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QUALITATIVE THEORY OF PARTIAL DIFFERENCE EQUATIONS (IV): 

FORCED OSCILLATIONS OF HYPERBOLIC TYPE 

NONLINEAR PARTIAL DIFFERENCE EQUATIONS 

SUI SUN CHENG, BING GEN ZHANG AND SHENG-LI XIE 

Abstract. Nonli1:~ar hyperbolic type partial difference equations with a forcing 
term are studied in this paper. By means of two averaging techniques, the problems 
of oscillation of characteristic initial value problem and of initial boundary value 
problem are reduced to that of forced and/or unforced recurrence relations in one 
variable. A variety of oscillation criteria is given for these relations which in turn 
yield oscillation criteria for the partial difference equations. 

1. Introduction 

We are concerned with the oscillatory behavior of hyperbolic type nonlinear partial 
difference equations of the form 

D.~u(i,j -1) - D.iu(i - l;j) + q(i,j,u(i,j)) = f(i,j), 1 ~ i ~ n,j ~ l (1.1) 

and 
D.~1u(i,j) + c(i,j,u(i,j)) = f(i,j), i,j = 0, 1,2, ... (1.2) 

where the partial differences D.1u(i,j), D.iu(i,j), D.2u(i,j), D.~u(i,j), D.~1u(i,j) are de­ 
fined respectively by 

D.1u(i,j) = u(i + 1,j) - u(i,j), D.iu(i,j) = u(i + 2,j) - 2u(i + 1,j) + u(i,j), 
D.2u(i, j) = u(i,j + 1) - u(i, j), D.~u(i, j) = u(i, j + 2) - 2u(i,j + 1) + u(i, j), 

and 
D.~1u(i,j) = u(i + l,j + 1) - u(i + 1,j) - u(i,j + 1) + u(i,j). 
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These two equations can respectively be considered as discrete analogs of hyperbolic 
differential equations of the form 

Utt(X, t) - Uxx(x, t) + q(x, t, u) = f(x, t) (1.3) 

and 
Uxt(X, t) + c(x, t, u) = f(x, t) (1.4) 

which have been investigated in a number of recent studies [6,11,12]. We refer the reader 
to [6] for initial boundary value problems involving equations of the form (1,3), and to 
[6,7,12] for characteristic initial value problems involving equations of the form (1.4). 

This work is motivated by several of our earlier works [1,2,3] and by the results 
obtained in these studies and the fact that several averaging techniques in obtaining these 
results can be adopted to establish oscillation criteria for the discrete equations. Our 
results, however, are new and their derivations require some subtly different arguments. 

Several preparatory results will be needed in the sequel. 

Lemma 1.1. An eventually concave sequence {x(n)} (i.e. ~2x(n) :s; 0 for all 
large n) is of constant sign eventually. An eventually positive and concave se­ 
quence ( or strictly concave) is eventually nondecreasing ( respectively increasing). 

Lemma 1.2. (Li and Cheng [9]) Let f be a positive nondecreasing function 
defined on ( 0, oo), and { x( n)} be a real sequence such that x( k) > 0 for i :s; k :s; j + 1, 
then 

j ~x(k) > fx(j+l) ~ >. j ~x(k) 
; f(x(k)) - lx(i) f(s) - ; n ,. - ". 

Lemma 1.3. Let {q(n)}go be a sequence of nonnegative numbers with in­ 
finitely many nonzero terms and E00q(j) < oo. Then 

00 00 -1 2: q(1){ 2: q(i)} = oo. 
j=O i=j+l 

Proof. Let 
00 

p(j) = 2: q(i), 
i=j+l 

j ~ 0. 

Then {p(j)} is a positive sequence and ~p(j) = -q(j + 1) :SO for j ~ 0. Thus by Lemma 
1.2, 

~ q(j)(~. q(i) }-1 ~ _ t, l>p~~j) 1) 
lp(n) ds 

~ - - = - ln p(n) + ln p(l) -+ oo 
p(l) s 
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as n---+ oo. 
The proof of the above Lemma can also be found in Zhang and Cheng [13, Lemma 

3.1] but is included here for the sake of completeness. 

2. Initial Boundary Value Problems 

In this section, we first consider the following partial difference equation 

~~u(i,j -1) - ~iu(i -1,j) + q(i,j,u(i,j)) = J(i,j), 1 Si S n,j ~ 1 (2.1) 

subject to the conditions 

~1 u(O, j) = g(j), j ~ 0 
~1 u(n, j) = h(j), j ~ 0, 

(2.2) 
(2.3) 

where f (i, j), g(j) and h(j) are real functions defined for 1 S i ::; n and/or j ~ 0, and 
q(i,j, u) is a real function defined on {l, 2, ... , n} x {O, 1, 2, ... } x R. We shall also assume 
some or all of the following conditions on q: 

(Hl) q(i, j, u) ~ p(j)<p(u) for 1 S i S n, j ~ 0 and -oo < u < oo, where p(j) is 
nonnegative for j ~ 0 and <pis nonnegative and convex on (0, oo); 

(H2) q(i, j, -u) = -q(i,j, u) for 1 ::; i ::; n, j ~ 0 and -oo < u < oo; 
(H3) <pis nondecreasing on (0, oo); 
(H4) <pis positive on (0, oo). 
A solution u(i,j) of (2.1-2.3) is a double sequence defined for O ::; i S n + 1 and 

J ~ 0 which satisfies (2.1), (2.2) and (2.3) respectively. Given an arbitrary function 
'ljJ(i,j) defined for O ::; j ::; 1 and 1 ::; i ::; n, we can easily show by induction that 
a unique solution of (2.1-2.3) exists which satisfies u(i,j) = 'lj;(i,j) for O ::; j ::; 1 and 
1 ::; i S n. 

Let w(i,j) be a double sequence defined for O::; i ::; n + 1 and j ~ 0. Suppose there 
is some nonnegative integer T such that w(i,j) > 0 for 1::; i::; n and j ~ T, then w(i,j) 
is said to be eventually positive. An eventually negative w(i, j) is similarly defined. The 
function w(i,j) is said to be oscillatory for 1::; i Sn and j ~ 0 ifit is neither eventually 
positive nor eventually negative. 

Associated with every solution {u(i,j)} of (2.1-2.3), define 

1 n 
U(j) = - L, u(i,j), j ~ 0. 

n 
i=l 

(2.4) 

Theorem 2.1. Suppose (Hl) holds. Let u(i,j) be an eventually positive so­ 
lution of (2.1-2.3), then the function U(j) defined by (2.4) satisfies the recurrence 
relation 

~2U(j - 1) + p(j)<p(U(j)) ::; F(j) (2.5) 



340 SUI SUN CHENG, BING GEN ZHANG AND SHENG-LI XIE 

for all large j, where 

F(j) = ]:_ {t f(i, j) + h(j) - g(j)}. 
n . 

t=l 

In addition, suppose (H2) is satisfied. Then when v(i,j) is an eventually negative 
solution of (2.1 - 2.3), the recurrence relation 

b.2W(j - 1) + p(j)<p(W(j)) ~ -F(j), j ~ 1, 

has an eventually positive solution. 

Proof. After summing equation (2.1) with respect to the first variable from i = 1 
to i = n, and then dividing through by n, we obtain 

b.2U(j _ l) = h(j): g(j) + t f(i,j) _ t q(i,j, u(i,j)). 
. n n 
t=l i=l 

By the convexity of <p, we have 

t q(i,j,:(i,j)) ~ p(j) t <p(u~,j)) ~ p(j)<p(U(j)), 
i=l t=l 

thus 

b.2U(j - 1) + p(j)<p(U(j)) ~ F(j) 
for all large j. 

Next, if in additionn, (H2) holds and if v(i,j) is an eventually negative solution, 
then -v(i, j) is an eventually positive solution of 

D.~w(i,j-1)-D.iw(i- l,j) +q(i,j,w(i,j)) = -f(i,j), 1 ~ i ~ n,j ~ l 

D.1w(O,j) = -g(j), j ~ 0, 
and 

D.1 w(n, j) = -h(j), j ~ 0. 

The proof now follows by applying the first part of our Theorem. 

In view of the above Theorem, in order to obtain oscillation theorems for (2.1), we 
need to consider recurrence relations of the following form 

Ll2U(j - 1) + p(j)<p(U(j)) ~ \J!(j), j ~ l. 

A simple result is as follows. 

(2.6) 
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Lemma 2.1. Assume that p(j) ~ 0 for j ~ 0 and c.p is nonnegative on (0, oo). 
If 

l k n 

liminf '°' '°' (. k-+oo k - N + l L....t L....t w 1) = -oo, 
n=N j=N 

(2.7) 

then the recurrence relation (2.6) cannot have an eventually positive solution. 

Proof. From (2.6), we see that if U(j) is an eventually positive solution, then 

6.2U(j - 1) s w(J) - p(j)c.p(U(j)) s w(j) 
for all large j. After summing, we have 

n 

6.U(n) $ 6.U(N - 1) + L w(j), n 2:: N 
j=N 

where N is some large integer. Another summation will then yield 

k n 

U(k + 1) s U(N) + (k + 1 - N)6.U(N - 1) + I: L w(j), k 2:: N. (2.8) 
n=N j=N 

Dividing the above inequality by k + l - N and taking limit inferior on both sides, we 
see that 

0 $ 6.U(N - 1) + liminfU(k + 1)/(k - N + l) $ -oo, 
k-+oo 

which is a contradiction. 

A more complicated result is as follows. 

Lemma 2.2. Assume that p(j) 2:: 0 for j 2:: 0 and c.p is nonnegative and 
nondecreasing on (0, oo). Assume further that there is a sequence {v(j)} which 
has a nonpositive subsequence {v(jk)} and .satisfies 6.2v(j -1) = w(j) for all large 
j, and that 

k n 

liminf k ~ L L w(j) - p(j)c.p(max(v(j),O)) = -oo. (2.9) 
k-+oo - + 1 

n=N j=N 

Then (2.6) cannot have an eventually positive solution. 

Proof. Suppose U(j) is an eventually positive of (2.6), then z(j) = U(j) - v(j) 
satisfies 

(2.10) 

for all large j. The sequence {z(j)} is thus concave and hence by Lemma 1.1, it is 
eventually of constant sign. The sequence { z(j)} is eventually positive, otherwise 
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which is a contradiction. This implies 

U(j) > max{ v(j), O} 

for all large j. By repeated summation of (2.10) (as in the derivation of (2.8)), we obtain 

k n 

U(k + 1) ::; U(N) + (k + 1 - N)AU(N - 1) + L, L, \Jl(j) - p(j)<.p(U(j)). 
n=N j=N 

By the monotonicity of <.p, we then see that 

U(k + 1) < U(N) + AU(N _ l) 
k+l-N - k+l-N 

l k n 

+ . _ _ _ L, L, \Jt(j) - p(j)<.p(max( v(j), 0) ). 
n=N j=N 

Taking limit inferior on both sides of above inequality, we then arrive at a contradiction. 

A variant of the above result is as follows. 

Lemma 2.3. Assume that p(j) ~ 0 for j ~ 0 and <.p is nonnegative and 
nondecreasing on (0, oo). Assume further that there is a sequence { v(j)} which 
has a nonpositive subsequence {v(jk)} and satisfies A2v(j -1) = \Jt(j) for all large 
j and 

liminfv(n) = 0. 
n ...... oo (2.11) 

If (2.6) has an eventually positive solution, so does the recurrence relation 

A2W(j - 1) + p(j)<.p(W(j)) S 0, j ~ 0. (2.12) 

Proof. We have already seen in the last proof that the sequence {z(j)} defined by 
z(j) = U(j) - v(j) is eventually positive. By Lemma 1.1, {z(j)} is eventually nonde­ 
creasing. After summing (2.10), we obtain 

k 

Az(i) ~ -Az(k) + Az(i) ~ L, p(j)<.p(U(j)), 
j=i+l 

and thus 
00 

Az(i) ~ L, p(j)<.p(U(j)). 
j=i+l 
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Another summation then yields 

k 00 

U(k + 1) - v(k + 1) = z(k + l) ~ z(K) + L L p(j)<p(U(j)), 
i=K j=i+I 

where K is taken to be a large integer so that z(K) > 0. Since (2.11) holds, we have 

) k 00 

U(k + 1) ~ z(: + L L p(j)<p(U(j)) 
i=K j=i+I 

for all large k. Let 
k 00 

W(k + 1) = L L p(j)<p(U(j)) 
i=K j=i+I 

then 
0 < W(k + 1) ~ U(k + 1), 

00 

b.W(k) = L p(j)cp(U(j)), 
j=k+l 

and 
Ll2W(k - 1) = -p(k)<p(U(k)) 

for all large k. Since <p is nondecreasing, thus 

O = Ll2W(j - 1) + p(j)<p(U(j)) ~ Ll2W(j - 1) + p(j)<p(W(j)) 

for all large j. 

Based on ideas similar to that used above, we can prove the following result. 

Lemma 2.4. Assume that p(j) ~ 0 for j ~ 0 and <p is nonnegative and 
nondecreasing on (0, oo). Assume further that there is a sequence { v(j)} which 
has a constant subsequence {v(jk)} = {h} and v(j) ~ h for all large j. Assume 
further that b.2v(j - l) = w(j) for all large j. If (2.6) has an eventually positive 
solution {U(j)}, then so does the recurrence relation (2.12). 

Proof. Since D.2(U(j) - v(j) + h) = D.2(U(j) - v(j)) ~ 0 for all large j, by 
means of Lemma 1.1, {U(j) - v(j) + h} is eventually of constant sign. We assert that 
U(j) - v(j) + h > 0 for all large j for otherwise U(j) - v(j) + h ~ 0 would imply 

which is contradiction. If we now set 

W(j) = U(j) - v(j) + h, j ~ 0, 
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then by the monotonicity of c.p, we have 

6.2W(j - 1) + p(j)c.p(W(j)) $ p(j){c.p(U(j) - v(j) + h) - c.p(U(j))} $ 0 

for all large j. This completes the proof. 

3. Characteristic Initial Value Problems 

In this section, we consider the following partial difference equation 

6.~1 u(i, j) + c(i, j, u(i,j)) = f(i, j), i, j = 1, 2, ... (3.1) 

subject to the conditions 

6.2u(O, j) = g(j), j 2:: 0 
6.1 u( i, 0) = h( i), i 2:: 0, 

(3.2) 
(3.3) 

where f(i,j) is real function defined for i,j 2:: 1, g(j) and h(j) are real functions defined 
for j 2:: 0, and c(i, j, u) is a real function defined on {1, 2, ... } x {1, 2, ... } x R. We shall 
also assume some or all of the following conditions on c(i,j,u): 

(G 1) c( i, j, u) 2:: p(i+ j)c.p( u) for i, j 2:: 1 and -oo < u < oo, where p(n) is nonnegative 
for n 2:: 0 and c.p is nonnegative and convex on (0, oo ); 

(G2) c(i,j,u) = -c(i,j, -u) for i,j ~ 1 and -oo < u < oo; 
(G3) <Pis nondecreasing on (0, oo ); 
(G4) c.p is positive on (0, oo ). 
A solution u(i,j) of (3.1-3.3) is a double sequence defined for i 2:: 0 and j 2:: 0 which 

satisfies (3.1-3.3) respectively. Given an arbitrary number u0, we can easily show by 
induction that a unique solution of (3.1-3.3) exists which satisfies u(O, 0) = u0. 

Let w(i,j) be a double sequence defined for i 2:: 0 and j 2:: 0. Suppose there is some 
nonnegative integer T such that w(i,j) > 0 for i + j ~ T, i 2:: 1 and j 2:: 1, then w(i,j) 
is said to be eventually positive. An eventually negative w( i, j) is defined in a similar 
way. The function w(i,j) is said to be oscillatory for i,j 2:: 1 if it is neither eventually 
positive nor eventually negative. Note that the definitions made here are different from 
those made in the previous section. 

Associated with every solution { u(i, j)} of (3.1), we set 

l n 

U(n) = n + 1 L u(n - k, k), n 2:: 1. 
k=O 

Then it is easily verified that 

(3.4) 

n 

6.((n + l)U(n)) = u(O, n + l) + L 6.1 u(n - k, k), 
k=O 
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and 

n 

A2((n + l)U(n)) = A2u(O,n + 1) + A1u(n + 1,0) + L, A~1u(n - k, k). (3.5) 
k=O 

Theorem 3.1. Suppose (Gl) holds. Let u(i,j) be an eventually positive so­ 
lution of (3.1-3.3), then the function U(n) defined by (3.4) satisfies the recurrence 
relation 

A2((n + l)U(n)) + (n + l)p(n)<.p(U(n)) ::; G(n) 

for all large n, where 

(3.6) 

n 

G(n) = g(n + 1) + h(n + 1) + L, J(n - k, k), n ~ l. 
k=O 

In addition, suppose (G2) holds and suppose (3.1-3.3) has an eventually negative 
solution, then the fallowing recurrence relation 

A2((n + l)W(n)) + (n + l)p(n)<.p(W(n)) ::; -G(n), n ~ 0 

has an eventually positive solution. 

Proof. From (3.1), we obtain 

A~1 u(n - k, k) = - c(n - k, k, u(n - k, k)) + f(n - k, k) 
< - p(n)<.p(u(n - k, k)) + J(n - k, k) 
- (n + l)p(n) <.p(u(n - k, k)) + f(n - k, k). (3.7) 

n+l 

Substituting (3.7) into (3.5), we obtain 

n 

A 2((n + l)U(n)) ::; g(n + 1) + h(n + 1) - (n + l)p(n)<.p(U(n)) + L f( 1, - k, k), 
k=O 

as desired. The rest of the proof is similar to that of Theorem 2.1. 

In view of the above Theorem, in order to obtain oscillation theorems for (3.1), we 
need to consider recurrence relations of the following form 

A2((n + l)U(n)) + (n + l)p(n)<.p(U(n)) S w(n), n ~ l. (3.8) 

A simple. result is as follows, the proof of which is similar to that of Lemma 2.1. 
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If 
Lemma 3.1. Assume that p(j) ~ 0 for j ~ 0 and <pis nonnegative on (0, oo). 

l k n 
liminf ~ ~ . 
k- oo k - N + I LJ LJ W (J) = -oo 

n=N j=N 
(3.9) 

holds, then the recurrence relation (3.8) cannot have an eventually positive solu­ 
tion. 

Lemma 3.2. Assume that p(j) ~ 0 for j ~ 0 and <p is nonnegative and 
nondecreasing on (0, oo). Assume further that there is a sequence {v(n)} which 
has a nonpositive subsequence { v(j k)} and satisfies fl 2v(j) = w (j) / or all large j, 
and that 

l k n 

liminf k N 1 L L w(j) - (j + l)p(j)<p(max(v(j),0)/(j + 1)) = -oo, (3.10) 
k-+oo - + 

n=N j=N 

then (3.8) cannot have an eventually positive solution. 

Proof. As in the proof of Lemma 2.2, if {U(n)} is an eventually positive solution 
of (3.8), then the sequence {z(n)} defined by z(n) = (n + l)U(n) - v(n) is eventually 
positive and nondecreasing. Thus 

U(n) > max{ v(n), O} /(n + 1), 
and 

<p(U(n)) > <p(max{v(n), O} /(n + 1)) 
for all large n. The rest of the proof is similar to that of Lemma 2.2, and is omitted. 

Lemma 3.3. Assume that p(j) ~ 0 for j ~ 0 and <p is nonnegative and 
nondecreasing on (0, oo). Assume further that there is a sequence { v( n)} which 
has a nonpositive subsequence {v(nk)} and satisfies b.2((n+ l)v(n)) = w(n) for all 
large n, and that 

liminf(n + l)v(n) = 0. 
n->oo (3.11) 

If (3.8) has rm eventually positive solution, so does the recurrence relation 

D.2((n + l)W(n)) + (n + l)p(n)<p(W(n)) ~ 0, j ~ 0. (3.12) 

Proof. As in the proof of Lemma 2.3, if {U(j)} is an eventually positive solution of 
(3.8), then the sequence {z(n)} defined by z(n) = (n + l)U(n)- (n + l)v(n) is eventually 
positive and increasing. After summing 

b.2{(n + l)U(n) - (n + I)v(n)} ~ -(n + l)p(n)<p(U(n)), 


