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ON CERTAIN SUBCLASS OF UNIVALENT FUNCTIONS 
IN THE UNIT DISC I 

M. K. AOUF, A. SHAMANDY AND M. F. YASSEN 

Abstract. The object of the present paper is to derive several interesting proper­ 
ties of the class Pn( o., (3, 1) consisting of analytic and univalent functions with neg­ 
ative coefficients. Coefficient estimates, distortion theorems and closure theorems 
of functions in the class Pn(o., (3, 1) are determined. Also radii of close-to-convexity, 
starlikeness and convexity and integral operators are determined. 

1. Introduction 

Let T denote the class of functions of the form 
00 

J(z) = a1z - L akzk 
k=2 

(1.1) 

which are analytic and univalent in the unit disc U = {z: lzl < l}. For a function f(z) 
in T, we define 

D0 f(z) = f(z), 
D1f(z) = Df(z) = zj'(z), 

(1.2) 
(1.3) 

and 
Dn f(z) = D(Dn-l f(z)) (n EN= {1,2, ... }). (1.4) 

The differential operator Dn was introduced by Salagean [4]. With the help of the 
differential operator nn, we say that a function f ( z) belonging to T is in the class 
Pn(o.,/3,,) if and only if 

I 
(Dnf(z))'-a1 I /3 

,(DnJ(z))' + (1 - 20.,)a1 < (1.5) 
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where O ~a< 1, 0 < /3 ~ 1, 0 < 1 ~ 1, and n E N0 =NU {O}. 
We note that, by specializing the parameters a, /3, 1, and n, we obtain the following 

subclasses studied by various authors: 
(1) For a1 = 1 and n = 0, P0(a,/3,1) = P(a,/3,1) (Owa [3]); 
(2) For a1 = 1 = 1 and n = 0, P0(a, /3, 1) = P*(a, /3) (Gupta and Jain [2]); 
(3) For a1 = /3 = 1 = 1 and n = 0, P0(a, 1, 1) = T**(a) (Sarangi and Uralegaddi [5] 

and Al-Amiri [1]); 
(4) For a1 = 1 = n = 1, A(a,/3, 1) = P1(a,/3) represents the class of functions f(z) ET 

satisfying the condition 

I 
(zf'(z))' - 1 I 

(zf'(z))' + 1 - 2a < /3 (1.6) 

where O ~ a < 1 and O < /3 ~ 1. 

2. Coefficient Estiinates 

Theorem 1. Let the function J(z) be defined by (1.1). Then J(z) E Pn(a, /3, 1) 
if and only if 

00 L kn+I(l + (3,)ak ~ (3(1 + 1 - 2a,)a1. 
k=2 

The result is sharp. 

Proof. Let lzl = I. Then, we have 

(2.1) 

00 00 

= 1- L kn+Iakzk-l - (3 (I+ 1 - 2a,)a1 - 1 L kn+Iakzk-l 
k=2 k=2 

00 

~ L(l + (3,)kn+Iak - (3(1 + 1 - 2a,)a1 ~ 0. 
k=2 

Hence, by the maximum modulus theorem, we have f(z) E Pn(a, /3, ,). 
For the converse, assume that 

00 - L kn+lakzk-1 
k=2 < /3. 

Since JRe(z)I ~ Jzl for all z, we have 

(2.2) 
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Choose values of z on the real axis so that (Dn f(z))' is real. Upon clearing the denomi­ 
nator in (2.2) and letting z --i- 1- through real values, we obtain 

00 00 L kn+lak :::; ,B(l + 'Y - 2a,y)a1 - ,B,y L kn+Iak. 
k=2 k=2 

This gives the required condition. 
Finally, the function 

(k ~ 2) (2.3) 

is an extremal function for the theorem. 

Corollary 1. Let the function f(z) defined by (1.1) be in the class Pn(a,,B,,y). 
Then we have 

(k ~ 2; n E No). 

The equality in (2.4) is attained for the function f(z) given by (2.3). 

(2.4) 

3. Some Properties of The Class Pn(a, ,B, ,y) 

Theorem 2. Let O:::; a< 1, 0 < ,B:::; 1, 0 < 'Y:::; 1, and n E No. Then 

1 - ,B + 2a,B,y 
Pn(a, ,B, 'Y) = Pn( ,B , 1, 1). 

1 + 'Y 

More generally, if O:::; a' < 1, 0 < ,B' :::; 1, 0 < ,y' :::; 1, and n E No, then 

(3.1) 

(3.2) 

if and only if 
,B(l + 'Y - 2a,) 

1 + ,81 
,B' (1 + 'Y' - 2a' ,y') 

1 + ,B',y' (3.3) 

Proof. First assume that the function f(z) is in the class Pn(a, ,B, 'Y), and condition 
(3.3) holds. Then, by using the assertion (2.1) of Theorem 1, we readily have 

~ kn+la < ,B(l + 'Y - 2a,y)a1 = ,B'(l + ,y' - 2a',y')a1 

L..J k - 1 + ,B 1 + ,B' I ' k=2 "f 'Y 

which shows that f(z) E Pn(a:',,B','Y'), again with the aid of Theorem 1. 
Reversing the above steps, we can similarly prove the other part of the equivalence 

(3.2) which, for ,B' = ,y' = 1, immediately yields the special case {3.1). 
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Conversely, the assertion (3.2) can easily be shown to imply the condition (3.3), and 
the proof of Theorem 2 is thus completed. 

Theorem 3. Let O :S o.1 :S o.2 < 1, 0 < /3::; 1, 0 <, :S 1, and n E N0• Then 

(3.4) 

The proof of Theorem 3 uses Theorem 1 in a straight forward manner. The details 
are omitted. 

Theorem 4. Let O :Sa.< l, 0 < /31 :S /32 :S 1, 0 <, :S 1, and n E No. Then 

(3.5) 

Proof. By using Theorem 2, we obtain 

1 - /31 + 2a/31, P n ( O'., /31, 'Y) = P n ( /3 , 1, 1) 
1 + 1, (3.6) 

and 
(3.7) 

Furthermore 
0 < 1 - /32 + 20./32, < 1 - /31 + 20./31' < 1 
- 1 + /32, - 1 + /31 r 

for O :S a. < l, 0 < /31 :S /32 :S 1, and O < , :S 1. 
Consequently, by using Theorem 3, we arrive at our assertion (3.5). 

(3.8) 

Corollary 2. Let O :S o.1 :S 0.2 < 1, 0 < /31 :S /32 :S 1, 0 <, :S 1, and n E No. 
Then 

Corollary 3. Pn+1(o.,/3,,) C Pn(o.,/3,,) for O :Sa.< 1, 0 < /3 :S 1, 0 <, :S 1, 
andnENo. 

Corollary 4. Let ! :Sa. < 1, 0 < /3 :S 1, 0 < ,1 :S ,2 :S 1, and n E N0• Then 

(3.9) 

Proof. Let the function f(z) defined by (1.1) be in the class Pn(a, /3, ,2). Then, 
by using Theorem 1, 

00 00 L kn+1(1 + /3,1)ak :SL kn+l(l + /3,2)ak 
k=2 k=2 

:S /3(1 + ,2 - 2a,2)a1 :S /3(1 + ,1 - 2a,1)a1. 
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Hence f(z) E Pn(a, /3, ,i). 
Corollary 5. Let ! ~ 0:1 ~ 0:2 < 1, 0 < (3 ~ 1, 0 < 11 ~ ,2 ~ 1, and n E No, 

Then 
(3.10) 

Proof. Let the function f (z) defined by (1.1) be in the class Pn(a:2, (3, ,2). Then, 
by using Theorem 1, 

00 

k=2 k=2 

Hence f(z) E Pn(a:1,/3,,1). 

4. Distortion Theorem 

Theorem 5. Let the function f(z) defined by (1.1) be in the class Pn(a, (3, ,). 
Then· we have 

(4.1) 

and 

'

Di f(z)\ < a lzl + (3(1 + '. - 2a,)a1 lzl2 
- 1 2n+1-i(l + (3,) 

for z E U, where O ~ i ~ n. The result is sharp. 

(4.2) 

Proof. Note that f(z) E Pn(a,{3,1) if and only if DiJ(z) E Pn-i(a,/3,1), and that 

00 

Di J(z) = a1z - L kiakzk. 
k=2 

(4.3) 

Using Theorem 1, we know that 

00 00 

2n+l-i(l + {31) L kiak ~ L(l + /3,)kn+lak 
k=2 k=2 

~ (3(1 +, - 2cq)a1, ( 4.4) 

that is, that 
oo i (3(1 +, - 2a,)a1. 

k ak ~ 2n+1-i(l + (3,) 
k=2 

(4.5) 
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If follows from ( 4.3) and ( 4.5) that 

00 

IDif(z)I ~ a1lzl-lzl2Lkiak 
k=2 , 

> a lzl - ,B(l + 'Y_ - 2a,y)a1 lzl2 
- 1 2n+l-t(l + ,B,) 

and 

00 

IDif(z)I:::; a1lzl + lzl2 L kiak 
k=2 

< I I ,B(l + 'Y - 2a,)a1 I 12 
- a1 z + +I ·c ,8 ) Z • 2n -i 1 + 'Y 

Finally, we note that the equality in {4.1) and (4.2) are attained by the function 

or by 
,B(l + 'Y - 2a,y)a1 z2. 

J(z) = a1z - 2n+l(l + ,B,y) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

Corollary 6. Let the function f(z) defined by (1.1) be in the class Pn(a, ,B, ,). 
Then we have 

1
/(z)I > a lzl - ,B(l + 'Y - 2a,)a1 lzl2 

- 1 2n+l(l + (J,y) 
and 

1/( )I < I I+ ,B(l + 'Y - 2a,y)a1 I 12 
z _ a1 z 2n+l(l + ,B,y) z 

for z EU. The result is sharp for the function f(z) given by (4.9). 

Proof. Taking i = 0 in Theorem 5, we can easily show (4.10) and (4.11). 

(4.10) 

( 4.11) 

Corollary 7. Let the function J(z) defined by (1.1) be in the class Pn(a:, ,B, ,). 
Then we have 

lf'(z)I > a - ,B(l + 'Y - 2a,y)a1 lzl 
- 1 2n(l + ,B,y) 

and 

lf'(z)I < a ,B(l + 'Y - 2a,y)a1 lzl 
- 1 + 2n(l + ,B,y) 

J or z E U. The result is sharp for the Junction f ( z) given by ( 4. 9). 

( 4.12) 

(4.13) 
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Proof. Note that D1 f(z) = zf'(z). Hence, taking i = 1 in Theorem 5, we have 
the corollary. 

Corollary 8. Let the function f(z) defined by (1.1) be in the class Pn(a, /3, ,). 
Then J(z) is included in a disc with its center at the origin and radius R1 given 
by 

(4.14) 

Further, f'(z) is included in a disc with its center at the origin and radius R2 
given by 

R 2n(l + /31) + /3(1 + 1 - 2a1) 
2 = a1 2n(l + /3,) . 

The result is sharp with the extremal function J(z) given by (4.9). 

(4.15) 

5. Closure Theorems 

Let the functions Ji ( z) (j = 1, 2, ... , m) be defined by 

00 

li(z) = a1,jZ - L ak,jZk 
k=2 

(5.1) 

for z EU. 
We shall prove the following results for the closure of functions in the class Pn(a, /3, 

,). 

Theorem 6. Let the functions fi_(z) (j = 1, 2, ... , m) defined by (5.1) be in 
the class Pn(a, /3, ,). Then the function h(z) defined by 

00 

h(z) = b1z - L bkzk 
k=2 

(5.2) 

also belongs to the class Pn(a, /3, ,), where 

1 m 

b1 = - I::a1,j 
m. 1 

J= 

1 m 
and bk= - Lak,i· 

m. 1 
J= 

(5.3) 

Proof. Since /j(z) E Pn(a, /3, ,), it follows from Theorem 1, that 

00 L kn+1(1 + /3,)ak,j :S /3(1 +, - 20,)a1,j (j = 1, 2, ... , m). (5.4) 
k=2 
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Therefore 
oo oo 1 m L kn+l(l + (3,)bk = L kn+l(l + (3,) [- L ak,j] 

m. 
k=2 k=2 J=l 

1 m 
~ (3(1 +, - 2a,) [- L a1,j]. 

m. 1 J= 

Hence we have 
00 L kn+l (1 + /3,)bk ~ (3(1 + 1 - 2a,)b1 

k=2 

which implies that h(z) E Pn(a,(3,1). 

Theorem 7. Let the functions fj(z) defined by (5.1) be in the class Pn(aj, (Ji, 
1j) (t ~ ai < 1, 0 <(Ji~ 1, 0 <ii~ 1, n E No) for each j = 1,2, ... ,m. Then the 
functioh h(z) defined by 

l m l oo m 
h( z) = - ~ a1 · z - - ~ [~ a1c ·] zk m~ J m~ ~ J 

j=l k=2 j=l 

(5.5) 

is in the class Pn(a, (3, ,), where 

(5.6) 

Proof. Since fj(z) E Pn(O'.j,(3j,,j) for each j = 1,2, ... ,m, we observe that 

00 L kn+l(l + (Jj,j )a1c,j ~ (Jj(l + "Yi - 2aj,j )a1,j 
k=2 

(5.7) 

with the aid of Theorem 1. Therefore 

f kn+l [! t a1c,j] = ! t f kn+lak,j 
k=2 j=l j=l k=2 

1 Lm (Jj(l + 1j - 20:j1j) f3(1 + 1 - 2a1) [ 1 Lm ] < - a1 · < - a1 · - m ( 1 + /3 · ·) '1 - ( 1 + r:i. ). m '1 · 
j=l J/J /J/ j=l 

Thus 

which shows that h(z) E Pn(a, (3, 1), where a, (3, and, are given by (5.6). 
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Theorem 8. The class Pn(a, ,B, ,y) is closed under convex linear combination. 

Proof. Let the functions fi(z) (j = 1, 2) defined by (5.1) be in the class Pn(a, ,B, ,y). 
It is sufficient to show that the function h(z) defined by 

h(z) = >.fi(z) + (1 - >.)h(z) (O:s;>.:::;1) (5.9) 

is in the class Pn(a,,B,,y). Since, for O:::; >.:::; 1, 

00 

h(z) = [>.a1,1 + (1 - >.)a1,2)z - L[>.ak,1 + (1 - >.)ak,2]zk, (5.10) 
k=2 

with the aid of Theorem 1, we have 

00 L kn+1(1 + ,B,y)[>.ak,I + (1 - >.)ak,2] :::; ,B(l + 'Y - 20:1)[>.a1,1 + (1 - >.)a1,2] (5.11) 
k=2 

which implies that h(z) E Pn(a,,B,,y). 
As a consequence of Theorem 8, there exists the extreme points of the class Pn(a, ,B, 

'Y ). 

Theorem 9. Let f1(z) = a1z and 

f ( ) _ _ ,B(l + 'Y - 2a,y)a1 k 
k z - a1z kn+l(l + ,B,y) z (k ~ 2) (5.12) 

for O :::; a < 1, 0 < ,B :::; 1, 0 < , :::; 1, and n E N0• Then f(z) is in the class 
Pn(a,,B,,y) if and only if it can be expressed in the form 

00 

f(z) = L >.kfk(z) 
k=l 

(5.13) 

where >.k ~ 0 (k ~ 1) and ~~1 >.k = 1. 
Proof. Suppose that 

(5.14) 

Then we get 
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By virtue of Theorem 1, this shows that J(z) E Pn(o, /3, ,). 
On the other hand, suppose that the function f(z) defined by (1.1) is in the class 

Pn(a, /3, 1). Again, by using Theorem 1, we can show that 

/3(1 +, - 20,)a1 
ak :S kn+l(l + /3,) (k ~ 2). (5.16) 

Setting 

(k ~ 2), (5.17) 

and 
00 

(5.18) 

Hence, we can see that f(z) can be expressed in the form (5.13). This completes the 
proof of Theorem 9. 

Corollary 9. The extreme points of the class Pn(a, /3, ,) are the functions 
fk(z) (k ~ l} given by Theorem 9. 

6. Radii of close-to-convexity, starlikeness and convexity 

Theorem 10. Let the function J(z) defined by (1.1) be in the class Pn(a, /3, 
,), then J(z) is close-to-convex of order b (0 :::; b < 1) in lzl < r1(n,a,/3,,,b), 
where 

r1 (n, a, /3, ,, b) = inf { (a1 - b)kn(l + /3,)} ".:1 
k /3(1 +, - 20,)a1 (k ~ 2). (6.1) 

The result is sharp with the extremal function f(z) given by (2.3). 

Proof. We must show that lf'(z)-a11 :S a1 -b for lzl < ,1(n,a,/3,,,b). We have 

00 

IJ'(z)- ail :S Lkaklzlk-l_ 
k=2 

(6.2) 

According to Theorem 1, we have 

(6.3) 
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Hence (6.2) will be true if 

klzllc-1 kn+l(l + (3,) ---<------ 
(a1 - b) - /3(1 +, - 2a1)a1 

or if I 

lzl < { (a1 - b)kn(l + (3,)} k-1 (k > 2). 
- /3(1 +, - 2a,)a1 - 

The theorem follows easily from (6.4). 

(6.4) 

Theorem 11. Let the function f(z) defined by (1.1) be in the class Pn(a, (3, 
1), then f(z) is starlike of order b (0 ~ b < 1) in lzl < r2(n,a,(J,1,b), where 

I 

. { (l-b)kn+l(l+/3,) }r-'f 
r2(n, a, (3, ,, b) = 1if (k _ b)/3(1 +, - 2a,) (k 2: 2). (6.5) 

The result is sharp with the extremal function f(z) given by (2.3). 

Proof. It is sufficient to show that I zj~~)) -11 ~ 1- 8 for lzl < r2(n, a, (3, ,, 8). We 
have 

00 

l
zf'(z) I I:(k-l)aklzlk-1 
f(z) - 1 ~ _k= __ 2=-------=oo=------­ 

a1 - L ak lzlk-1 
k=2 

Thus I zJ~~)) - 11 ~ 1 - 8 if 
~ (k - b)akizlk-I 
~-----<I. 
k=

2 
(1 - 8)a1 - 

Hence, by using (6.3), (6.6) will be true if 

(k - 8)Jzlk-1 < kn+l (1 + (3,) 
(1 - 8)a1 - /3(1 +, - 2a,)a1 

(6.6) 

or if 
I 

{ 
(1 - 8)kn+l {1 + {31) } r=T 

lzl ~ (k - 8)(3(1 + 1 - 2a,) 
The theorem follows easily from (6.7). 

(k 2: 2). (6.7) 

Corollary 10. Let the function J(z) defined by (1.1) be in the class Pn(a, (3, 
,), then f(z) is convex of order b (0 ~ b_< 1) in lzl < r3(n,a,f3,1,8), where 

I 

. { (1 - b)kn(l + fJ,) } k-l 
r3(n,a,(J,,,b) = 1if (k- b)(J(l +, - 2a,) (k 2: 2). (6.8) 
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The result is sharp with the extremal function J(z) given by (2.3). 

7. Integral Operators 

Theorem 12. Let the function f(z) defined by (1.1) be in the class Pn(a, ,B, 
,), and let c be a real number such that c > -l. Then the function F(z) defined 
by 

c+ 11z F(z) = - tc-l f(t)dt 
zC Q 

also belongs to the class Pn(a, ,B, ,y). 

Proof. From the representation of F(z), it follows that 

(7.1) 

00 

F(z) = a1z - L bkzk, 
k=2 

(7.2) 

where 
bk= [c+ 1J, 

C + k ak. (7.3) 

Therefore, 

00 

< L kn+i(l + ,B,y)ak :::; ,B(l + 'Y - 2a,y)a1, 
k=2 

(7.4) 

since f(z) E Pn(a:, ,B, ,y). Hence, by Theorem 1, F(z) E Pn(a, ,B, ,y). 

Theorem 13. Let c be a real number such that c > -1. If F(z) E Pn(a,,B,,y), 
then the function defined by (7.1) is univalent in lzl < r*, where 

* . f [ kn(l + ,B,y)(c + 1) ] k.:1 r = 1n 
k ,B(l + 'Y - 2a,y)(c + k) 

The result is sharp. 

(k 2 2). (7.5) 

Proof. Let F(z) = a1z - L~2 akzk (a1 > 0; ak 2 0). It follows from (7.1) that 

f(z) = zl-::[zcF(z)]' 
(c > -1) 

00 

= a1z- L(+k k 
k=2 c + 1 )akz . (7.6) 
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In order to obtain the required result it suffices to show that 

lf'(z) - ail< a1 in lzl < r*. 
Now 

00 

IJ'(z) - a1 I :S ~ k(c + k) a I 1k-1 
6 (c + l) k z . 
k=2 

Thus lf'(z) - a1I < a1 if 

(7.7) 

Hence by using (6.3), (7.7) will be satisfied if 

k(c + k)lzlk-l < kn+l(l + /3,) 
(c + l)a1 /3(1 +, - 2a,)a1 

or if 
lzl < [ kn(l + /3,)(c + 1) l ,..:1 (k > 2). 

/3(1 +, - 2a,)(c + k)J - 
Therefore J(z) is univalent in lzl < r*. Sharpness follows if we take 

(7.8) 

/3(l+,-2a,)a1(c+k) zk 
J(z) = a1z - kn(l + /3,)(c + 1) (k 2: 2). (7.9) 

8. Linear Combinations of Functions in Pn(a,/3,,) 

Theorem 14. Let the functions fi(z) defined by (5.1) be in the class Pn(a,/3, 
,) for every j = 1, 2, ... , m. Then the function h(z) defined by 

m 

h(z) = L cifi(z) 
j=l 

(8.1) 

is in the same class Pn(a,/3,,). 

Proof. By the definition of h(z), we have 

m oo m 

h(z) = [Lcja1,j]z- L[Lciak,j]zk. 
j=l k=2 j=l 

Further, since fi(z) are in Pn(a, /3, ,) for every j = 1, 2, ... , m, we get 

(8.2) 

00 

L kn+l(l + /3,)ak,j :S /3(1 +, - 20,)a1,j· 
k=2 

(8.3) 
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for every j = 1, 2, ... , m. Hence we can see that 
oo m m oo L kn+l (1 + (3,) [L Cjak,j] = L Cj [L kn+l (1 + /31 )ak,j] 
k=2 j=l j=l k=2 

m 

~ ,B(l + 1 - 2a,) L Cjal,j· 
j=l 

This proves that h(z) E Pn(a, (3, 1). 

Remark. Owa [3] considered the class P0(a, /3, ,) ·= P(a, (3, 1) of functions f(z) 
defined by ( 1.1) and satisfying 

I /'(z)-1 I (J 
1 f' ( z) + ( 1 - 2a,) < (i) 

where O ::;; a < 1, 0 < (3 ~ l and O <, ~ 1. 
One can easily verify that the condition (i) is equivalent to 

j'(z) = 1 + /3(1 - 2a,)w(z) 
1 - (3,w( z) z EU, (ii) 

where w(z) is a function analytic in U and satisfying w(O) = 0 and Jw(z)I < 1 for 
z EU. Since /'(z) = a1 - I:;:,2 kakzk-l, it follows that the constant term in the Taylor 
expansion of both sides of (ii) is not the same except when a1 = 1. It seems, therefore, 
that the class P(a, (3, 1) has not been defined by Owa (3] in proper way. In fact, the 
correct form of (i) must be 

I r c z) - a1 I (J 
,f'(z) + (1 - 2a,)a1 < ' 

Consequently, the correct form of (ii) is 

f'( ) 1 + (3(1 - 2a,)w(z) z - a1 ------- 
- . 1 - f3"'fw(z) ' 

References 

z EU. (iii) 

z EU. (iv) 

(1] H. S. Al-Amiri, "On a subclass of close-to-convex functions with negative coefficients," Mathemat­ 
ica, 31 (54), no.I, 1-7, 1989. 

[2] V. P. Gupta and P. K. Jain, "Certain classes of univalent functions with negative coefficients. 11," 
Bull. Austral. Math. Soc., 15, 467-473, 1976. 

[3] S. Owa, "Certain subclasses of univalent functions in the uint disc," Pure Appl. Math. Sci., 22, 
no.1-2, 1-15, 1985. 

[4] G. Salagean, "Subclasses of univalent functions," Lecture notes in Math., (Springer-Verlag) 1013, 
362-372, 1983. 

[5] S. M. Sarangi and B. A. Uralegaddi, "The radius of convexity and starlikeness for certain classes 
of analytic functions with negative coefficients. I," Rend. Acad. No,z. Lincei, 65, 38-42, 1978. 

- .partment of Mathematics, Facllaty of Science, University of Mansoura, Mansoura, Egypt. 


