COINCIDENCE POINT THEOREMS FOR MULTI-VALUED AND SINGLE-VALUED MAPPINGS IN MENGER PM-SPACES

H. K. PATHAK, Y. J. CHO, S. S. CHANG AND S. M. KANG

Abstract. In this paper, coincidence point theorems for compatible mappings of multi-valued and single-valued mappings in Menger PM-spaces are obtained. The presented results in this paper generalize and improve the corresponding results of S. S. Chang et al., O. Hadžić and others.

Throughout this paper, let $R = (-\infty, \infty)$, $R^+ = [0, \infty)$, Z^+ be the set of all positive integers and \mathcal{D} be the set of all distribution functions on R.

If (X, \mathcal{F}, T) is a Menger probabilistic metric space (shortly, a Menger PM-space) with the continuous *t*-norm *T*, then (X, \mathcal{F}, T) is a Hausdorff space [6] in the topology τ induced by the faimily

$$\{U_x(\epsilon,\lambda): x \in X, \ \epsilon > 0, \ \lambda \in (0,1)\}\$$

of neighborhoods $U_x(\epsilon, \lambda)$, where

$$U_x(\epsilon, \lambda) = \{ y \in X : F_{x,y}(\epsilon) > 1 - \lambda \}.$$

Refer to [1], [2] and [6]-[8] for other details on PM-spaces.

Definition 1. Let (X, \mathcal{F}, T) be a Menger PM-space with the continuous *t*-norm T and A be a nonempty subset of X. $D_A(t) = \sup_{s < t} \inf_{x,y \in A} F_{x,y}(s)$ is called the *probabilistic diameter* of A. Specifically, the set A is said to be *probabilistically bounded* if

$$\lim_{t\to\infty} D_A(t) = 1.$$

Received March 16, 1994; revised June 7, 1994.

¹⁹⁹¹ Mathematics Subject Classification. 54H25.

Key words and phrases. Menger PM-spaces, probabilistic distances, t-norm of h-type, weakly compatible mappings and common fixed points.

This paper was partially supported by U.G.C., 1994, New Delhi, India, and the Young-Joong Hur Research Foundation of Gyeongsang National University, 1994.

From [2], we know that

(1) if A is a probabilistically bounded subset of X, then $D_A(t)$ is a distribution function,

(2) if A and B are probabilistically bounded subsets of X, then $A \cup B$ is also a probabilistically bounded set.

Let (X, \mathcal{F}, T) be a Menger PM-space with the continuous *t*-norm T and CB(X) be the family of nonempty probabilistically bounded and closed subset of X. We define a mapping $\tilde{\mathcal{F}} : CB(X) \times CB(X) \to \mathcal{D}$ as follows (we denote $\tilde{\mathcal{F}}(A, B)$ by $\tilde{F}_{A,B}$ and the value $\tilde{F}(A, B)$ at $t \in R$ by $\tilde{F}_{A,B}(t)$):

$$F_{A,B}(t) = \sup_{s < t} T(\inf_{x \in A} \sup_{y \in B} F_{x,y}(s), \inf_{y \in B} \sup_{x \in A} F_{x,y}(s)), \quad A, B \in CB(X).$$

The mapping $\widetilde{\mathcal{F}}$ is called the *Menger-Hausdorff metric* induced by \mathcal{F} .

Proposition 1. [2] $(CB(X), \tilde{F}, T)$ be a Menger PM-space, i.e., \tilde{F} is a mapping satisfying the following conditions:

(1) $\widetilde{F}_{A,B}(t) = 1$ for all t > 0 if and only if A = B,

(2) $F_{A,B}(0) = 0$,

(3) $\widetilde{F}_{A,B}(t) = \widetilde{F}_{B,A}(t),$

(4) $\widetilde{F}_{A,B}(t_1+t_2) \ge T(\widetilde{F}_{A,C}(t_1), \widetilde{F}_{C,B}(t_2))$ for all $A, B \in CB(X)$ and $t_1, t_2 > 0$.

Definition 2. Let $A \in CB(X)$ and $x \in X$. The probabilistic distance between x and A is the function defined by

$$F_{x,A}(t) = \sup_{s < t} \sup_{y \in A} F_{x,y}(s), \qquad t > 0.$$

Proposition 2. [2] Let $A, B \in CB(X)$ and $x, y \in X$. Then we have the following:

- (1) $F_{x,A}(t) = 1$ for all t > 0 if and only if $x \in A$,
- (2) $F_{x,A}(t_1 + t_2) \ge T(F_{x,y}(t_1), F_{y,A}(t_2))$ for all $t_1, t_2 > 0$,
- (3) $F_{x,B}(t) \ge \widetilde{F}_{A,B}(t)$ for all t > 0.

Remark 1. If we define $F_{x,A}(t) = \sup_{y \in A} F_{x,y}(t)$, then, since we have

$$\sup_{s < t} \sup_{y \in A} F_{x,y}(s) = \sup_{y \in A} F_{x,y}(t),$$

 $F_{x,A}(t)$ is a left-continuous at t and the properties (1), (2), (3) of Proposition 2 are also satisfied.

Definition 3. Let $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ be a strictly increasing function such that $\phi(0) = 0$ and $\lim_{t\to\infty} \phi(t) = +\infty$. Define a function $\psi : \mathbb{R}^+ \to \mathbb{R}^+$ by

(A)
$$\psi(t) = \begin{cases} 0 & t = 0, \\ \inf\{s > 0 : \phi(s) > t\}, & t > 0. \end{cases}$$

It is easy to prove that $\psi: \mathbb{R}^+ \to \mathbb{R}^+$ is a continuous and nondecreasing function.

Definition 4. We say that a function $\phi: \mathbb{R}^+ \to \mathbb{R}^+$ satisfies the condition (Φ) if it is a strictly increasing and left-continuous function such that $\phi(0) = 0$, $\lim_{t\to+\infty} \phi(t) = +\infty$ and $\sum_{n=0}^{\infty} \phi^n(t) < +\infty$ for all t > 0, where $\phi^n(t)$ is the *n*-th iteration of $\phi(t)$.

Lemma 3. [3] Let $\phi : \mathbb{R}^+ \to \mathbb{R}^+$ satisfy the condition (Φ) and let ψ be defined by (A). Then we have the following:

- (1) $\phi(t) < t$ for all t > 0,
- (2) $\phi(\psi(t)) \leq t$ and $\psi(\phi(t)) = t$ for all $t \geq 0$,
- (3) $\psi(t) \ge t$ for all $t \ge 0$,
- (4) $\lim_{n\to\infty} \psi^n(t) = +\infty$ for all t > 0.

Definition 5. A *t*-norm *T* is said to be of *h*-type if the family $\{T^m(t)\}_{m=1}^{\infty}$ of the functions $T^m(t) = T(t, T^{m-1}(t)), m = 1, 2, ..., T^0(t) = t, t \in [0, 1]$, is equicontinuous at 1.

Lemma 4. [3] Let (X, \mathcal{F}, T) be a Menger PM-space, where T is a t-norm of *h*-type. If a sequence $\{x_n\}$ in X satisfies the following condition:

For any $n \in Z^+$ and t > 0,

(B)
$$F_{x_n,x_{n+1}}(t) \ge F_{x_0,x_1}(\psi^n(t)),$$

where ϕ is a function satisfying the condition (Φ) and ψ is defined by (A), then the sequence $\{x_n\}$ is a Cauchy sequence in X.

Now we introduce the concepts of weakly compatible mappings for multi-valued and single-valued mappings in the setting of PM-spaces, which is motivated by the concept of compatible mappings for single-valued mappings in metric spaces [5].

Definition 6. Let f be a mapping from X into itself and S be a multi-valued mappings X into CB(X).

(1) The mappings f and S are said to be commuting if $fSx \in CB(X)$ and fSx = Sfx for all $x \in X$,

(2) The mappings f and S are said to be weakly compatible if fSx = CB(X) and

$$\lim_{n \to \infty} \widetilde{F}_{fSx_{n-1},Sfx_{n-1}}(t) = 1, \qquad t > 0,$$

whenever $\{x_n\}$ is a sequence in X such that

$$\lim_{n \to \infty} F_{fx_n, Sx_{n-1}}(t) = 1, \qquad t > 0.$$

Remark 2. From Definition 6, any commuting mappings are weakly compatible but the converse is not true (cf. [5]).

Now we are in a position to give our main results:

Theorem 5. Let (X, \mathcal{F}, T) be a complete Menger PM-space with the continuous t-norm T of h-type. Let f be a continuous self-mapping of X and S be a continuous multi-valued mapping from X into CB(X) satisfying the following conditions:

(C) $S(X) \subset f(X)$,

(D) For any $x, y \in X$ and $u \in Sx$, there exists a point $v \in Sy$ such that

$$F_{u,v}(\phi(t)) \ge \min\{F_{fx,fy}(t), F_{fx,Sx}(t), F_{fy,Sy}(t)\}$$

for all t > 0, where the function ϕ satisfies the condition (Φ) .

If f and S are weakly compatible, then there exists a point $z \in X$ such that $fz \in Sz$, that is, the point z is a coincidence point of f and S.

Proof. First, we shall show that we can find a sequence $\{x_n\}_{n \in Z^+}$ in X such that

$$F_{fx_n, fx_{n+1}}(t) \ge F_{fx_0, fx_1}(\psi^n(t))$$

for all t > 0 and $n \in Z^+$.

From (C), for arbitrary $x_0 \in X$, there exists a point $x_1 \in X$ such that $fx_1 \in Sx_0$. By Lemma 3 and (D), there exists a point $x_2 \in X$ such that $fx_2 \in Sx_1$ and

(E)

$$F_{fx_1,fx_2}(t) \ge F_{fx_1,fx_2}(\phi(\psi(t)))$$

$$\ge \min\{F_{fx_0,fx_1}(\psi(t)), F_{fx_0,Sx_0}(\psi(t)), F_{fx_1,Sx_1}(\psi(t))\}$$

$$\ge \min\{F_{fx_0,fx_1}(\psi(t)), F_{fx_1,fx_2}(\psi(t))\}$$

for all t > 0, where $\psi(t)$ is defined by (A). Using (E) repeatedly, we have

(F)

$$F_{fx_{1},fx_{2}}(t) \geq \min\{F_{fx_{0},fx_{1}}(\psi(t)), F_{fx_{0},fx_{1}}(\psi^{2}(t)), F_{fx_{1},fx_{2}}(\psi^{2}(t))\}$$

$$= \min\{F_{fx_{0},fx_{1}}(\psi(t)), F_{fx_{1},fx_{2}}(\psi^{2}(t))\}$$

$$\geq \dots$$

$$\geq \min\{F_{fx_{0},fx_{1}}(\psi(t)), F_{fx_{1},fx_{2}}(\psi^{n}(t))\}.$$

Letting $n \to \infty$ in (F), we have

$$F_{fx_1, fx_2}(t) \ge F_{fx_0, fx_1}(\psi(t)), \qquad t > 0.$$

By repeating the above procedure, we can define a sequence $\{x_n\}$ in X such that $fx_{n+1} \in Sx_n$ and

$$F_{fx_n, fx_{n+1}}(t) \ge F_{fx_{n-1}, fx_n}(\psi(t)), \quad t > 0$$

Thus, for any $n \in Z^+$ and t > 0, we have

(G)
$$F_{fx_n, fx_{n+1}}(t) \ge F_{fx_{n-1}, fx_n}(\psi(t)) \ge \dots \ge F_{fx_0, fx_1}(\psi^n(t))$$

and so, by Lemma 4, $\{fx_n\}$ is a Cauchy sequence in X. Since (X, \mathcal{F}, T) is complete, we can assume that $\lim_{n\to\infty} fx_n = z \in X$. Since f and S are weakly compatible and the sequence $\{x_n\}$ in X is such that $fx_n \in Sx_{n-1}$, by Proposition 2, we have

$$\lim_{n \to \infty} F_{fx_n, Sx_{n-1}}(t) = 1, \qquad t > 0,$$

and so

$$\lim_{n \to \infty} \widetilde{F}_{fSx_{n-1}, Sfx_{n-1}}(t) = 1, \qquad t > 0.$$

On the other hand, from (3) of Proposition 2, it follows that

(H)
$$F_{ffx_n,Sf_{n-1}}(t) \ge \widetilde{F}_{fSx_{n-1},Sfx_{n-1}}(t), \quad t > 0.$$

Letting $n \to \infty$ in (H), we have

$$1 = \lim_{n \to \infty} F_{ffx_n, Sf_{n-1}}(t) = F_{fz, Sz}(t)$$

and so, by Proposition 2, $fz \in Sz$, that is, z is a coincidence point of f and S. This completes the proof.

In Theorem 5, by strengthening the weak compatibility of f and S by the commutitivity of f and S, we have the following:

Theorem 6. Let (X, \mathcal{F}, T) be a complete Menger PM-space with the continuous t-norm T of h-type. Let f and S be as in Theorem 5 satisfying the conditions (C) and (D). If f and S commute, then there exists a point $z \in X$ such that $fz \in Sz$.

Proof. Following the same argument as in Theorem 5, we can assume that $fx_n \rightarrow z \in X$.

Next, we prove that z is a coincidence point of f and S. In fact, for any t > 0 and $\epsilon \in (0, t)$, from (G) and the commutativity of f and S, we have

$$F_{ffx_{n+1},Sz}(t-\epsilon)$$

$$\geq F_{ffx_{n+1},Sz}(\phi(\psi(t-\epsilon)))$$

$$(I) \qquad = \sup_{fy\in Sz} F_{ffx_{n+1},fy}(\phi(\psi(t-\epsilon)))$$

$$\geq \min\{F_{ffx_{n},fz}(\psi(t-\epsilon)),F_{ffx_{n},ffx_{n+1}}(\psi(t-\epsilon)),F_{fz,Sz}(\psi(t-\epsilon))\}$$

$$\geq \min\{F_{ffx_{n},fz}(\psi(t-\epsilon)),F_{ffx_{0},ffx_{1}}(\psi^{n+1}(t-\epsilon)),F_{fz,Sz}(\psi(t-\epsilon))\}.$$

If $F_{fz,Sz}(\psi(t-\epsilon)) = 1$, then we have

(J)
$$F_{ffx_{n+1},Sz}(t-\epsilon) \ge \min\{F_{ffx_n,fz}(\psi(t-\epsilon)), F_{ffx_0,ffx_1}(\psi^{n+1}(t-\epsilon))\}$$

Letting $n \to \infty$ in (J), we have $F_{fz,Sz_0}(t-\epsilon) \ge 1$. Since $\epsilon \in (0,t)$ is arbitrary, we have $F_{fz,Sz}(t) = 1$ for all t > 0, that is, $fz \in Sz$.

If $F_{fz,Sz}(\psi(t-\epsilon)) < 1$, then, letting $n \to \infty$ in (I), we have

(K)
$$F_{fz,Sz}(t-\epsilon) \ge F_{fz,Sz}(\psi(t)).$$

By using (2) of Proposition 2, we have

(L)
$$F_{fz,Sz}(t) \ge F_{fz,Sz}(t-\epsilon).$$

Thus, as $\epsilon \to t$, from the continuity of ψ and the left-continuity of $F_{fz,Sz}$, it follows that

$$F_{fz,Sz}(t) \ge F_{fz,Sz}(\psi(t)).$$

Taking this procedure repeatedly, we obtain

$$F_{fz,Sz}(t) \ge F_{fz,Sz}(\psi(t)) \ge \cdots \ge F_{fz,Sz}(\psi^n(t)).$$

Therefore, as $n \to \infty$, $F_{fz,Sz}(t) = 1$ for all t > 0, that is, $fz \in Sz$. This completes the proof.

Taking f = the identity mapping on X in Theorem 6, we obtain the following:

Corollary 7. [3] Let (X, \mathcal{F}, T) be a complete Menger PM-space with the continuous t-norm T of h-type. Let S be a multi-valued mappings from X into CB(X) satisfy the condition:

(M) For any $x, y \in X$ and $u \in Sx$, there exists a point $v \in Sy$ such that

$$F_{u,v}(\phi(t)) \ge \min\{F_{x,y}(t), F_{x,Sx}(t), F_{y,Sy}(t)\}$$

for all t > 0, where the function ϕ satisfies the condition (Φ). Then S has a fixed point in X, that is, there exists a point $z \in X$ such that $z \in Sz$.

Taking $\phi(t) = kt$, 0 < k < 1, in Corollary 7, we have the following:

Corollary 8. Let (X, \mathcal{F}, T) be a complete Menger PM-space with the continuous t-norm T of h-type. Let S be a multi-valued mapping from X into CB(X)satisfying the following condition:

(N) For any $x, y \in X$ and $u \in Sx$, there exists a point $v \in Sy$ such that

$$F_{u,v}(kt) \ge \min\{F_{x,y}(t), F_{x,Sx}(t), F_{y,Sy}(t)\}$$

for all t > 0, where $k \in (0, 1)$ is a constant. Then S has a fixed point in X.

Corollary 8 is a generalization of the following result of O. Hadžić ([4]):

318

Corollary 9. Let (X, \mathcal{F}, T) be a complete Menger PM-space with continuous t-norm T, M be a nonempty probabilistically bounded subset of X. Let S be a multi-valued mapping from M into C(M), the family of nonempty compact subsets of X, satisfying the following condition:

(O) For any $x, y \in M$ and $u \in Sx$, there exists a point $v \in Sy$ such that

$$F_{u,v}(kt) \geq F_{x,y}(t)$$

for all t > 0, where $k \in (0, 1)$ is a constant. Then S has a fixed point in M.

References

- [1] S. S. Chang, Fixed point theory with applications, Chongqing Publishing House, Chongqing, 1984.
- [2] S. S. Chang, "On the theory of probabilistic metric spaces with applications," Acta Math. Sinica, New Series, 1(4), 366-377, 1985.
- [3] S. S. Chang, Y. J. Cho and S. M. Kang, Common fixed point theorems for multi-valued mappings in Menger PM-spaces, to appear in Math. Japonica.
- [4] O. Hadžić, "Fixed point theorems for multi-valued mappings in some classes of fuzzy metric spaces," Fuzzy Sets and Systems, 29, 115-125, 1989.
- [5] G. Jungck, "Compatible mappings and common fixed points," Internat. J. Math. and Math. Sci., 29, 115-125, 1989.
- [6] B. Schweizer and A. Sklar, "Statistical metric spaces," Pacific J. Math., 10, 313-334, 1960.
- [7] B. Schweizer and A. Sklar, Probabilistic Metric Spaces, North-Holland, New York, 1983.
- [8] B. Schweizer, A. Sklar and E. Thorp, "The metrization of statistical metric spaces," Pacific J. Math., 10, 673-675, 1960.

Department of Mathematics, Kalayan Mahavidyalaya, Bhilai Nagar (M.P.) 490006, India. Department of Mathematics, Gyeongsang National University, Chinju 660-701, Korea. Department of Mathematics, Sichuan University, Chengdu, Sichuan 610064, P. R. China. Department of Mathematics, Gyeongsang National University, Chinju 660-701, Korea.