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QUALITATIVE THEORY OF PARTIAL DIFFERENCE EQUATIONS (IV): 

FORCED OSCILLATIONS OF HYPERBOLIC TYPE 

NONLINEAR PARTIAL DIFFERENCE EQUATIONS 

SUI SUN CHENG, BING GEN ZHANG AND SHENG-LI XIE 

Abstract. Nonli1:~ar hyperbolic type partial difference equations with a forcing 
term are studied in this paper. By means of two averaging techniques, the problems 
of oscillation of characteristic initial value problem and of initial boundary value 
problem are reduced to that of forced and/or unforced recurrence relations in one 
variable. A variety of oscillation criteria is given for these relations which in turn 
yield oscillation criteria for the partial difference equations. 

1. Introduction 

We are concerned with the oscillatory behavior of hyperbolic type nonlinear partial 
difference equations of the form 

D.~u(i,j -1) - D.iu(i - l;j) + q(i,j,u(i,j)) = f(i,j), 1 ~ i ~ n,j ~ l (1.1) 

and 
D.~1u(i,j) + c(i,j,u(i,j)) = f(i,j), i,j = 0, 1,2, ... (1.2) 

where the partial differences D.1u(i,j), D.iu(i,j), D.2u(i,j), D.~u(i,j), D.~1u(i,j) are de 
fined respectively by 

D.1u(i,j) = u(i + 1,j) - u(i,j), D.iu(i,j) = u(i + 2,j) - 2u(i + 1,j) + u(i,j), 
D.2u(i, j) = u(i,j + 1) - u(i, j), D.~u(i, j) = u(i, j + 2) - 2u(i,j + 1) + u(i, j), 

and 
D.~1u(i,j) = u(i + l,j + 1) - u(i + 1,j) - u(i,j + 1) + u(i,j). 
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These two equations can respectively be considered as discrete analogs of hyperbolic 
differential equations of the form 

Utt(X, t) - Uxx(x, t) + q(x, t, u) = f(x, t) (1.3) 

and 
Uxt(X, t) + c(x, t, u) = f(x, t) (1.4) 

which have been investigated in a number of recent studies [6,11,12]. We refer the reader 
to [6] for initial boundary value problems involving equations of the form (1,3), and to 
[6,7,12] for characteristic initial value problems involving equations of the form (1.4). 

This work is motivated by several of our earlier works [1,2,3] and by the results 
obtained in these studies and the fact that several averaging techniques in obtaining these 
results can be adopted to establish oscillation criteria for the discrete equations. Our 
results, however, are new and their derivations require some subtly different arguments. 

Several preparatory results will be needed in the sequel. 

Lemma 1.1. An eventually concave sequence {x(n)} (i.e. ~2x(n) :s; 0 for all 
large n) is of constant sign eventually. An eventually positive and concave se 
quence ( or strictly concave) is eventually nondecreasing ( respectively increasing). 

Lemma 1.2. (Li and Cheng [9]) Let f be a positive nondecreasing function 
defined on ( 0, oo), and { x( n)} be a real sequence such that x( k) > 0 for i :s; k :s; j + 1, 
then 

j ~x(k) > fx(j+l) ~ >. j ~x(k) 
; f(x(k)) - lx(i) f(s) - ; n ,. - ". 

Lemma 1.3. Let {q(n)}go be a sequence of nonnegative numbers with in 
finitely many nonzero terms and E00q(j) < oo. Then 

00 00 -1 2: q(1){ 2: q(i)} = oo. 
j=O i=j+l 

Proof. Let 
00 

p(j) = 2: q(i), 
i=j+l 

j ~ 0. 

Then {p(j)} is a positive sequence and ~p(j) = -q(j + 1) :SO for j ~ 0. Thus by Lemma 
1.2, 

~ q(j)(~. q(i) }-1 ~ _ t, l>p~~j) 1) 
lp(n) ds 

~ - - = - ln p(n) + ln p(l) -+ oo 
p(l) s 
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as n---+ oo. 
The proof of the above Lemma can also be found in Zhang and Cheng [13, Lemma 

3.1] but is included here for the sake of completeness. 

2. Initial Boundary Value Problems 

In this section, we first consider the following partial difference equation 

~~u(i,j -1) - ~iu(i -1,j) + q(i,j,u(i,j)) = J(i,j), 1 Si S n,j ~ 1 (2.1) 

subject to the conditions 

~1 u(O, j) = g(j), j ~ 0 
~1 u(n, j) = h(j), j ~ 0, 

(2.2) 
(2.3) 

where f (i, j), g(j) and h(j) are real functions defined for 1 S i ::; n and/or j ~ 0, and 
q(i,j, u) is a real function defined on {l, 2, ... , n} x {O, 1, 2, ... } x R. We shall also assume 
some or all of the following conditions on q: 

(Hl) q(i, j, u) ~ p(j)<p(u) for 1 S i S n, j ~ 0 and -oo < u < oo, where p(j) is 
nonnegative for j ~ 0 and <pis nonnegative and convex on (0, oo); 

(H2) q(i, j, -u) = -q(i,j, u) for 1 ::; i ::; n, j ~ 0 and -oo < u < oo; 
(H3) <pis nondecreasing on (0, oo); 
(H4) <pis positive on (0, oo). 
A solution u(i,j) of (2.1-2.3) is a double sequence defined for O ::; i S n + 1 and 

J ~ 0 which satisfies (2.1), (2.2) and (2.3) respectively. Given an arbitrary function 
'ljJ(i,j) defined for O ::; j ::; 1 and 1 ::; i ::; n, we can easily show by induction that 
a unique solution of (2.1-2.3) exists which satisfies u(i,j) = 'lj;(i,j) for O ::; j ::; 1 and 
1 ::; i S n. 

Let w(i,j) be a double sequence defined for O::; i ::; n + 1 and j ~ 0. Suppose there 
is some nonnegative integer T such that w(i,j) > 0 for 1::; i::; n and j ~ T, then w(i,j) 
is said to be eventually positive. An eventually negative w(i, j) is similarly defined. The 
function w(i,j) is said to be oscillatory for 1::; i Sn and j ~ 0 ifit is neither eventually 
positive nor eventually negative. 

Associated with every solution {u(i,j)} of (2.1-2.3), define 

1 n 
U(j) = - L, u(i,j), j ~ 0. 

n 
i=l 

(2.4) 

Theorem 2.1. Suppose (Hl) holds. Let u(i,j) be an eventually positive so 
lution of (2.1-2.3), then the function U(j) defined by (2.4) satisfies the recurrence 
relation 

~2U(j - 1) + p(j)<p(U(j)) ::; F(j) (2.5) 
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for all large j, where 

F(j) = ]:_ {t f(i, j) + h(j) - g(j)}. 
n . 

t=l 

In addition, suppose (H2) is satisfied. Then when v(i,j) is an eventually negative 
solution of (2.1 - 2.3), the recurrence relation 

b.2W(j - 1) + p(j)<p(W(j)) ~ -F(j), j ~ 1, 

has an eventually positive solution. 

Proof. After summing equation (2.1) with respect to the first variable from i = 1 
to i = n, and then dividing through by n, we obtain 

b.2U(j _ l) = h(j): g(j) + t f(i,j) _ t q(i,j, u(i,j)). 
. n n 
t=l i=l 

By the convexity of <p, we have 

t q(i,j,:(i,j)) ~ p(j) t <p(u~,j)) ~ p(j)<p(U(j)), 
i=l t=l 

thus 

b.2U(j - 1) + p(j)<p(U(j)) ~ F(j) 
for all large j. 

Next, if in additionn, (H2) holds and if v(i,j) is an eventually negative solution, 
then -v(i, j) is an eventually positive solution of 

D.~w(i,j-1)-D.iw(i- l,j) +q(i,j,w(i,j)) = -f(i,j), 1 ~ i ~ n,j ~ l 

D.1w(O,j) = -g(j), j ~ 0, 
and 

D.1 w(n, j) = -h(j), j ~ 0. 

The proof now follows by applying the first part of our Theorem. 

In view of the above Theorem, in order to obtain oscillation theorems for (2.1), we 
need to consider recurrence relations of the following form 

Ll2U(j - 1) + p(j)<p(U(j)) ~ \J!(j), j ~ l. 

A simple result is as follows. 

(2.6) 
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Lemma 2.1. Assume that p(j) ~ 0 for j ~ 0 and c.p is nonnegative on (0, oo). 
If 

l k n 

liminf '°' '°' (. k-+oo k - N + l L....t L....t w 1) = -oo, 
n=N j=N 

(2.7) 

then the recurrence relation (2.6) cannot have an eventually positive solution. 

Proof. From (2.6), we see that if U(j) is an eventually positive solution, then 

6.2U(j - 1) s w(J) - p(j)c.p(U(j)) s w(j) 
for all large j. After summing, we have 

n 

6.U(n) $ 6.U(N - 1) + L w(j), n 2:: N 
j=N 

where N is some large integer. Another summation will then yield 

k n 

U(k + 1) s U(N) + (k + 1 - N)6.U(N - 1) + I: L w(j), k 2:: N. (2.8) 
n=N j=N 

Dividing the above inequality by k + l - N and taking limit inferior on both sides, we 
see that 

0 $ 6.U(N - 1) + liminfU(k + 1)/(k - N + l) $ -oo, 
k-+oo 

which is a contradiction. 

A more complicated result is as follows. 

Lemma 2.2. Assume that p(j) 2:: 0 for j 2:: 0 and c.p is nonnegative and 
nondecreasing on (0, oo). Assume further that there is a sequence {v(j)} which 
has a nonpositive subsequence {v(jk)} and .satisfies 6.2v(j -1) = w(j) for all large 
j, and that 

k n 

liminf k ~ L L w(j) - p(j)c.p(max(v(j),O)) = -oo. (2.9) 
k-+oo - + 1 

n=N j=N 

Then (2.6) cannot have an eventually positive solution. 

Proof. Suppose U(j) is an eventually positive of (2.6), then z(j) = U(j) - v(j) 
satisfies 

(2.10) 

for all large j. The sequence {z(j)} is thus concave and hence by Lemma 1.1, it is 
eventually of constant sign. The sequence { z(j)} is eventually positive, otherwise 
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which is a contradiction. This implies 

U(j) > max{ v(j), O} 

for all large j. By repeated summation of (2.10) (as in the derivation of (2.8)), we obtain 

k n 

U(k + 1) ::; U(N) + (k + 1 - N)AU(N - 1) + L, L, \Jl(j) - p(j)<.p(U(j)). 
n=N j=N 

By the monotonicity of <.p, we then see that 

U(k + 1) < U(N) + AU(N _ l) 
k+l-N - k+l-N 

l k n 

+ . _ _ _ L, L, \Jt(j) - p(j)<.p(max( v(j), 0) ). 
n=N j=N 

Taking limit inferior on both sides of above inequality, we then arrive at a contradiction. 

A variant of the above result is as follows. 

Lemma 2.3. Assume that p(j) ~ 0 for j ~ 0 and <.p is nonnegative and 
nondecreasing on (0, oo). Assume further that there is a sequence { v(j)} which 
has a nonpositive subsequence {v(jk)} and satisfies A2v(j -1) = \Jt(j) for all large 
j and 

liminfv(n) = 0. 
n ...... oo (2.11) 

If (2.6) has an eventually positive solution, so does the recurrence relation 

A2W(j - 1) + p(j)<.p(W(j)) S 0, j ~ 0. (2.12) 

Proof. We have already seen in the last proof that the sequence {z(j)} defined by 
z(j) = U(j) - v(j) is eventually positive. By Lemma 1.1, {z(j)} is eventually nonde 
creasing. After summing (2.10), we obtain 

k 

Az(i) ~ -Az(k) + Az(i) ~ L, p(j)<.p(U(j)), 
j=i+l 

and thus 
00 

Az(i) ~ L, p(j)<.p(U(j)). 
j=i+l 
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Another summation then yields 

k 00 

U(k + 1) - v(k + 1) = z(k + l) ~ z(K) + L L p(j)<p(U(j)), 
i=K j=i+I 

where K is taken to be a large integer so that z(K) > 0. Since (2.11) holds, we have 

) k 00 

U(k + 1) ~ z(: + L L p(j)<p(U(j)) 
i=K j=i+I 

for all large k. Let 
k 00 

W(k + 1) = L L p(j)<p(U(j)) 
i=K j=i+I 

then 
0 < W(k + 1) ~ U(k + 1), 

00 

b.W(k) = L p(j)cp(U(j)), 
j=k+l 

and 
Ll2W(k - 1) = -p(k)<p(U(k)) 

for all large k. Since <p is nondecreasing, thus 

O = Ll2W(j - 1) + p(j)<p(U(j)) ~ Ll2W(j - 1) + p(j)<p(W(j)) 

for all large j. 

Based on ideas similar to that used above, we can prove the following result. 

Lemma 2.4. Assume that p(j) ~ 0 for j ~ 0 and <p is nonnegative and 
nondecreasing on (0, oo). Assume further that there is a sequence { v(j)} which 
has a constant subsequence {v(jk)} = {h} and v(j) ~ h for all large j. Assume 
further that b.2v(j - l) = w(j) for all large j. If (2.6) has an eventually positive 
solution {U(j)}, then so does the recurrence relation (2.12). 

Proof. Since D.2(U(j) - v(j) + h) = D.2(U(j) - v(j)) ~ 0 for all large j, by 
means of Lemma 1.1, {U(j) - v(j) + h} is eventually of constant sign. We assert that 
U(j) - v(j) + h > 0 for all large j for otherwise U(j) - v(j) + h ~ 0 would imply 

which is contradiction. If we now set 

W(j) = U(j) - v(j) + h, j ~ 0, 
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then by the monotonicity of c.p, we have 

6.2W(j - 1) + p(j)c.p(W(j)) $ p(j){c.p(U(j) - v(j) + h) - c.p(U(j))} $ 0 

for all large j. This completes the proof. 

3. Characteristic Initial Value Problems 

In this section, we consider the following partial difference equation 

6.~1 u(i, j) + c(i, j, u(i,j)) = f(i, j), i, j = 1, 2, ... (3.1) 

subject to the conditions 

6.2u(O, j) = g(j), j 2:: 0 
6.1 u( i, 0) = h( i), i 2:: 0, 

(3.2) 
(3.3) 

where f(i,j) is real function defined for i,j 2:: 1, g(j) and h(j) are real functions defined 
for j 2:: 0, and c(i, j, u) is a real function defined on {1, 2, ... } x {1, 2, ... } x R. We shall 
also assume some or all of the following conditions on c(i,j,u): 

(G 1) c( i, j, u) 2:: p(i+ j)c.p( u) for i, j 2:: 1 and -oo < u < oo, where p(n) is nonnegative 
for n 2:: 0 and c.p is nonnegative and convex on (0, oo ); 

(G2) c(i,j,u) = -c(i,j, -u) for i,j ~ 1 and -oo < u < oo; 
(G3) <Pis nondecreasing on (0, oo ); 
(G4) c.p is positive on (0, oo ). 
A solution u(i,j) of (3.1-3.3) is a double sequence defined for i 2:: 0 and j 2:: 0 which 

satisfies (3.1-3.3) respectively. Given an arbitrary number u0, we can easily show by 
induction that a unique solution of (3.1-3.3) exists which satisfies u(O, 0) = u0. 

Let w(i,j) be a double sequence defined for i 2:: 0 and j 2:: 0. Suppose there is some 
nonnegative integer T such that w(i,j) > 0 for i + j ~ T, i 2:: 1 and j 2:: 1, then w(i,j) 
is said to be eventually positive. An eventually negative w( i, j) is defined in a similar 
way. The function w(i,j) is said to be oscillatory for i,j 2:: 1 if it is neither eventually 
positive nor eventually negative. Note that the definitions made here are different from 
those made in the previous section. 

Associated with every solution { u(i, j)} of (3.1), we set 

l n 

U(n) = n + 1 L u(n - k, k), n 2:: 1. 
k=O 

Then it is easily verified that 

(3.4) 

n 

6.((n + l)U(n)) = u(O, n + l) + L 6.1 u(n - k, k), 
k=O 
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and 

n 

A2((n + l)U(n)) = A2u(O,n + 1) + A1u(n + 1,0) + L, A~1u(n - k, k). (3.5) 
k=O 

Theorem 3.1. Suppose (Gl) holds. Let u(i,j) be an eventually positive so 
lution of (3.1-3.3), then the function U(n) defined by (3.4) satisfies the recurrence 
relation 

A2((n + l)U(n)) + (n + l)p(n)<.p(U(n)) ::; G(n) 

for all large n, where 

(3.6) 

n 

G(n) = g(n + 1) + h(n + 1) + L, J(n - k, k), n ~ l. 
k=O 

In addition, suppose (G2) holds and suppose (3.1-3.3) has an eventually negative 
solution, then the fallowing recurrence relation 

A2((n + l)W(n)) + (n + l)p(n)<.p(W(n)) ::; -G(n), n ~ 0 

has an eventually positive solution. 

Proof. From (3.1), we obtain 

A~1 u(n - k, k) = - c(n - k, k, u(n - k, k)) + f(n - k, k) 
< - p(n)<.p(u(n - k, k)) + J(n - k, k) 
- (n + l)p(n) <.p(u(n - k, k)) + f(n - k, k). (3.7) 

n+l 

Substituting (3.7) into (3.5), we obtain 

n 

A 2((n + l)U(n)) ::; g(n + 1) + h(n + 1) - (n + l)p(n)<.p(U(n)) + L f( 1, - k, k), 
k=O 

as desired. The rest of the proof is similar to that of Theorem 2.1. 

In view of the above Theorem, in order to obtain oscillation theorems for (3.1), we 
need to consider recurrence relations of the following form 

A2((n + l)U(n)) + (n + l)p(n)<.p(U(n)) S w(n), n ~ l. (3.8) 

A simple. result is as follows, the proof of which is similar to that of Lemma 2.1. 
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If 
Lemma 3.1. Assume that p(j) ~ 0 for j ~ 0 and <pis nonnegative on (0, oo). 

l k n 
liminf ~ ~ . 
k- oo k - N + I LJ LJ W (J) = -oo 

n=N j=N 
(3.9) 

holds, then the recurrence relation (3.8) cannot have an eventually positive solu 
tion. 

Lemma 3.2. Assume that p(j) ~ 0 for j ~ 0 and <p is nonnegative and 
nondecreasing on (0, oo). Assume further that there is a sequence {v(n)} which 
has a nonpositive subsequence { v(j k)} and satisfies fl 2v(j) = w (j) / or all large j, 
and that 

l k n 

liminf k N 1 L L w(j) - (j + l)p(j)<p(max(v(j),0)/(j + 1)) = -oo, (3.10) 
k-+oo - + 

n=N j=N 

then (3.8) cannot have an eventually positive solution. 

Proof. As in the proof of Lemma 2.2, if {U(n)} is an eventually positive solution 
of (3.8), then the sequence {z(n)} defined by z(n) = (n + l)U(n) - v(n) is eventually 
positive and nondecreasing. Thus 

U(n) > max{ v(n), O} /(n + 1), 
and 

<p(U(n)) > <p(max{v(n), O} /(n + 1)) 
for all large n. The rest of the proof is similar to that of Lemma 2.2, and is omitted. 

Lemma 3.3. Assume that p(j) ~ 0 for j ~ 0 and <p is nonnegative and 
nondecreasing on (0, oo). Assume further that there is a sequence { v( n)} which 
has a nonpositive subsequence {v(nk)} and satisfies b.2((n+ l)v(n)) = w(n) for all 
large n, and that 

liminf(n + l)v(n) = 0. 
n->oo (3.11) 

If (3.8) has rm eventually positive solution, so does the recurrence relation 

D.2((n + l)W(n)) + (n + l)p(n)<p(W(n)) ~ 0, j ~ 0. (3.12) 

Proof. As in the proof of Lemma 2.3, if {U(j)} is an eventually positive solution of 
(3.8), then the sequence {z(n)} defined by z(n) = (n + l)U(n)- (n + l)v(n) is eventually 
positive and increasing. After summing 

b.2{(n + l)U(n) - (n + I)v(n)} ~ -(n + l)p(n)<p(U(n)), 
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we obtain 
k 

6.z(i) ~ L(n + l)p(n)c.p(U(n)), 
n=i 

and thus 
00 

6.z(i) 2:: 2:(n + l)p(n)ip(U(n)). 
n=i 

Another summation then yields 

k 00 

(k + 2)U(k + 1) - (k + 2)v(k + 1) = z(k + l) ~ z(K) + L l)n + l)p(n)ip(U(n)), 
i=K n=i 

where K is taken to be a large integer so that z(K) > 0. Since (3.11) holds, we have 

(K) k oo 
(k + 2)U(k + 1) 2:: T + L l)n + l)p(n)c.p(U(n)) 

i=K n=i 

for all large k. As in the proof of Lemma 2.3, the sequence. {W(n)} defined by 

k 00 

(k + 2)W(k + 1) = L L(n + l)p(n)c.p(U(n)) 
i=K n=i 

is an eventually positive solution of (3.12). 

The next lemma is similar to Lemma 2.4. Its proof will be omitted. 

Lemma 3.4. Assume that p(j) 2:: 0 for j 2:: 0 and c.p is nonnegative and 
nondecreasing on (0, oo). Assume further that there is a sequence {v(j)} which 
has a constant subsequence {v(jk)} = {h} and v(j) ~ h for all large j. Assume 
further that 6.2((j + l)v(j)) = w(j) for all large j. If (3.8) has an eventually 
positive solution {U(j)}, then so does the recurrence relation (3.12). 

To close this section, we remark that in view of the formal identity 

(n + l)6.2(nx(n - 1)) = 6.((n + l)n6.x(n - 1)), (3.13) 

the recurrence relation (3.8) is equivalent to 

.6.((n + 2)(n + 1)6.U(n)) + (n + 2)(n + l)p(n)c.p(U(n)) $ (n + 2)w(n), n 2:: 1. (3.14) 

4. Oscillation Criteria for Unforced Recurrence Relations I 

We have derived in the last two sections several sufficient conditions for no solutions 
of the forced _recurrence relations (2.6) or (3.8) to be eventually positive. However, in 
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Lemmas 2.3, 2.4, 3.3 and 3.4, we see that additional oscillation criteria are also needed 
for the unforced recurrence relations 

6.2x(j - 1) + p(j)<.p(x(j)) ::; 0, j ~ 1, ( 4.1) 

and 
A2((j + l)y(j)) + (j + l)p(j)<.p(y(j)) ::; 0, j ~ 0, 

or its equivalent form (in view of (3.13)) 

(4.2) 

A((j + 2)(j + l)Ay(j)) + (j + 2)(j + l)p(j)<.p(y(j))::; 0, j ~ 0, (4.3) 

where pis eventually nonnegative. Related problems have been considered by many au 
thors in recent years (see for example [4,5,9,10,14]). Most of the results obtained by these 
authors are for nonlinear difference equations. Some of them can be modified to suit our 
recurrence relations. In this section, we shall derive several dissimilar oscillation criteria 
for (4.1). An oscillation criteria for (4.3), which is of independent interest, however, will 
be derived in the next section. 

We first make the following observation. 

Lemma 4.1. Suppose p(j) is eventually nonnegative, and <.p is positive and 
nondecreasing on (0, oo). If (4.1) has an eventually positive solution {x(j)}, so 
does the relation 

L 2 z(j) + p(j)<.p(z(j)) S 0, j ~ 1. ( 4.4) 

Proof. In view of (4.1), {x(j)} is an eventually positive and concave sequence, and 
hence Ax(j) ~ 0 for all large j. Thus 

A2x(j) + p(j)<.p(x(j)) S A2x(j) + p(j)<.p(x(j + 1)) ::; 0 
are required. 

Theorem 4.1. Suppose <.p is a positive nondecreasing function on (0, oo) 
and p(j) is eventually nonnegative such that 

00 

LP(j) = oo, 
j=l 

(4.5) 

then (4.4) (and hence (4.1)) cannot have an eventually positive solution. 

Proof. Suppose to the contrary that {x(n)} is an eventually positive solution of 
(4.4). Then as we have seen before, x(n) > 0, Ax(n) ~ 0 and A2x(n) ::; 0 for n larger 
than or equal to some integer N. Let 

z(n) = Ax(n) 
<.p(x(n))' n ~ N. (4.6) 
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Then 
Az n) = b.x(n + 1) _ b.x(n) 

( <p(x(n + 1)) cp(x(n)) 
b.2x(n) . b.x(n + l)D.<p(x(n)) 
<p(x(n)) <p(x(n))<p(x(n + 1)) 
b.2x(n) 

~ <p(x(n)) ~ -p(n), n ~ N, 

where we have used the fact that b.x(n + 1) ~ 0 and D.cp(x(n)) ~ 0. Hence 
k 

O < z(k + 1) ~ z(N) .- L p(n), 
n==N 

which implies 
00 L p(n) ~ z(N). 

n==N 

(4.7) 

This contradicts our assumption ( 4.5). 

In case condition ( 4.5) does not hold, we can still derive several oscillation criteria 
when additional conditions hold. 

Theorem 4.2. Suppose <p is a positive nondecreasing function on (0, oo), 
and p(j) is eventually nonnegative such that 

00 

LP(j) < 00, (4.8) 
j==l 
00 

I:Jp(j) = oo, (4.9) 
j=l 

and {oo du 
0 < }€ <p(u) < oo for some c: > 0, 

then ( 4.4) ( and hence ( 4.1)) cannot have an eventually positive solution. 

Proof. Suppose to the contrary that {x(n)} is an eventually positive solution of 
( 4.4). As seen before, x(n) > 0, b.x(n) ~ 0 and b.2x(n) ~ 0 for n larger than or equal 
to some integer N. Let 

(4.10) 

Then 

nD.x(n) 
z(n) = <p(x(n)), n ~ N. 

b.z(n) = (n + l)b.x(n + 1) _ nb.x(n) 
<p(x(n + 1)) <p(x(n)) 

nb.2x(n) D.x(n + 1) n6x(n + l)D.<p(x(n)) = + __ _c__.c_~~ 

<p(x(n)) <p(x(n + 1)) <p(x(n))<p(x(n + 1)) 
nb.2x(n) D.x(n + 1) D.x(n) 

~ <p(x(n)) + <p(x(n + 1)) ~ -np(n) + <p(x(n + 1))' 
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where we have used the fact that 6.x( n + l) 2:: 0 and 6.c.p( x( n)) 2:: 0 in derving the first 
inequality, and the fact that 6.x( n + l) $ 6.x( n) in the second. Hence by summing and 
then rearranging the resulting inequality, we obtain 

k k 

z(k + 1) + L np(n) $ z(N) + L , ~x(n)_,, . 
n=N n=N 

In view of Lemma 1.2 and our assumptions, we arrive at 

00 
oo {oo d 

oo = L np(n) $ z(oo) + L np(n) $ z(N) + J,,, c.p(:) < oo, 
n=N n=N x(N) 

which is a contradiction. 

Theorem 4.3. Suppose c.p is a positive function on (0, oo) such that 

c.p(x)/x ~ 8 > 0 for x 2:: a> 0, ( 4.11) 

and suppose p(j) is eventually nonnegative. If there is a positive sequence {o-(i)} 
such that 

00 

2: p(i + 1)0-(i) = oo, 
i=N 

(4.12) 

and 
~ (6.cr(i-:-1))2 {1 + -. 1_} 
LJ u(i) i-N 

i=N-1 -+ O 
n 
L p(i + 1)0-(i) 
i=N 

( 4.13) 

as n-+ oo, then (4.1) cannot have an eventually positive solution. 

Proof. Suppose to the contrary that {x(n)} is an eventually positive solution of 
( 4.1). Then by our assumptions on <p, we see from ( 4.1) and Lemma 1.1 that x( n) > 0, 
6.x(n) 2 0 and 6.2x(n) :SO for n larger than or equal to some integer N. Let 

. 6.x(j) . 
v(J) = x(j) , J 2:: 1, 

which is nonnegative for j 2:: N. Then from (4.1), we have 

6.v( .) < _p(j + l)ip(x(j + 1)) - (6.x(j))2 < -8 (. + 1) - v2(j) 
J - x(j + 1) x(j)x(j + 1) - p J l + v(j)' 

which implies 

( 4.14) 

( 4.15) 
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Multiplying (4.15) by u(j) and summing the resulting equation, we obtain 

{; t p(j + l)u(j) S - t u(j)Av(j) - t ~(j_)v2}!) (4.16} 
j=N j=N j=N 

= - u(n)v(n + 1) + u(N - l)v(N) + t v(j)Au(j - 1) - t ~(j)v2/~) 
.N ·N +vJ 1= 1= 

< u(N _ l)v(N) _ ~ { [u(j)v
2(j)] 1/2 _ ! [ 1 + v(j) ] 1/2 ( .)A (. _ l)}2 

- ~ l+ (.) 2 (") 2(") VJ O"J 
j=N VJ (1 J V J 

1 ~ (Au(j -1))2( ( .) ) + 4 ~ ( ') VJ + 1 
. N <1 J 1= 

S a(N - l)v(N) + 1 t (Aa(!, ~ l))2 (v(j) + 1). 
j=N 

Next, we note that A2x(j) ::; 0 for j ~ N implies Ax(j) ~ Ax(j + 1) for j ~ N. 
Thus 

(Ax(j))2 > Ax(j)Ax(j + 1) 
x(j)x(j + 1) - x(j)x(j + 1) ' 

which implies, in view of ( 4.14), that 

Av(j) + v(j)v(j + 1) ::; 0, j ~ N. 

Therefore, 

and 1 
v(n) S l\T, n ~ N. 

n- 
(4.17) 

Substituting ( 4.17) into ( 4.16), we obtain 

{; t p(j + l)a(j) S a(N - l)v(N) + 1 t (Aa~(; l))2 { 1 + 1 ~ N }· 
j=N j=N 

Dividing through the above inequality by the left hand side and then taking limits as 
n ---+ oo, we obtain, in view of the assumptions of our Theorem, the inequality 1 ::; 0, 
which is a contradiction. 

Suppose we let a(i) = ir for i ~ 1, where O < T < 1. Then it is easy to see that 

(Au(i - 1))2 < T
2 

a(i) - iT(i - 1)2-27" l 
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which implies 

Loo (b.a(i - 1))2 { _1_} 
( .) 1 + . N < oo. 

(j 'l 'l - 
i=N 

The following is now clear. 

Corollary 4.1. Suppose <p is a positive function on (0, oo) such that (4.11) 
holds and suppose p(j) is eventually nonnegative. Suppose further that for some 
TE (0, 1), 

00 L iTp(i + 1) = 00. 
i=N 

Then (4.1) cannot have an eventually positive solution. 

Under the assumptions of Theorem 4.3, we have seen in the proof that the sequence 
{v(j)} is eventually nonnegative and that (4.14) holds. Summing (4.14) from s ton, we 
obtain 

(4.18) 

which implies 
n 

8Lp(j + 1) S v(s) < oo, s ~ N. 
1=s 

If we now write 
n 

Qko) = oI:p(j + 1), k = 0,1,2, ... 
j=k 

and 
(1) (0) ~ ( Q~O) )2 

Q k = Q k + L..J (0) ' k = 0, 1, 2, ... ' 
i=k 1 + Qi 

then, in view of ( 4.19) and ( 4.20), we have 

Q(I) < Q(o) + ~ v2(i) < v(s) < oo s > N. 
s - s ~l+v(i\- ' - 

i=s 

(4.19) 

(4.20) 

( 4.21) 

Similarly, if we define for j ~ 1, 

( 4.22) 

Then assume by induction that Qki) ~ v(k) fork 2: N, we have 

Q(j+I) < Q(O) + ~ v
2
(i)_ < v(s) < oo s > N. 

s - s ~l+v(i)- ' - 
i=s 
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The following Theorem is now clear. 

Theorem 4.4. Suppose c.p is a positive function on (0, oo ), and suppose p(j) 
is eventually nonnegative. If (4.1) has an eventually positive solution, then the 
double sequence { Q~)} defined by ( 4.20 - 4.22) satisfies Q~) < oo for every j ~ 0 
and k larger than or equal to some integer N. 

Corollary 4.2. Under the same assumptions of Theorem 4.4, if 
00 I: p(j + 1) = oo, 
j=N 

or 
(4.23) 

then ( 4.1) cannot have an eventually positive solution. 

Proof. We have already seen that if ( 4.1) has an eventually positive solution, then 
(4.19) holds. Next, note that if (4.23) holds, then 

1 00 (Q~0))2 1 00 1 2 
Q(l) > - + " t > - + " - - 

k - k ~ l + Q~O) - k ~ i( i + 1) - k. 

By induction, it is not difficult to see that 

. + 1 
Q(j) > )__ J. > 0. 

k - k ' - 

Thus Q<j) -+ oo as j-+ oo for any fixed large integer M. This shows that (4.1) cannot 
have an eventually positive solution. 

Our final Theorem in this section applies to functions of the form c.p(x) = xr where 
Tis any number between O and 1. 

Theorem 4.5. Let c.p be a positive nondecreasing function defined on (0, oo) 
such that 

c.p(ax) 2:: c.p(a)c.p(x) for x > 0 and all large a, (4.24) 

and that 

16 ds -( ) < oo for some fl > 0. 
+o c.p s 

Suppose further that p(j) is eventually positive and 

( 4.25) 

00 

I: p(j)c.p(j 12) = oo. 
j;N 

(4.26) 
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Then the recurrence relation ( 4.1) cannot have an eventually positive solution. 

Proof. Suppose to the contrary that {x(n)} is an eventually positive solution of 
(4.1). As we have seen before, we may infer from Lemma 1.1 and (4.1) that x(n) > 0, 
b.x(n) > 0 and b.2x(n) < 0 for n larger than or equal to some integer N ~ 2. It is also 
easy to see that (see for example [5, Lemma 4.1]) 

n n 
x(n) ~ 2Llx(n - 1) ~ 2Llx(n), n ~ 2N. 

Thus, in view of (4.1) and (4.24), 

fl2x(j - 1) + p(j)<p(j /2) ~ b._21xl\(~-1~\~) + p(j) ~~x-~~~~\ ~ 0, j ~ 2N. 

Summing the above inequality from 2N to k, we obtain 

k D.2x(j - 1) k 

j~N <p(D.x(j - 1)) + j~N p(j)<p(j/2) ~ 0. 

In view of Lemma 1.2 and ( 4.25), we have 

16.x(k) ds k fl2x(j - 1) k . . 

-00 < -c ) ~ L (fl ( · _ 1)) ~ - L p(J)<pc112), 
6.x(2N-1) <p S j=2N <p X:) j=2N 

which contradicts the condition ( 4.26). 

k ~ 2N, 

5. Oscillation Criteria for Unforced Recurrence Relation II 

In this section, we shall derive an oscillation criterion for the recurrence relation 

b.(r(n)b.u(n)) + a(n)f(u(n)) ~ 0, n ~ 0, (5.1) 

where r(n) > 0, a(n) ~ 0 for n ~ 0 and f is a positive nondecreasing function defined 
on (0, oo). As a particular application, this result reduces to an oscillation criterion for 
the recurrence relation ( 4.3) as promised in the last section. 

Theorem 5.1. (cf. [8, Theorem 2]) Suppose there is a positive sequence {o-(n)} 
which satisfies b.o-(n) ~ 0 and b.(r(n)b.o-(n)) ~ 0 for n ~ 0 and 

00 1 L-'-, 1\_1_\ =oo, (5.2) 

00 L o-(n)a(n) = oo. (5.3) 
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Suppose further that 

[
5 dt l+o f(t) < oo for some 8 > 0. 

Then (5.l) cannot have an eventually positive solution. 

Proof. Let {u(n)} be an eventually positive solution of (5.1), then 

6.(r(n)6.u(n)) $ -a(n)f(u(n)) $ 0, 

(5.4) 

for all large n. Thus r(n)6.u(n) is eventually of constant sign. Multiply (5.1) by 
cr(n)/ f(u(n)) and sum the resulting inequality form N to k, we obtain 

k cr(k)r(k + l)Au(k + 1) + L r(n)cr(n)Au(n)6.f(u(n)) 
f(u(k)) n=N f(u(n))f(u(n + 1)) 

k k 
cr(N - l)cr(N)6.u(N) '°' r(n)6.u(n)6.cr(n) '°' ( ) ( ) < +L....t -L....tanun, 

- f(u(N - 1)) n=N f(u(n + 1)) n=N 

(5.5) 

for some large integer N. Note that since 6.u(n)6.f(u(n)) 2:: 0 for all large n, the sum 
on the left hand side of the above inequality is nonnegative. We now have two cases 
to consider. Suppose first that 6.u(n) 2:: 0 for all large n. Then the left hand side is 
nonnegative and the first sum on the right hand side is nonpositive. Thus by letting 
k-+ oo, we get a contradiction in view of (5.3). 

Next, suppose 6.u(n) $ 0 for all large n. We assert that the first sum on the right 
hand side of the above inequality is bounded above. Indeed, 

k k L r(n)6.u(n)6.u(n) < r(N)6.u(N) L 6.u(n) 
n=N f(u(n + 1)) - n=N f(u(n + 1)) 

J,u.(k+I) ds 
$ r(N)6.cr(N) f( ) , 

u.(N) S 

where we have used Lemma 1.2 in deriving the second inequality. Since the integral in 
(5.6) is bounded in view of (5.4), our assertion is proved. · 

Since the second sum on the right hand side of (5.5) is unbounded, we may assume 
k is so large that the right hand side of (5.5) is less than -1, so that 

(5.6) 

k 
cr(k)r(k + 1)6.u(k + 1) + L r(n)u(n)6.u(n)6.f(u(n)) < -1. 

f(u(k)) n=N f(u(n))f(u(n + 1)) - 

Since 6.u(n) $ 0 and f is nondecreasing, we obtain 
k 

O'(k + 2)r(k + 1)6.u(k + 1) + '°' r(n)cr(n)Au(n)6.f(u(n)) < _
1 

f(u(k + 1)) n~ f(u(n))J(u(n + 1)) - ' 
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for all large k. Thus 

~ 1 ~ r(n)u(n)b.u(n)b.f(u(n)) ~ b.u(k + 1) 
6, <I(k + 2)r(k + 1) n~ J(u(n))f(u(n + 1)) · + 6, J(u(k + 1)) 

i -1 
< L ,. -· ,. 

k=T 

Since the double sum in (5.7) is nonnegative, thus in view of Lemma 1.2, we have 

(5.7) 

J,u.(i+2) dt i b.u(k + 1) i -1 
u.(T+I) f(t) ~?;. f(u(k + 1)) ~?;. -· ,_ (5.8) 

The integral in (5.8) is bounded below by means of (5.4), thus letting i -+ oo, we obtain 
a contradiction in view of {5.2). 

As an immediate corollary, suppose 

~-1- < 00. 
~ r(i) 
i=O 

(5.9) 

Then letting 
00 1 

cr(n) = I:-(.)' n ~ 0, . r i 
i=n 

we have <I(n) > 0, b.cr(n) = -1/r(n) and ~(r(n)b.cr(n)) = Ll{-1) = 0 for n ~ 0. 
Furthermore, (5.2) holds in view of Lemma 1.3. The following is now easily seen. 

Corollary 5.1. Suppose (5.3), (5.4) and (5.9) hold, then (5.1) cannot have 
an eventually positive solution. 

We now turn our attention to the recurrence relation 

Ll((n + 2)(n + l)y(n)) + (n + 2)(n + l)p(n)<p(y(n)) ~ 0, n ~ 0. (5.10) 

Note that 
00 1 
""" ( < oo. ~ n+l)n 

Thus by means of Corollary 5.1, we have the following result. 

Theorem 5.2. Suppose p(n) ~ 0 for n ~ 0 and <p is a positive nondecreasing 
function defined on (0, oo ). Suppose further that 

00 

L(n + 2)p(n) = oo and 
n;O 

18 dt 
l+o <p(t) < oo for some b > 0, 
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then the recurrence relation (5.10) cannot have an eventually positive solution. 

6. Oscillation Criteria for Initial Boundary Value Problems 

According to the results in the previous Sections, it is now easy to obtain oscilla 
tion criteria for the initial boundary problem (2.1-2.3). We illustrate the principle for 
obtaining such oscillation criteria as follows. If the following conditions hold: 

(i) p(j) 2:: 0 for j 2:: O; 
(ii) c.p is a nonnegative on (0, oo); and 
(iii) lim infk-+oo k-i.l+i I:::=N I:J=N F(j) = -oo, 

where F(j) is defined in Theorem 2.1. Then by means of Lemma 2.1, (2.5) cannot have 
an eventually positive solution. If in addition the condition (Hl) holds, then in view of 
Theorem 2.1, (2.1-2.3) cannot ha,:e an eventually positive solution. 

Similarly, if (i), (ii) and 

l k n 

limsup '°' '°' . k-+oo k - N + l L....t L....t F(J) = oo, 
n=N j=N 

then 
6.2W(j - 1) + p(j)c.p(U(j)) :S -F(j), j 2:: 0 

cannot have an eventually positive solution. Furthermore, suppose the additional con 
ditions (Hl) and (H2) hold, then (2.1-2.3) cannot have an eventually negative solution. 
The following is now clear. 

Theorem 6.1. Every solution of (2.1 - 2.3) is oscillatory provided (Hl-H2) 
together with the following conditions hold: 

l k n 

lim inf '°' '°' F( .) k-+oo k - N + l L....t ~ J = -oo; 
n=N j=N 

and 
l k n 

limsup k _ N 1 L L F(j) = oo. k-+oo + n=N j=N 

As another example, we can derive the following oscillation criteria from Lemma 2.2 
and Theorem 2 .1. 

Theorem 6.2. Every solution of (2.1 - 2.3) is oscillatory provided (Hl-H3) 
together with the following conditions hold: 

(i) there is an oscillatory sequence {v(j)} such that 6.2v(j - l) = F(j) for 
]. > O· 
- ' 
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(ii) liminfk-.oo k-'t:+i L~=N I:,J=N F(j) - p(j)<p(max(v(j), 0)) = -oo; and 
(iii) lim supk-.oo k-1+1 I:,!=N I:,J=N F(j) + p(j)<p(max(-v(j), 0)) = oo. 
The following theorem is derived from Lemma 2.3 and Theorem 2.1. 

Theorem 6.3. Every solution of (2.l - 2.3) is oscillatory provided (Hl-H3) 
together with the fallowing conditions hold: 

(i) there is an oscillatory sequence { v(j)} such that b.2v(j - l) = F(j) for 
j ~ O; 

(ii) limj-+oo v(j) = O; and 
(iii) the recurrence relation 

b.2x(j - 1) + p(j)<p(x(j)) ~ 0, j ~ 0 (6.1) 

does not have an eventually positive solution. 

We remark that condition (iii) in the above Theorem can be replaced by oscillation 
criteria for the recurrence relation (6.1). For instance, in view of Theorem 4.1, we have 
the following corollary. 

Corollary 6.1. Every solution of (2.1-2.3) is oscillatory provided (Hl-H4), 
( 4.5) together with the following conditions hold: 

(i) there is an oscillatory sequence {v(j)} such that D.2v(j - 1) = F(j) for 
j 2:: O; and 

(ii) limj-+oo v(j) = 0. 

Corollary 6.2. Every solution of (2.1- 2.3) is oscillatory provided (Hl-H4), 
( 4.8 - 4.10) together with the following conditions hold: 

(i) there is an oscillatory sequence { v(j)} such that fl 2v(j - 1) = F(j) for 
j ~ O; and 

(ii) limj-+oo v(j) = 0. 
The final result in this section is derived from Leinma 2.4 and Theorem 2.1. 

Theorem 6.4. Every solution of (2.1 - 2.3) is oscillatory provided (Hl-H3) 
together with the following conditions hold: 

(i) there is a sequence {v(j)} such that b.2v(j - 1) = F(j) for j ~ O; 
(ii) { v(j)} has two constant subsequence { hi} and { h2} and h1 ~ v(j) ~ h2 for 

j ~ O; and 
(iii) the recurrence relation 

D.2x(j - 1) + p(j)<p(x(j)) ~ 0, j ~ 0 

does not have an eventually positive solution: 
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7. Oscillation Criteria for Characteristic Initial Value Problems 

As in the last Section, it is now relatively easy to derive oscillation criteria for the 
problem (3.1-3.3). In what follows, the function G(j) is the one defined in Theorem 3.1. 

Theorem 7.1. Every solution of (3.l - 3.3) is oscillatory provided (Gl-G2) 
together with the following conditions hold: 

(i) lim infk-+oo k-il+i L,:=N L,;=N G(j) = -oo; and 
(ii) lim supk-+oo k-h+i L,:=N L,;=N G(j) = oo. 
Theorem 7.2. Every solution of (3.l - 3.3) i.s oscillatory provided (Gl-G3) 

together with the fallowing conditions hold: 
(i) there is an oscillatory sequence { v(j)} which satisfies 6.2v(j) = G(j) for 

J. > 1· 
- ' 

(ii) liminfk->oo k-h+i L,:=N L,j=N G(j)-(j+l)p(j)c.p(max(v(j),0)/(j+l)) = -oo; 
and 

(iii) lim supk-+oo k-h+i L,:=N L,j=N G(j) + (j + l)p(j)c.p(max(-v(j), 0)/(j + 1)) = 
00. 

Theorem 7.3. Every solution of (3.1- 3.3) is oscillatory provided (Gl-G3) 
together with the following conditions hold: 

(i) there is an oscillatory sequence {v(j)} such that 6.2((n+ l)v(n)) = G(n) for 
n > l· - ' 

(ii) limn_,00(n + l)v(n) = O; and 
(iii) the recurrence relation 

6.((n + 2)(n + 1)6.x(n)) + (n + 2)(n + l)c.p(u(n)) $ 0, n ~ l 

doe.s not have an eventually positive solution. 

Theorem 7.4. Every solution of (3.l - 3.3) i.s o.scillatory provided (Gl-G3) 
together with the following conditions hold: 

(i) there is a sequence { v(n)} which satisfies 6.2((n + l)v(n)) = G(n) for n 2:: 1; 
(ii) {v(n)} has two constant subsequence {hi} and {h2} such that h1 $ v(j) :s; 

h2 for all large j; and 
(iii) the recurrence relation 

.6.((n + 2)(n + l).6.x(n)) + (n + 2)(n + l)c.p(u(n)) $ 0, n 2:: 1 

does not have an eventually positive solution. 

The last result follows Theorem 7.6 and Theorem 5.2. 

Theorem 7.5. Every solution of (3.l - 3.3) is oscillatory provided (Gl-G4) 
together with the following conditions hold: 
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(i) there is a 8equence {v(n)} which satisfies D.2((n + l)v(n)) = G(n) for n ~ l; 
(ii) {v(n)} has two constant subsequence {hi} and {h2} such that h1 ~ v(j) ~ 

h2 for all large j; 
(iii) ~00(n + 2)p(n) = oo; and 
(iv) f +o .,,~;) < oo for some b > 0. 
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