{equation*}
$$

Using Theorem 1, we know that

$$
\begin{align*}
2^{n+1-i}(1+\beta \gamma) \sum_{k=2}^{\infty} k^{i} a_{k} & \leq \sum_{k=2}^{\infty}(1+\beta \gamma) k^{n+1} a_{k} \\
& \leq \beta(1+\gamma-2 \alpha \gamma) a_{1} \tag{4.4}
\end{align*}
$$

that is, that

$$
\begin{equation*}
\sum_{k=2}^{\infty} k^{i} a_{k} \leq \frac{\beta(1+\gamma-2 \alpha \gamma) a_{1}}{2^{n+1-i}(1+\beta \gamma)} \tag{4.5}
\end{equation*}
$$

If follows from (4.3) and (4.5) that

$$
\begin{align*}
\left|D^{i} f(z)\right| & \geq a_{1}|z|-|z|^{2} \sum_{k=2}^{\infty} k^{i} a_{k} \\
& \geq a_{1}|z|-\frac{\beta(1+\gamma-2 \alpha \gamma) a_{1}}{2^{n+1-i}(1+\beta \gamma)}|z|^{2} \tag{4.6}
\end{align*}
$$

and

$$
\begin{align*}
\left|D^{i} f(z)\right| & \leq a_{1}|z|+|z|^{2} \sum_{k=2}^{\infty} k^{i} a_{k} \\
& \leq a_{1}|z|+\frac{\beta(1+\gamma-2 \alpha \gamma) a_{1}}{2^{n+1-i}(1+\beta \gamma)}|z|^{2} \tag{4.7}
\end{align*}
$$

Finally, we note that the equality in (4.1) and (4.2) are attained by the function

$$
\begin{equation*}
D^{i} f(z)=a_{1} z-\frac{\beta(1+\gamma-2 \alpha \gamma) a_{1}}{2^{n+1-i}(1+\beta \gamma)} z^{2} \tag{4.8}
\end{equation*}
$$

or by

$$
\begin{equation*}
f(z)=a_{1} z-\frac{\beta(1+\gamma-2 \alpha \gamma) a_{1}}{2^{n+1}(1+\beta \gamma)} z^{2} \tag{4.9}
\end{equation*}
$$

Corollary 6. Let the function $f(z)$ defined by (1.1) be in the class $P_{n}(\alpha, \beta, \gamma)$. Then we have

$$
\begin{equation*}
|f(z)| \geq a_{1}|z|-\frac{\beta(1+\gamma-2 \alpha \gamma) a_{1}}{2^{n+1}(1+\beta \gamma)}|z|^{2} \tag{4.10}
\end{equation*}
$$

and

$$
\begin{equation*}
|f(z)| \leq a_{1}|z|+\frac{\beta(1+\gamma-2 \alpha \gamma) a_{1}}{2^{n+1}(1+\beta \gamma)}|z|^{2} \tag{4.11}
\end{equation*}
$$

for $z \in U$. The result is sharp for the function $f(z)$ given by (4.9).
Proof. Taking $i=0$ in Theorem 5, we can easily show (4.10) and (4.11).
Corollary 7. Let the function $f(z)$ defined by (1.1) be in the class $P_{n}(\alpha, \beta, \gamma)$. Then we have

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \geq a_{1}-\frac{\beta(1+\gamma-2 \alpha \gamma) a_{1}}{2^{n}(1+\beta \gamma)}|z| \tag{4.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \leq a_{1}+\frac{\beta(1+\gamma-2 \alpha \gamma) a_{1}}{2^{n}(1+\beta \gamma)}|z| \tag{4.13}
\end{equation*}
$$

for $z \in U$. The result is sharp for the function $f(z)$ given by (4.9).

Proof. Note that $D^{1} f(z)=z f^{\prime}(z)$. Hence, taking $i=1$ in Theorem 5, we have the corollary.

Corollary 8. Let the function $f(z)$ defined by (1.1) be in the class $P_{n}(\alpha, \beta, \gamma)$. Then $f(z)$ is included in a disc with its center at the origin and radius R_{1} given by

$$
\begin{equation*}
R_{1}=a_{1} \frac{2^{n+1}(1+\beta \gamma)+\beta(1+\gamma-2 \alpha \gamma)}{2^{n+1}(1+\beta \gamma)} \tag{4.14}
\end{equation*}
$$

Further, $f^{\prime}(z)$ is included in a disc with its center at the origin and radius R_{2} given by

$$
\begin{equation*}
R_{2}=a_{1} \frac{2^{n}(1+\beta \gamma)+\beta(1+\gamma-2 \alpha \gamma)}{2^{n}(1+\beta \gamma)} \tag{4.15}
\end{equation*}
$$

The result is sharp with the extremal function $f(z)$ given by (4.9).

5. Closure Theorems

Let the functions $f_{j}(z)(j=1,2, \ldots, m)$ be defined by

$$
\begin{equation*}
f_{j}(z)=a_{1, j} z-\sum_{k=2}^{\infty} a_{k, j} z^{k} \quad\left(a_{1, j}>0 ; a_{k, j} \geq 0\right) \tag{5.1}
\end{equation*}
$$

for $z \in U$.
We shall prove the following results for the closure of functions in the class $P_{n}(\alpha, \beta$, $\gamma)$.

Theorem 6. Let the functions $f_{j}(z)(j=1,2, \ldots, m)$ defined by (5.1) be in the class $P_{n}(\alpha, \beta, \gamma)$. Then the function $h(z)$ defined by

$$
\begin{equation*}
h(z)=b_{1} z-\sum_{k=2}^{\infty} b_{k} z^{k} \tag{5.2}
\end{equation*}
$$

also belongs to the class $P_{n}(\alpha, \beta, \gamma)$, where

$$
\begin{equation*}
b_{1}=\frac{1}{m} \sum_{j=1}^{m} a_{1, j} \quad \text { and } \quad b_{k}=\frac{1}{m} \sum_{j=1}^{m} a_{k, j} . \tag{5.3}
\end{equation*}
$$

Proof. Since $f_{j}(z) \in P_{n}(\alpha, \beta, \gamma)$, it follows from Theorem 1, that

$$
\begin{equation*}
\sum_{k=2}^{\infty} k^{n+1}(1+\beta \gamma) a_{k, j} \leq \beta(1+\gamma-2 \alpha \gamma) a_{1, j} \quad(j=1,2, \ldots, m) \tag{5.4}
\end{equation*}
$$

Therefore

$$
\begin{aligned}
\sum_{k=2}^{\infty} k^{n+1}(1+\beta \gamma) b_{k} & =\sum_{k=2}^{\infty} k^{n+1}(1+\beta \gamma)\left[\frac{1}{m} \sum_{j=1}^{m} a_{k, j}\right] \\
& \leq \beta(1+\gamma-2 \alpha \gamma)\left[\frac{1}{m} \sum_{j=1}^{m} a_{1, j}\right]
\end{aligned}
$$

Hence we have

$$
\sum_{k=2}^{\infty} k^{n+1}(1+\beta \gamma) b_{k} \leq \beta(1+\gamma-2 \alpha \gamma) b_{1}
$$

which implies that $h(z) \in P_{n}(\alpha, \beta, \gamma)$.
Theorem 7. Let the functions $f_{j}(z)$ defined by (5.1) be in the class $P_{n}\left(\alpha_{j}, \beta_{j}\right.$, $\left.\gamma_{j}\right)\left(\frac{1}{2} \leq \alpha_{j}<1,0<\beta_{j} \leq 1,0<\gamma_{j} \leq 1, n \in N_{0}\right)$ for each $j=1,2, \ldots, m$. Then the function $h(z)$ defined by

$$
\begin{equation*}
h(z)=\frac{1}{m} \sum_{j=1}^{m} a_{1, j} z-\frac{1}{m} \sum_{k=2}^{\infty}\left[\sum_{j=1}^{m} a_{k, j}\right] z^{k} \tag{5.5}
\end{equation*}
$$

is in the class $P_{n}(\alpha, \beta, \gamma)$, where

$$
\begin{equation*}
\alpha=\min _{1 \leq j \leq m}\left\{\alpha_{j}\right\}, \beta=\max _{1 \leq j \leq m}\left\{\beta_{j}\right\}, \text { and } \gamma=\min _{1 \leq j \leq m}\left\{\gamma_{j}\right\} \tag{5.6}
\end{equation*}
$$

Proof. Since $f_{j}(z) \in P_{n}\left(\alpha_{j}, \beta_{j}, \gamma_{j}\right)$ for each $j=1,2, \ldots, m$, we observe that

$$
\begin{equation*}
\sum_{k=2}^{\infty} k^{n+1}\left(1+\beta_{j} \gamma_{j}\right) a_{k, j} \leq \beta_{j}\left(1+\gamma_{j}-2 \alpha_{j} \gamma_{j}\right) a_{1, j} \tag{5.7}
\end{equation*}
$$

with the aid of Theorem 1. Therefore

$$
\begin{aligned}
& \sum_{k=2}^{\infty} k^{n+1}\left[\frac{1}{m} \sum_{j=1}^{m} a_{k, j}\right]=\frac{1}{m} \sum_{j=1}^{m} \sum_{k=2}^{\infty} k^{n+1} a_{k, j} \\
\leq & \frac{1}{m} \sum_{j=1}^{m} \frac{\beta_{j}\left(1+\gamma_{j}-2 \alpha_{j} \gamma_{j}\right)}{\left(1+\beta_{j} \gamma_{j}\right)} a_{1, j} \leq \frac{\beta(1+\gamma-2 \alpha \gamma)}{(1+\beta \gamma)}\left[\frac{1}{m} \sum_{j=1}^{m} a_{1, j}\right] .
\end{aligned}
$$

Thus

$$
\begin{equation*}
\sum_{k=2}^{\infty} k^{n+1}(1+\beta \gamma)\left[\frac{1}{m} \sum_{j=1}^{m} a_{k, j}\right] \leq \beta(1+\gamma-2 \alpha \gamma)\left[\frac{1}{m} \sum_{j=1}^{m} a_{1, j}\right] \tag{5.8}
\end{equation*}
$$

which shows that $h(z) \in P_{n}(\alpha, \beta, \gamma)$, where α, β, and γ are given by (5.6).

Theorem 8. The class $P_{n}(\alpha, \beta, \gamma)$ is closed under convex linear combination.
Proof. Let the functions $f_{j}(z)(j=1,2)$ defined by (5.1) be in the class $P_{n}(\alpha, \beta, \gamma)$. It is sufficient to show that the function $h(z)$ defined by

$$
\begin{equation*}
h(z)=\lambda f_{1}(z)+(1-\lambda) f_{2}(z) \quad(0 \leq \lambda \leq 1) \tag{5.9}
\end{equation*}
$$

is in the class $P_{n}(\alpha, \beta, \gamma)$. Since, for $0 \leq \lambda \leq 1$,

$$
\begin{equation*}
h(z)=\left[\lambda a_{1,1}+(1-\lambda) a_{1,2}\right] z-\sum_{k=2}^{\infty}\left[\lambda a_{k, 1}+(1-\lambda) a_{k, 2}\right] z^{k} \tag{5.10}
\end{equation*}
$$

with the aid of Theorem 1, we have

$$
\begin{equation*}
\sum_{k=2}^{\infty} k^{n+1}(1+\beta \gamma)\left[\lambda a_{k, 1}+(1-\lambda) a_{k, 2}\right] \leq \beta(1+\gamma-2 \alpha \gamma)\left[\lambda a_{1,1}+(1-\lambda) a_{1,2}\right] \tag{5.11}
\end{equation*}
$$

which implies that $h(z) \in P_{n}(\alpha, \beta, \gamma)$.
As a consequence of Theorem 8, there exists the extreme points of the class $P_{n}(\alpha, \beta$, $\gamma)$.

Theorem 9. Let $f_{1}(z)=a_{1} z$ and

$$
\begin{equation*}
f_{k}(z)=a_{1} z-\frac{\beta(1+\gamma-2 \alpha \gamma) a_{1}}{k^{n+1}(1+\beta \gamma)} z^{k} \quad(k \geq 2) \tag{5.12}
\end{equation*}
$$

for $0 \leq \alpha<1,0<\beta \leq 1,0<\gamma \leq 1$, and $n \in N_{0}$. Then $f(z)$ is in the class $P_{n}(\alpha, \beta, \gamma)$ if and only if it can be expressed in the form

$$
\begin{equation*}
f(z)=\sum_{k=1}^{\infty} \lambda_{k} f_{k}(z) \tag{5.13}
\end{equation*}
$$

where $\lambda_{k} \geq 0(k \geq 1)$ and $\sum_{k=1}^{\infty} \lambda_{k}=1$.
Proof. Suppose that

$$
\begin{equation*}
f(z)=\sum_{k=1}^{\infty} \lambda_{k} f_{k}(z)=a_{1} z-\sum_{k=2}^{\infty} \frac{\beta(1+\gamma-2 \alpha \gamma) a_{1}}{k^{n+1}(1+\beta \gamma)} \lambda_{k} z^{k} . \tag{5.14}
\end{equation*}
$$

Then we get

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{k^{n+1}(1+\beta \gamma)}{\beta(1+\gamma-2 \alpha \gamma) a_{1}} \cdot \frac{\beta(1+\gamma-2 \alpha \gamma) a_{1}}{k^{n+1}(1+\beta \gamma)} \lambda_{k}=\sum_{k=2}^{\infty} \lambda_{k}=1-\lambda_{1} \leq 1 \tag{5.15}
\end{equation*}
$$

By virtue of Theorem 1, this shows that $f(z) \in \mathbb{P}_{n}(\alpha, \beta, \gamma)$.
On the other hand, suppose that the function $f(z)$ defined by (1.1) is in the class $P_{n}(\alpha, \beta, \gamma)$. Again, by using Theorem 1 , we can show that

$$
\begin{equation*}
a_{k} \leq \frac{\beta(1+\gamma-2 \alpha \gamma) a_{1}}{k^{n+1}(1+\beta \gamma)} \quad(k \geq 2) \tag{5.16}
\end{equation*}
$$

Setting

$$
\begin{equation*}
\lambda_{k}=\frac{k^{n+1}(1+\beta \gamma)}{\beta(1+\gamma-2 \alpha \gamma) a_{1}} a_{k} \quad(k \geq 2) \tag{5.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda_{1}=1-\sum_{k=2}^{\infty} \lambda_{k} . \tag{5.18}
\end{equation*}
$$

Hence, we can see that $f(z)$ can be expressed in the form (5.13). This completes the proof of Theorem 9.

Corollary 9. The extreme points of the class $\mathbb{P}_{n}(\alpha, \beta, \gamma)$ are the functions $f_{k}(z)(k \geq 1)$ given by Theorem 9.

6. Radii of close-to-convexity, starlikeness and convexity

Theorem 10. Let the function $f(z)$ defined by (1.1) be in the class $P_{n}(\alpha, \beta$, γ), then $f(z)$ is close-to-convex of order $\delta(0 \leq \delta<1)$ in $|z|<r_{1}(n, \alpha, \beta, \gamma, \delta)$, where

$$
\begin{equation*}
r_{1}(n, \alpha, \beta, \gamma, \delta)=\inf _{k}\left\{\frac{\left(a_{1}-\delta\right) k^{n}(1+\beta \gamma)}{\beta(1+\gamma-2 \alpha \gamma) a_{1}}\right\}^{\frac{1}{k-1}} \quad(k \geq 2) \tag{6.1}
\end{equation*}
$$

The result is sharp with the extremal function $f(z)$ given by (2.3).
Proof. We must show that $\left|f^{\prime}(z)-a_{1}\right| \leq a_{1}-\delta$ for $|z|<\gamma_{1}(n, \alpha, \beta, \gamma, \delta)$. We have

$$
\left|f^{\prime}(z)-a_{1}\right| \leq \sum_{k=2}^{\infty} k a_{k}|z|^{k-1}
$$

Thus $\left|f^{\prime}(z)-a_{1}\right| \leq a_{1}-\delta$ if

$$
\begin{equation*}
\sum_{k=2}^{\infty}\left(\frac{k}{a_{1}-\delta}\right) a_{k}|z|^{k-1} \leq 1 \tag{6.2}
\end{equation*}
$$

According to Theorem 1, we have

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{k^{n+1}(1+\beta \gamma)}{\beta(1+\gamma-2 \alpha \gamma) a_{1}} a_{k} \leq 1 \tag{6.3}
\end{equation*}
$$

Hence (6.2) will be true if

$$
\frac{k|z|^{k-1}}{\left(a_{1}-\delta\right)} \leq \frac{k^{n+1}(1+\beta \gamma)}{\beta(1+\gamma-2 \alpha \gamma) a_{1}}
$$

or if

$$
\begin{equation*}
|z| \leq\left\{\frac{\left(a_{1}-\delta\right) k^{n}(1+\beta \gamma)}{\beta(1+\gamma-2 \alpha \gamma) a_{1}}\right\}^{\frac{1}{k-1}} \quad(k \geq 2) \tag{6.4}
\end{equation*}
$$

The theorem follows easily from (6.4).
Theorem 11. Let the function $f(z)$ defined by (1.1) be in the class $P_{n}(\alpha, \beta$, $\gamma)$, then $f(z)$ is starlike of order $\delta(0 \leq \delta<1)$ in $|z|<r_{2}(n, \alpha, \beta, \gamma, \delta)$, where

$$
\begin{equation*}
r_{2}(n, \alpha, \beta, \gamma, \delta)=\inf _{k}\left\{\frac{(1-\delta) k^{n+1}(1+\beta \gamma)}{(k-\delta) \beta(1+\gamma-2 \alpha \gamma)}\right\}^{\frac{1}{k-1}} \quad(k \geq 2) \tag{6.5}
\end{equation*}
$$

The result is sharp with the extremal function $f(z)$ given by (2.3).
Proof. It is sufficient to show that $\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leq 1-\delta$ for $|z|<r_{2}(n, \alpha, \beta, \gamma, \delta)$. We have

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leq \frac{\sum_{k=2}^{\infty}(k-1) a_{k}|z|^{k-1}}{a_{1}-\sum_{k=2}^{\infty} a_{k}|z|^{k-1}}
$$

Thus $\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leq 1-\delta$ if

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{(k-\delta) a_{k}|z|^{k-1}}{(1-\delta) a_{1}} \leq 1 \tag{6.6}
\end{equation*}
$$

Hence, by using (6.3), (6.6) will be true if

$$
\frac{(k-\delta)|z|^{k-1}}{(1-\delta) a_{1}} \leq \frac{k^{n+1}(1+\beta \gamma)}{\beta(1+\gamma-2 \alpha \gamma) a_{1}}
$$

or if

$$
\begin{equation*}
|z| \leq\left\{\frac{(1-\delta) k^{n+1}(1+\beta \gamma)}{(k-\delta) \beta(1+\gamma-2 \alpha \gamma)}\right\}^{\frac{1}{k-1}} \quad(k \geq 2) \tag{6.7}
\end{equation*}
$$

The theorem follows easily from (6.7).
Corollary 10. Let the function $f(z)$ defined by (1.1) be in the class $P_{n}(\alpha, \beta$, $\gamma)$, then $f(z)$ is convex of order $\delta(0 \leq \delta<1)$ in $|z|<r_{3}(n, \alpha, \beta, \gamma, \delta)$, where

$$
\begin{equation*}
r_{3}(n, \alpha, \beta, \gamma, \delta)=\inf _{k}\left\{\frac{(1-\delta) k^{n}(1+\beta \gamma)}{(k-\delta) \beta(1+\gamma-2 \alpha \gamma)}\right\}^{\frac{1}{k-1}} \quad(k \geq 2) \tag{6.8}
\end{equation*}
$$

The result is sharp with the extremal function $f(z)$ given by (2.3).

7. Integral Operators

Theorem 12. Let the function $f(z)$ defined by (1.1) be in the class $P_{n}(\alpha, \beta$, γ), and let c be a real number such that $c>-1$. Then the function $F(z)$ defined by

$$
\begin{equation*}
F(z)=\frac{c+1}{z^{c}} \int_{0}^{z} t^{c-1} f(t) d t \tag{7.1}
\end{equation*}
$$

also belongs to the class $P_{n}(\alpha, \beta, \gamma)$.
Proof. From the representation of $F(z)$, it follows that

$$
\begin{equation*}
F(z)=a_{1} z-\sum_{k=2}^{\infty} b_{k} z^{k} \tag{7.2}
\end{equation*}
$$

where

$$
\begin{equation*}
b_{k}=\left[\frac{c+1}{c+k}\right] a_{k} \tag{7.3}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
& \sum_{k=2}^{\infty} k^{n+1}(1+\beta \gamma) b_{k}=\sum_{k=2}^{\infty} k^{n+1}(1+\beta \gamma)\left[\frac{c+1}{c+k}\right] a_{k} \\
\leq & \sum_{k=2}^{\infty} k^{n+1}(1+\beta \gamma) a_{k} \leq \beta(1+\gamma-2 \alpha \gamma) a_{1}, \tag{7.4}
\end{align*}
$$

since $f(z) \in P_{n}(\alpha, \beta, \gamma)$. Hence, by Theorem 1, $F(z) \in P_{n}(\alpha, \beta, \gamma)$.
Theorem 13. Let c be a real number such that $c>-1$. If $F(z) \in P_{n}(\alpha, \beta, \gamma)$, then the function defined by (7.1) is univalent in $|z|<r^{*}$, where

$$
\begin{equation*}
r^{*}=\inf _{k}\left[\frac{k^{n}(1+\beta \gamma)(c+1)}{\beta(1+\gamma-2 \alpha \gamma)(c+k)}\right]^{\frac{1}{k-1}} \quad(k \geq 2) \tag{7.5}
\end{equation*}
$$

The result is sharp.
Proof. Let $F(z)=a_{1} z-\sum_{k=2}^{\infty} a_{k} z^{k}\left(a_{1}>0 ; a_{k} \geq 0\right)$. It follows from (7.1) that

$$
\begin{align*}
f(z) & =\frac{z^{1-s}\left[z^{c} F(z)\right]^{\prime}}{(c+1)} \quad(c>-1) \\
& =a_{1} z-\sum_{k=2}^{\infty}\left(\frac{c+k}{c+1}\right) a_{k} z^{k} \tag{7.6}
\end{align*}
$$

In order to obtain the required result it suffices to show that

$$
\left|f^{\prime}(z)-a_{1}\right|<a_{1} \quad \text { in } \quad|z|<r^{*}
$$

Now

$$
\left|f^{\prime}(z)-a_{1}\right| \leq \sum_{k=2}^{\infty} \frac{k(c+k)}{(c+1)} a_{k}|z|^{k-1}
$$

Thus $\left|f^{\prime}(z)-a_{1}\right|<a_{1}$ if

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{k(c+k)}{(c+1) a_{1}} a_{k}|z|^{k-1}<1 \tag{7.7}
\end{equation*}
$$

Hence by using (6.3), (7.7) will be satisfied if

$$
\frac{k(c+k)|z|^{k-1}}{(c+1) a_{1}}<\frac{k^{n+1}(1+\beta \gamma)}{\beta(1+\gamma-2 \alpha \gamma) a_{1}}
$$

or if

$$
\begin{equation*}
|z|<\left[\frac{k^{n}(1+\beta \gamma)(c+1)}{\beta(1+\gamma-2 \alpha \gamma)(c+k)}\right]^{\frac{1}{k-1}} \quad(k \geq 2) \tag{7.8}
\end{equation*}
$$

Therefore $f(z)$ is univalent in $|z|<r^{*}$. Sharpness follows if we take

$$
\begin{equation*}
f(z)=a_{1} z-\frac{\beta(1+\gamma-2 \alpha \gamma) a_{1}(c+k)}{k^{n}(1+\beta \gamma)(c+1)} z^{k} \quad(k \geq 2) \tag{7.9}
\end{equation*}
$$

8. Linear Combinations of Functions in $P_{n}(\alpha, \beta, \gamma)$

Theorem 14. Let the functions $f_{j}(z)$ defined by (5.1) be in the class $P_{n}(\alpha, \beta$, γ) for every $j=1,2, \ldots, m$. Then the function $h(z)$ defined by

$$
\begin{equation*}
h(z)=\sum_{j=1}^{m} c_{j} f_{j}(z) \quad\left(c_{j}>0\right) \tag{8.1}
\end{equation*}
$$

is in the same class $P_{n}(\alpha, \beta, \gamma)$.
Proof. By the definition of $h(z)$, we have

$$
\begin{equation*}
h(z)=\left[\sum_{j=1}^{m} c_{j} a_{1, j}\right] z-\sum_{k=2}^{\infty}\left[\sum_{j=1}^{m} c_{j} a_{k, j}\right] z^{k} . \tag{8.2}
\end{equation*}
$$

Further, since $f_{j}(z)$ are in $P_{n}(\alpha, \beta, \gamma)$ for every $j=1,2, \ldots, m$, we get

$$
\begin{equation*}
\sum_{k=2}^{\infty} k^{n+1}(1+\beta \gamma) a_{k, j} \leq \beta(1+\gamma-2 \alpha \gamma) a_{1, j} \tag{8.3}
\end{equation*}
$$

for every $j=1,2, \ldots, m$. Hence we can see that

$$
\begin{aligned}
\sum_{k=2}^{\infty} k^{n+1}(1+\beta \gamma)\left[\sum_{j=1}^{m} c_{j} a_{k, j}\right] & =\sum_{j=1}^{m} c_{j}\left[\sum_{k=2}^{\infty} k^{n+1}(1+\beta \gamma) a_{k, j}\right] \\
& \leq \beta(1+\gamma-2 \alpha \gamma) \sum_{j=1}^{m} c_{j} a_{1, j}
\end{aligned}
$$

This proves that $h(z) \in P_{n}(\alpha, \beta, \gamma)$.
Remark. Owa [3] considered the class $P_{0}(\alpha, \beta, \gamma)=P(\alpha, \beta, \gamma)$ of functions $f(z)$ defined by (1.1) and satisfying

$$
\begin{equation*}
\left|\frac{f^{\prime}(z)-1}{\gamma f^{\prime}(z)+(1-2 \alpha \gamma)}\right|<\beta \tag{i}
\end{equation*}
$$

where $0 \leq \alpha<1,0<\beta \leq 1$ and $0<\gamma \leq 1$.
One can easily verify that the condition (i) is equivalent to

$$
\begin{equation*}
f^{\prime}(z)=\frac{1+\beta(1-2 \alpha \gamma) w(z)}{1-\beta \gamma w(z)}, \quad z \in U \tag{ii}
\end{equation*}
$$

where $w(z)$ is a function analytic in U and satisfying $w(0)=0$ and $|w(z)|<1$ for $z \in U$. Since $f^{\prime}(z)=a_{1}-\sum_{k=2}^{\infty} k a_{k} z^{k-1}$, it follows that the constant term in the Taylor expansion of both sides of (ii) is not the same except when $a_{1}=1$. It seems, therefore, that the class $P(\alpha, \beta, \gamma)$ has not been defined by Owa [3] in proper way. In fact, the correct form of (i) must be

$$
\begin{equation*}
\left|\frac{f^{\prime}(z)-a_{1}}{\gamma f^{\prime}(z)+(1-2 \alpha \gamma) a_{1}}\right|<\beta, \quad z \in U \tag{iii}
\end{equation*}
$$

Consequently, the correct form of (ii) is

$$
\begin{gathered}
f^{\prime}(z)=a_{1} \frac{1+\beta(1-2 \alpha \gamma) w(z)}{1-\beta \gamma w(z)}, \quad z \in U . \\
\text { References }
\end{gathered}
$$

[1] H. S. A1-Amiri, "On a subclass of close-to-convex functions with negative coefficients," Mathematica, 31 (54), no.1, 1-7, 1989.
[2] V. P. Gupta and P. K. Jain, "Certain classes of univalent functions with negative coefficients. II," Bubl. Austral. Math. Soc., 15, 467-473, 1976.
[3] S. Owa, "Certain subclasses of univalent functions in the uint disc," Pure Appl. Math. Sci., 22, no.1-2, 1-15, 1985.
[4] G. Salagean, "Subclasses of univalent functions," Lecture notes in Math., (Springer-Verlag) 1013, 362-372, 1983.
[5] S. M. Sarangi and B. A. Uralegaddi, "The radius of convexity and starlikeness for certain classes of analytic functions with negative coefficients. I," Rend. Acad. Naz. Lincei, 65, 38-42, 1978.
.partment of Mathematics, Facllaty of Science, University of Mansoura, Mansoura, Egypt.

