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A NEW TYPE OF CLUSTER SETS AND ITS APPLICATIONS 

M. N. MUKHERJEE ANDS. RAYCHAUDHURI 

Abstract. In this paper we introduce the concept of a new type of cluster sets, 
termed a-cluster sets, of functions and multifunctions between topological spaces. 
Expressions of such sets are found and multifunctions with a-closed graphs are 
characterized. Also the behaviour of a-cluster sets toward a-continuity of a func­ 
tion is observed. Finally as applications, we find new characterizations of almost 
regularity, near compactness and near Lindelofness of a topological space in terms 
of a-cluster sets of suitable multifunctions. 

1. Introduction 

The theory of cluster sets for arbitrary functions between topological spaces was 
initiated by Weston [15]. The theory has also been studied intensively by Joseph [7], 
Hamlett [4, 5] and many others. Joseph [7] has characterized compactness, Lindelofness, 
m-compactness and H-closedness in terms of cluster sets and provided some consequences 
of these characterizations. There are some other well known spaces which have not yet 
been characterized in terms of cluster sets. This motivates us to introduce a new type 
of cluster sets called 8-cluster sets in this paper. Our main objective of this paper is to 
find new characterizations of some other well known spaces in terms of 8-cluster sets of 
suitable functions and multifunctions. We accomplish these for nearly compact, nearly 
Lindelof and almost regular spaces with the help of 8-cluster sets of certain types of 
multifunctions. 

The next section is meant for quoting some definitions and results that are used in 
this paper. In Section 3, we first find expressions for 8-cluster sets of arbitrary functions 
between two toplogical spaces and then characterize multifunctions with 8-closed graph 
in terms of 8-cluster sets. Moreover, we investigate about degeneracy of a 8-cluster set 
and use this as a tool to set new characterization of 8-continuity of a function. 
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In the last section we bring out some applications of the concepts developed in the 
earlier section by achieving new characterizations of nearly compact, nearly Lindelof and 
almost regular spaces. 

2. Preliminaries 

Throughout the present paper X and Y always denote topological spaces. We 
denote the closure and interior of a subset A of a space X by clA and intA respectively. 
A point x E X is said to be a 8-adherent point of a set A in X [14] if A n U :/= <I> for 
every regular open set U containing x, or equivalently, An intcl V :/= <I> for every open 
neighbourhood (henceforth nbd, for short) of x. The set of all b-adherent points of A is 
called the b-closure of A (14], to be denoted by 8clA. A is called b-closed if A = 8clA. 
The complement of a b-closed set is called b-open. The b-open sets in a space X form 
a topology on X, called 8-topology on X, for which the regular open sets form a base 
[2]. The collection of all 8-open sets of X (resp. Y) is denoted by 80(X) (resp. 80(Y)). 
For a set A in a space X, the collection of all 8-open sets containing A will be denoted 
as L\(A). In particular, when A= {x} (x EX), we shall write L\(x) for L\({x}). When 
A C Y, we continue to write L\(A) to mean the collection of all 8-open sets of Y, each 
containing A, and hope that the context will leave no scope for confusion. We say that 
a point x E X is in the 0-closure [14] of a set A( c X), written x E OclA, if each open 
nbd U of x satisfies An clU =I= <I>. A is called 0-closed (14) if BclA = A. It is known (14) 
that for an open set A in a space X, OclA = 8clA = cIA. A space X is said to be almost 
regular [12] if for each regular closed set F in X and each point x, not contained in F, 
there exist disjoint open sets U and V such that x E U and F c V, equivalently, if every 
regular-closed set F in X is expressible as an intersection of some regular-closed nbds of 
F. 

Let :F be a filter (or a filterbase) on a space X. A point x EX is called a 8-adherent 
point of :F, written as x E 8 - ad:F, if x E n{ 8cl F : F E :F}; :Fis said to 8-converge to x, 
denoted by :F ~x, if for each open nbd U of x there is an FE :F such that F c intcl U 
[10). A subset A of X is called N-closed relative to X (3] if every cover of A by regular 
open (or 8-open) sets of X has a finite subcover for A. If, in addition, A= X then Xis 
called a nearly compact spaces (13). The following results will be used in the sequel. 

Lemma 2.1 (a) [13] Every regular closed subset of a nearly compact space 
is N-closed relative to X. 
(b) [8) A space X is nearly compact iff 8 - ad:F =I= <I>, for every filterbase :F on X. 

We shall represent the class of multifunctions from a space X to a space Y by 
M(X, Y), where by a multifunction F : X - Y we mean a function from X to P(Y) - 
{<I>}, P(Y) being the power set of Y. 

3. 8-cluster Sets of Functions and Multifunctions 
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Definition 3.1. Let F : X ---+ Y be a multifunction, and x E X. Then the 
c5-cluster set, denoted by TJ(F, x), of F at the point x is given by the set n{ c5cl F(U) : 
U E .6..(x )}, the c5-cluster set of a function (i.e. single valued function) f : X ---+ Y at a 
point x EX is defined in the same way viz. 'D(f,x) = n{bcl f(U): U E .6..(x)}. 

In order to characterize c5-cluster sets we need the following lemma, the proof of 
which is quite straightforward. 

Lemma 3.2. A filter ( or fiiterbase) on a space X 8-adheres at a point x EX 
iff there is a filter Y on X, finer than :F, 8-converging to x. 

Theorem 3.3. For a function f : X ---+ Y the following statements are 
equivalent: 
(a) y E TJ(f,x) 
(b) There is a filter :F on X such that :F ~x and f(:F)~y. 
(c) j-1(.6..(y)) 8-_adheres at x. 

Proof. (a)=} (b): Since y E 'D(f, x), we have Vnf(U) # cl> for every VE .6..(y) and 
each U E .6..(x). Obviously, 1-1(V)nU # cl> and 1-1(.6..(y)) c5-adheres at x. In view of the 
above lemma, there is a filter Yon X finer than 1-1(.6..(y)) such that Y~x. If possible, 
let there exist VE .6..(y) such that f(G) ct V, for every GEY. Then f(G)n(Y - V) # cl> 
for each G E Y. In particular, 1-1(V) E Y so that f 1-1(V) n (Y - V) # cl> which is 

6 absurd. Hence JY-y. 
(b) => (c): Let :F be a filter on X c5-converging' to x and f(:F) c5-converge to some point 
y in Y. Let V be any c5-open nbd of y in Y. Then there is FE F such that f(F) C V. 
We then have F C 1-1(V) and hence 1-1v E :F. Thus :Fis finer than 1-1(.6..(y)). Since 
:F ~x, it follows by Lemma 3.2 that 1-1(.6..(y)) must c5-adhere at x. 

6 (c) ::::> (a): Let J-1(.6..(y))-x. Then for every V E .6..(y) and U E .6..(x), we have 
1-1(V) n U -=I= cl> and hence V n f(U) -=I= cl>. Thus y E TJ(f,x). 

Next, we want to use cluster set as a tool to characterize multifunctions with c5- 
closed graph and c5-continuity of a function. To that end, we need the following lemma 
which incidentally gives yet another characterization of the c5-cluster set of a function at 
a point. 

Lemma 3.4. Let F : X ---+ Y be a multifunction and x E X. Then P2 [( { x} x 
Y) n c5cl G(F)} = D(F, x), where p2 : X x Y ---+ Y denotes the projection map, and 
G(F) is the graph of F. 

Proof. Let y E D(F, x) and G be any c5-open set in X x Y containing (x, y). 
Then by Proposition 4 of [61, G = U x W where x E U E .6..(x), y E W E .6..(y). Since 
y E bcl F(U), we have WnF(U) # cl>. Hence (U x W)nG(F) # cl>, i.e., (x, y) E c5cl G(F) 
and y E P2 [( { x} x Y n c5cl G(F)]. Reversing the above arguments we get the reverse 
inclusion. 
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Theorem 3.5. Let F: X---+ Y be a multifunction. Then the following are 
equivalent: 
(a) F has a 8-closed graph. 
(b) F(x) = p2[({x} x Y) noel G(F)L for each x EX. 
(c) For each x EX, V(F,x) = F(x). 

Proof. '(a) ::::} (b)' is obvious, and '(b) ::::} (c)' follows immediately from the above 
lemma. We thus only prove '(c) ::::} (a)' as follows. Let (x,y) EX x Y - G(F). Then 
y (/. F(x) so that y {/. V(F, x). Then there are a 8-open set V containing y and a U E ~(x) 
such that V n F(U) = <I>. Hence (U x V) n G(F) = <I>. Now, U x V E ~(x, y) and we 
can conclude that G(F) is 8-closed. 

The above theorem shows that multifunctions with 8-closed graphs can be charac­ 
terised in terms of 8-cluster sets. In particular, when f is a single-valued function, then 
the theorem asserts that 8-closedness of the graph of f can be characterized by the fact 
of its 8-cluster set at each point being degenerate. The next two theorems give yet other 
two situations when the 8-cluster sets of certain classes of functions become degenerate. 
We recall in this connection that a function f : X ---+ Y is 8-closed if F(A) is 8-closed in 
Y for each 8-closed set A in X. 

Theorem 3.6. Let f be a 8-closed map from an almost regular space X into 
a space Y. If 1-1(y) is 8-closed in X for eve,y y E Y, then V(f,x) is degenerate 
for every x E X. 

Proof. It is class that V(f,x) = n{8cl f(U): U E ~(x)} c n{8cl f(8cl U): U E 
~(x)} = n{f(8cl U) : U E ~(x)} (as f is 8-closed). Let y E Y with y # f(x). Since X 
is almost regular and 1-1 (y) is 8-closed with x {/. J-1 (y), there is a 8-open set U such 
that x E U and J-1(y) n 8clU = <I>, which shows that y (/. f(8cIU) and consequently, 
y (/. V(f, x). Hence V(f, x) is degenerate. 

Theorem 3. 7. Let f be a 8-closed injection from a Hausdorff space X into 
a space Y, then V(f, x) is degenerate for every x E X. 

Proof. For any x E X, we have as in the above proof, V(f,x) c n{f(8clU) : 
U E ~(x)}. Suppose x,x1 EX with x # x1, then f(x) # f(x1). Since Xis Hausdorff, 
there exist open nbds U and V of x and x1 respectively such that U n V = <I> and 
hence intcl Un intcl V = <I>. Then 8cIW n V = <I>, where W = intcl U E ~(x). 
Hence x1 {/. 8cl W so that f(xi) {/. f(8c1W). Thus f(xi) {/. V(f,x). Consequently 
V(f, x) = {f(x) }. 

Definition 3.8. [ll] A function f : X ---+ Y is 8-continuous if for each x E X 
and each regular open ( or 8-open) set V containing f ( x), there exists a regular open ( or 
8-open) set U containing x such that f(U) c V, or equivalently, for every regularly open 
set V in Y, J-1 (V) is 8-open in X. 

We show in the following theorem that the condition of degeneracy of the 8-cluster 
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set of a function at a point x characterizes the 8-continuity of the function at x, under 
certain restriction on the codomain space of the function. 

Theorem 3.9. Let f: X - Y be a mapping from a space X into a nearly 
compact Hausdorff space Y and x E X. Then f is 8-continuous at x iff V(f, x) is 
degenerate. 

Proof. Let f : X - Y be not 8-continuous at a point x E X, where Y is a 
nearly compact space. Then there is a regularly open set V containing f(x) such that 
f (U) n (Y - V) =I= <I>, for every 8-open set U containing x. Now, { 8cl f(U) n (Y - V) : 
U E L\(x)} is a family of 8-closed sets and has the finite intersection property. X being 
nearly compact, we have by Lemma 3.2 that n{8cl f(U) n (Y - V): U E L\(x)} =I= <I>, i.e. 
V(f, x) n (Y - V) =I= <I>. Hence V(f, x) is not degenerage. 

Conversely, assume that f is 8-continuous at a point x E X. Let y E Y with 
f(x) :/= y. Since Y is Hausdorff, there are regular open sets Ut(x) and Uy containing 
f(x) and y respectively such that Uf(x) n Uy = <I>. Since f is 8-continuous at x, there 
is a 8-open set Vx in X containing x such that J(Vx) C Ut(x)· So, J(Vx) n Uy = <I>. 
Consequently, y ff. 8cl f(Vx) and {f(x)} = n{8clf(U): U E L\(x)} = V(f,x). Hence 
V(f, x) is degenerate. 

Definition 3.10. (1) A function f : X - Y is said to be 8*-continuous if for 
every open set V containing f(x), there is a regular open set U containing x such that 
f(U) CV. 

Theorem 3.11. If f: X - Y is a 8*-continuous function then 8cl {f(x)} c 
V(f, x) C ()cl {f (x)}. 

Proof. 8cl {f(x)} C V(f, x) is obvious: 
Suppose y E V(f,x) but y <t Bel {f(x)}. Then there is an open nbd V of y such that 
f ( x) ft clU. Hence there is an open set V such that f ( x) E V and U n V = <I>. Since f is 
8*-continuous, there exists a regular open set W such that x E Wand f(W) CV. Since 
y E V(f, x), y E 8cl f (W) (since W is also 8-open) c 8clV = clV. Thus Un V =I= <I>, a 
contradiction. Therefore, V(f, x) C ()cl {f(x)}. 

4. Applications 

As proposed earlier, the purpose of this section is to highlight :::ome applications 
of the concept of 8-cluster sets by presenting certain new characterizations of some well 
known classes of spaces via the notion of 8-cluster sets. We start with the case of almost 

. regularity, and introduce the following definition as a prerequisite. 

Definition 4.1. A multifunction F : X - Y is called. upper 8-continuous if 
for each 8-open set V containing F(x), there is a 8-open set U containing x such that 
F(U) CV. 
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Theorem 4.2. A space Y is almost regular iff D(F, x) = 8cl F(x) for each 
x EX and each upper 8-continuous multifunction F from any space X to Y. 

Proof. Let Y be an almost regular space and F an upper c5-continuous function 
from a space X to Y. It is obviously true that c5cl F(x) c D(F, x). Now, if x E X and 
W is a c5-open set containing F(x) in· Y, then by upper c5-continuity of F there exists a 
8-open set V containing x in X such that F(V) c W. Hence 

D(F,x)=n{ocl F(V): VE .6..(x)} C n{c5clW: w E .6..(F(x))}=n{clW: w E .6..(F(x))}. 

It now suffices to show that n{clW: WE .6..(F(x))} c 8cl F(x) as c5cl F(x) C n{clW: 
WE .6..(F(x))} is obvious. 
Let y E n{clW: WE .6..(F(x))} (1) 
If y ft bcl F(x), then since Y is almost regular, there are disjoint open sets U, V such 
that y E U and 8cl F( x) C V. Put Vi = in tel V, then Vi is a 8-open set containing 
ocl F(x) such that clVi n U = clV n U = <I>. Since F(x) c Vi we have by (1), y E clVi. 
Also y E U so that we get Un Vi /:- cl>, a contradiction. Hence D(F, x) = ocl F(x). 

Conversely, suppose (Y, Ty) is not almost regular. Then there is a nonempty regular 
closed set Mc Y such that n{oclW: Mc WE c50(Y)} ~ M. Choose x0 EM and let 
:F = {FE c50(Y) : M C F}. Now, :F(xo) = {V C Y : xo (/_ V} U {VE c50(Y) : xo E V 
and F C V for some F E :F} forms a base for some topology T on Y. Set X = Y and 
define a multifunction 7/; : (X, T) ---+ (Y, Ty) by 

'1/;(x) =MU {x}, for x -=I= xo. 

and 
'1/J(xo) = M. 

We show that 7/; is upper 8-continuous on X. Let V be a 8-open set in (Y, Ty) such that 
7/;(xo) C V. Since M C V E c50(Y), V ET and also Vis T-closed. Thus V is a regular 
open and hence a c5-open set in (X, r) containing x0 such that 'ljJ(V) = MU'l/;(V -{x0}) = 
MU (V - {xo}) CV. Next, let x EX - {x0} and Va 8-open nbd of 7/;(x) in (Y,Ty). 
Consider· U = T - int( T - cl { x}). Then U is a regular open and hence a 8-open set 
in (X,T) containing x such that 7/;(U) C 'l/;({x0,x}) = {x} UM CV. Thus 7/; is upper 
c5-continuous on X. 
Next we show that n{ocl 7/;(V) : x0 E VE c50(X)} = n{c5clW: Mc WE c50(Y)}. In 
fact, let t E n{ocl W: Mc WE c50(Y)}, and let VE c50(X) such that x0 EV. Then 
there is V1 E :F(xo) with x0 E Vi C V. Thus MC Vi E 80(Y) so that t E 8cl Vi in 
Y. Hence t E 8cl V = ocl '1/;(V) in Y, proving that t E n{bcl 'ljJ(V): x0 EVE 80(X)}. 
Again, for any lV E c50(Y) with MC W, since 7/;(x0) =MC W there exists, by upper 
8-continuity of '1/J, a VE 80(X) with x0 E V such that '1/J(V) C W. Hence the proposed 
equality is established. It then follows that D('l/;,x0) # M = 8cl 'I/J(x0). This completes 
the proof. 
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Definition 4.3. If X and Y are spaces, A C X and F E M(X, Y), we define 
V(F,A) = LJ V(F,x). 

xEA 

Lemma 4.4. A set A in a space X is N -closed relative to X ifj whenever 
for each filterbase F on X such that F n c # <I> is satisfied for each F E F and 
each c E ~(A), we have An 8 - adF # <I>. 

Proof. Let A ( c X) be N-closed relative to X and F be a filterbase on X with the 
stated property. If possible, suppose that An 8 - adF = <I>. Then for each x E A there are 
a regular open set V(x) containing x and an F(x) E F such that V(x) n F(x) = <I>. By 
N-closedness of A relative to X, AC u{V(x): x EA*}, for some finite subset A* of A. 
Choose F* E F with F* C n F(x). Then F*n[ LJ V(x)] = <I> and LJ V(x) E 6(A). 

xEA* xEA* xEA* 
Hence F does not satisfy the condition of the lemma. 

Conversely, assume that A is not N-closed relative to X. Then there is an open 
cover {U0 : a EA} of A such that A (/.. U{intcl U0 : a: E A0}, for every finite subset Ao 
of A. Thus F = {A - LJ intcl U0 : A0 is a finite subset of A} is a filterbase on X such 

aEAo 
that F n C # <I>, for each FE F and each C E ~(A), but An 8 - adF = <l>. 

Theorem 4.5. For a space X, the following are equivalent: 
(a) X ·is nearly compact. 
{b) V(F, A) = o - adF(~(A)), for each space Y, each multifunction F from X to 
Y and each regular closed set A in X. 
(c) V(F, A) is 8-closed in Y, for each space Y, each multifunction F from X to Y 
and each regular closed set A in X. 

Proof. (a) ::::} (b}: Let Y be any given space and A be a regular closed set in X, 
where X is nearly compact. For each x E A, ~(A) C 6(x). If F is any multifunction 
from X to Y, we hav~ F(6(A)) c F(6(x)). Then D(F,x) = n{ocl F(U): U E 6(x)} c 
n{8cl F(W): WE ~(A)}. Hence V(F,A) C 8 - adF(6(A)). 

Now, by Lemma 2.1 (a), A is N-closed relative to X. Let z E o-adF(6(A)). Thus 
for each VE 6(z) and WE 6(A) in X, we have VnF(W) # <I> so that F-(v)nW # <I>, 
where, as usual, p-(B) = {x E X : F(x) n B # <I>} for any BC Y. Since p-(6(z)) 
is a filterbase on X, we have by Lemma 4.4, An 8-adF-(6(z)) # <l>. Thus for each 
x EA n 8 - adF-(6(z)), we have W n p-(v) # <l>, for each WE 6(x) and VE ~(z). 
Hence F(W)nV # <I>, for all such Wand V. Therefore, z E 8cl F(W) for each WE ~(x) 
and hence z E V(F,x) C V(F,A). 
(b) ::::} (c): Obvious. 
(c) ::::} (a}: Let F be a filterbase on X. We only show that 8 - adF # <l> (see Lemma 2.1 
(b)). Suppose y0 (/. X and let Y = Xu{yo}, and ry ={UC Y: Yo</. U}U{U CY: Yo E 
U and F CU for some FE F}. Then Ty is a topology on Y. Consider the identity map 
f : X---+ (Y, Ty). Now, X is 8-closed in X and hence by hypothesis, D(f, X) is 8-closed 
in (Y, Ty). We find that y0 E 8cl (V(f, X)) = V(f, X). Hence there is x0 E X such that 



334 M. N. MUKHERJEE ANDS. RAYCHAUDHURI 

y0 E V(f, x0). Then for every b-open set V in X containing xo and each b-open set W 
containing y0, f(V) n W =I= <I>, i.e., for each FE :F and each 8-open set Vin X containing 
x0, we have F n f(V) =I= <I> (we notice that for each F E :F, FU {yo} E L\(yo)). Thus 
F n V =I= <I>. Hence xo E 8 - ad:F in X so that 8 - ad:F :/= <I>. 

From the above proof it follows that 

Corollary 4.6. Let F E M(X, Y). If A c X is N-closed relative to X, then 
V(F, A)= 8cl V(F, A)= 8 - adF(~(A)). 

Corollary 4.7. Let FE M(X, Y) and F have a 8-closed graph. Then F(A) 
is b-closed in Y for each N-closed set A relative to X. 

Proof. We have V(F, A) = U V(F, x) = U F(x) (by Theorem 3.5) = F(A). 
xEA xEA 

Then in view of Corollary 4.6, F(A) becomes 8-closed. 

Definition 4.8. (9) A space Xis called nearly Lindelof if every regular open cover 
of X has a countable subcover, a subset A of X is called nearly Lindelof relative to X if 
every cover of A by regular open sets of X has a countable subcover for A. 

Theorem 4.9. A space X is nearly Lindelof iff every cover of X by 8-open 
sets of X has a countable subcover. 

Proof. Follows easily from the facts that every regular open set is a 8-open set, 
and the regular open sets form a base for the 8-topology on X. 

Theorem 4.10. A b-closed subset of a nearly Lindelof space X is nearly 
Lindelof relative to X. 

Proof. Straightforward. 

Theorem 4.11. A space X is nearly Lindelof iff every filterbase on X with 
countable intersection property has a 8-adherent point. 

Proof. Let :F be a filterbase on a nearly Lindelof space X with the countable 
intersection property. If possible, let 8 - ad:F = <I>. Then for each x E X, there are 
a regular open set Ux containing x and an Fx E :F such that Ux n Fx = <I>. Now, 
{Ux : x EX} is a regular open cover of X, so that X = UxEXo Ux for a countable subset 
Xo of x. It is clear that 

( LJ Ux) n ( n Fx) = <I>, i.e., 
xEXo xEXo 

intersection property of :F. 
Conversely, let U = { U ex : a E A} be a regular open cover of X having no countable 
subcover. Then :F = {X - U Ucx : Ao is a countable subset of A} is a filterbase on X 

cxEAo 
with countable intersection property. Hence there exists x0 E 8-ad:F. Now, x0 E U13 EU 
for some (3 EA. Since X - Uf3 E F, it follows that x0 ft 8cl (X - U13) ":J 8 - ad:F. 

n Fx = <I>, a contradiction to the countable 
xEXo 

Lemma 4.12. A subset A of a space X is nearly Lindelof relative to X iff 
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for each filterbase :F on X such that In V =I- cl> is satisfied by each V E .6..(A) and 
every countable intersection I of elements of :F, one has An 8 - ad:F # <I>. 

Proof. The proof, being similar to that of Lemma 4.4, is omitted. 

Definition 4.13. A space X is called a D-space if each countable intersection of 
c5-open sets in X is c5-open in X. 

Theorem 4.14. For a space X, the following are equivalent: 
(a) X is nearly Lindelof. 
(b) D(F, A) = b. - ad(F(.6..(A))), for any m·ultifunction F from X to any D-space 
Y and any regular closed ( or 8-closed) subset A of X. 
(c) TJ(F, A) is 8-closed in Y, for any multifunction F from X to any D-space Y 
and any regular closed ( or 8-closed) subset A of X. 

Proof. (a)=} (b): It is clear that D(F,A) C 8 - adF(.6..(A)) (1) 
Next, let z E 8- adF(.6..(A)). Clearly .6..(z) is a filter on Y, so that F-(.6..(z)) (= :F, say) 
is a filterbase on X. Let {F-(Wi) : i = 1, 2, ... } be a countable collection of members 

00 

of :F, where each Wi E .6..(z). Since Y is a D-space, n Wi = W (say) E ~(z), so that 
i=l 

00 
F-( n Wi) E :F. For any VE .6..(A), since z E b-adF-(.6..(A)), we have F(V)nW # cl>, 

i=l 
00 00 

i.e., cl> # V n F-(W.) = V n F-( n Wi) = V n ( n F-(Wi)). Thus by Lemma 4.12, 
i=l i=l 

An 8 - adF-(.6..(z)) # cl>. For each x EA n 8 - adF-(.6..(z)), we have V n F-(W) # <I>, 
and hence F(V) n W =I- cl>, for all V E .6..(x) and W E .6..(z) i.e., F(V) n W # <I>. 
Thus z E bcl F(V), for each V E .6..(x). Then z E V(F, x) C D(F, A). Consequently, 
c5 - adF(.6..(A)) c D(F,A). This along with (1) proves the result. 
(b) =} ( c): Clear. 
(c) :::} (a): Let :F be a filterbase on X with the countable intersection property. Let :F* 
denote the filterbase, each of whose members is a countable intersection of members of 
:F. Let Yo ¢ X, and set Y = XU {yo} and Ty = {U C Y : Yo ff. U or F* C U for 
some F* E :F*}. Clearly Ty is a topology on Y. We show that Y is a D-space. For 
this it is sufficient to show that every countable intersection of regular open sets of Y 
is again regular open, since every b-open set is a union of some regular open sets. Let 

00 

{Ui : i = 1, 2, ... } be a countable collection of regular open sets of Y, and let U = n Ui. 
i=l 

If y0 E U, then U is clearly regular open, as intcl U = intU = U. So, suppose that 
y0 (/. V. Then there is some Un such that y0 ft Un. Now, two cases are possible viz. 
Yo E clUn and Yo (/. clUn. If Yo E clUn, then since Yo (/. Un = intcl Un, no member of 
:F*, containing Yo, can be contained in clUn. Now, clU C U U {yo}. Since clU C clUn, 
no member of :F*, containing Yo, can be contained in clU and hence Yo ¢ intclU, i.e., 
intclU = U so that U becomes regular open. In case Yo (/_ clUn, we have Yo (/. clU and 
hence clU = U. Thus intclU = U, so that U is regularly open. Thus (Y, Ty) is a D-space. 
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Now proceeding exactly in the same way as in the proof of '(c) ::::} (a)' of Theorem 4.5, 
we see that 8 - adF* =j:. <I>. Clearly 8 - adF* C -8 - adF, and hence 8 - adF =j:. <I>. The 
rest follows from Theorem 4.11. 

Like Corollary 4.6, we have from the above proof that 

Corollary 4.15. Let X and Y be spaces with Y a D-space. If A ( c X) is 
nearly Lindelof relative to X, then V(F, A) = 8cl V(F, A)= 8 - ad(F(.6.(A))). 

Again, from the above Corollary and Theorem 3.5 we obtain: 

Corollary 4.16. Let X and Y be spaces with Y a D-space. If FE M(X, Y) 
has a 8-closed graph, then F(A) is 8-closed in Y for each nearly Lindelof set A 
relative to X. 
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