
TAMKANG JOURNAL OF MATHEMATICS 
Volume 26, Number 4, Winter 1995 

ON PLANARITY OF GRAPHS ON WEYL GROUPS 

S. A. YOUSSEF ANDS. G. HULSURKAR 

Abstract. A graph is constructed whose vertices are elements of a Weyl group 
and the edges are defined through nonvanishing of Wey! 's dimension polynomial at 
the point associated with two elements of the Weyl group. We study the planarity 
of such graphs on Weyl groups whose associated root system is irreducible. These 
graphs include four families of infinite number of graphs. We show that very few 
graphs, essentially five of them, are planar. 

1. Introduction and Notation 

We construct a graph on Weyl groups and determine the planarity of these graphs. 
The definition of an edge of the graph involves the underlying root system of the Weyl 
group. The origin of such a definition can be seen in [3]. A new partial order on 
Weyl groups was introduced there to prove the Verma's conjecture on Weyl's dimension 
polynomial. This partial order is used to define the graph structure on a Weyl group. 
The matrix studied in [1] is nothing but the incidence matrix of our graphs here. The 
study of such graphs has been done in [5]. We give here the results on the planarity of 
graphs on Weyl groups whose associated root system is irreducible. We describe briefly 
the root system a.nd its Weyl group and refer to (4] for details. 

Let <.P be a root system in a Euclidean space E of dimension n with positive definite 
inner product (,). For a E <.P, let R°' be the reflection given by AR°' = A - (A, av)a, 
for A EE and where aY = 2a/(a,a). Let a1,a2, ... ,an be simple roots of <.P. Then 
W is generated by Ri = Ra;, i = 1, 2, ... , n. Any element of W can be written as 
a product of finite number of the generators Ri. Let f(a) be the length of a defined 
as the minimum number of generators Ri required to express a as a product of the 
generators. Suppose Ai, A2, ... , An are fundamental weights of <.P, i.e., they are defined by 
(Ai,aj) = bij (Kronecker delta). For a E W, define Iu = {iJl::; i::; n,f(aRi) < f(a)} 
and bu = I:iEI"" Ai. The weight vector €u associated with each a E W is defined by 
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Eu = Oua-1. Let D(>.) for >. E E be the Weyl's dimension polynomial. Then 

for >. E E and where o = I:::::1 >.i and 4>+ is the set of positive roots. 
2. A Graph on W 

We define a graph I'(W(4>)) whose vertices are elements of W, the Weyl group of 
the root system 4>, and the edges are defined by the root system 4>. We also write I'(W) 
or I'(4>) for I'(W(4>)). A point >. E Eis called W-regular if D(>.) =f. 0 or that is same 
as >. is in the interior of a Weyl chamber relative to 4>. Let a0 be the unique element of 
maximal length in W. For distinct a, r E W the unordered pair ( a, r) is an edge in I'( 4>) 
iff either -Euuo + Er or -fruo + €u is W-regular. It is shown in [3] that both -Euuo + Er 
and -Eruo + fu cannot be regular. Thus we have a graph as defined in [2]. In general, if 
-Euuo + Er is W-regular then we write a - r in W. It is easy to see that a - a in W 
for all a E W, after noting, that -Euuo = (8 - Ou )a-1 [2]. Further, (a, r) is an edge in 
I'( 4>) iff a =f. r and either a - r or r - a in W. In fact, the relation a - r in W gives 
a directed graph on W, which is investigated elsewhere. 

Let J be a subset of I= {1, 2, ... , n}. The subgroup WJ generated by Rj, j E J 
is again a Weyl group, corresponding to the root system 4>J whose simple roots are O'.j, 
j E J in the subspace EJ of E. The root system 4> J need to be irreducible. Note that 
W=W1. 

Lemma. Let J be a nonempty subset of I and WJ be the corresponding 
Weyl group. Let a, r E WJ. Then (O", r) is an edge in I'(WJ) iff (O", r) is an edge 
in I'(W). 

Proof. For any nonempty subset J of I, let OJ = LjEJ >.j and O" J be the unique 
element of maximal length in W J. Then O" 1 is same as O"o and or = 8. It has been shown 
[3] that for a E w, -Euuo = (o - Du)0"-1. Then for O" E WJ, -(:O'O"J = (OJ - Ou)0"-1. 
Every point in E has a unique image in the closure of the fundamental Weyl chamber. 
Suppose 8J is the image of -fuu1 + Er in the fundamental Weyl chamber for WJ, then 

8J = I:nj>.j 
jEJ 

(1) 

wherenj are nonnegative integers. Therefore, -Euu.,+Er = (8J-Ou)a-1+orr-1 = 8Jp-1, 
for some p E WJ. We recall that, for O", r E WJ, -Euu1 +Er is WJ-regular iff -Euu

1 
+Er is 

in the interior of a Wey! chamber for the root system 4> J. We conclude that -Euu J + Er is 
WJ-regular iff nj > 0 for j E Jin Eq.(1). Now -(:O'O'J +Er = (or-Ou )O"-l +8rr-1 = (OJ+ 
8r-J-Ou)a-1+brT-l = (8J-Ou)0"-1+81-J0"-1+8rr-1 = 8Jp-1+8r-J = (8J+8r-J)p-1, 
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since a, TE W1 and >.iRi = >.i for j -=/= i. Whence -f.aa1 + Er is W-regular iff ni > 0 for 
j E J in Eq.(l) iff -f.aa1 + Er is W1-regular. 

Corollary. r(WJ) is induced subgraph of r(W). 

3. Irreducible Root System 

Here we consider only irreducible root system since an arbitrary root system q> is 
the union of irreducible root systems and the Weyl group W of q> is the direct product of 
the Weyl groups of the irreducible root systems. If q> is an irreducible root system then 
it is uniquely determined by the Dynkin diagram given in Fig. l. The Dynkin diagram 
also determines the Weyl group associated with the root system. If the root system q> is 
of type An(n 2: 1), we write the graph r(W( q> )) as r(An) for n 2: 1. Similarly, r(Bn) 
for n 2: 2, r(Cn) for n 2: 3, r(Dn) for n 2: 4, r(E5), r(E1 ), r(Es), r(F4), and r(G2) 
denote the graph on Weyl group associated with the respective root system. It should 
be noted that the Weyl groups of the root systems of type Bn and Cn for n 2: 3 are same 
but r(Bn) and r(Cn) are different as the root systems are different. 

An(n 2: 1) : ~ 0 0 0 0 
2 3 n-1 n 

Bn(n 2: 2) : ~ 0 0 ~!._ 1 > {) 
2 n-2 n 

Cn(n 2: 3): ~ 0 0 < I < {) 
2 n-2 n-1 n 

Dn(n 2: 4) : ~ 0 
2 n..::.3 ---a 

n 

E6 :1 ~ r !; t 

E1 :1 ~ r !; ~ "1 
2 

I 
Es 

i V i V V 

F4 0 Cl > !) 0 
1 2 3 4 

G2 <I < () 
1 2 

Fig. 1. Dynkin diagrams of irreducible root systems 
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We have proved the Lemma for arbitrary subset J of I. For the proof of the theorem, 
we need only those subsets of J for which the corresponding root system <.P J is irreducible 
i.e., its Dynkin diagram is connected. In fact, the choice of J will be confined to those 
for which <.P J is the root system of one of the following types: A4, B3, C3 and D4. 

First we list the planar graphs r( <.P) where q> is irreducible root system. r( A1) and 
f(A2) are totally disconnected graphs with 2 and 6 vertices respectively. r(A3) has 24 
vertices and 8 disjoint edges. r(B2) has 8 vertices and 4 disjoint edges. f(G2) has 12 
vertices and 12 edges as shown in Fig.2. All these are planar graphs. This leaves us with 
the following graphs: 

Fig. 2. The graph f(G2) 

f(An) for n 2: 4, f(Bn) for n 2: 3, f(Cn) for n 2: 3, f(Dn) for n 2: 4,l (*) 
f(E6), f(E1 ), f(Es), f(F4). 

Our first goal is to show that r( <.P) given above in (*) are non planar. First we prove the 
following 

Proposition. The graphs f(A4), f(B4), r(C3), and f(D4) are nonplanar. 

Proof. Let a E W have a reduced expression Ri Ri · · · Ri in terms of the gener- 
1 2 k 

ators Ri, i = 1, 2, ... , n. We write a as i1i2 ... ik. For example the element R1R2R1R3 
is written as 1213. Let id be the identity element of W. We prove the proposition by 
exhibiting subgraph of f(W) which is either contractible to the complete graph K

5 
(as 

in the case of f(A4)) or homeomorphic to the bigraph K3,3 (as in the remaining cases). 
Then by the genralized form of the Kuratowski's theorem [2] it follows that f(W) is 
nonplanar. We write the edge (a, r) in a subgraph of f(W) with the convention that 
a - r, so that the verification of the claim will be easy to check from the data given in 
the Tables. 
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Table 1. Eu and Euuo for some elements of W'(A4). 

S.No. (T €u Euu0 
1. 0"1 = id 0 ->.1 - >.2 - ,\3 - ,\4 
2. CT2 =4321 -.,\4 -.-\1 - >.2 - ,\3 + 3,\4 
3. CT3 = 342312 -,\3 -.-\1 - >.2 + 3,\3 - ,\4 
4. 0"4 = 234123 ->.2 ->.1 + 3>.2 - ,\3 - ,\4 
5. (T5 = 1234 -.-\1 3>.1 - >.2 - ,\3 - ,\4 
6. CT6 = 213 >.1 - 2>.2 + ,\3 + ,\4 ->.1 + >.2 - A3 - ,\4 
7. (T7 = 14232 -2>.1 + .-\2 + .-\3 - 2.-\4 >.1 - >.2 - ,\3 + ,\4 
8. as= 324 .-\1 + .-\2 - 2>.3 + ,\4 ->.1 - >.2 + >.3 - A4 
9. a9 = 2431214 >.1 - 2>.2 + >.3 - 2,\4 ->.1 + >.2 - >.3 + A4 

10. CTlQ = 3123431 -2>.1 + .-\2 - 2.-\3 + >.4 >.1 - >.2 + ,\3 - A4 

The graph r(A4) has 120 vertices and 180 edges. Consider the subgraph given by 
the 10 elements listed in Table 1. For >. = x>.1 + y,\2 + z,\3 + t,\4 E E, the Weyl's 
dimension polynomial D(>.) is '11(x, y, z, t)/'11(1, 1, 1, 1) where 

w(x, y, z, t) = xyzt(x + y)(y + z)(z + t)(x + y + z)(y + z + t)(x + y + z + t). 
The edges are (a1,0"6), (0"1,a1), (cr1,0"s); (cr2,CT1), (0"2,0"s), (cr2,a9); (cr3,crs), (0"3,a9), 
(0"3,a10); (cr4,cr9), (0"4,a10), (cr4,a6); (£Ts,0"10), (crs,a6) and (cr5,0"7). The subgraph is as 
shown in Fig.3. Identify the points CTi with CTi+s for i = 1, 2, ... , 5. From this it follows 
that the subgraph in Fig.3 is contractible to the complete graph K5 and hence r(A4) is 
non planar. 

Fig. 3. A subgraph of r(A4) 
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Table 2. Ea and Eaao for some elements of W(B3). 

1. £11 = id O -:Xi - :X2 - >.3 
2. rJ2 = 23212 2..\1 - 3..\2 + 2..\3 -..\1 + >.2 - ..\3 
3. rJ3 = 2312 ..\1 - 2>.2 + 2>.3 ->.1 + 2>.2 - 3..\3 
4. 0'4 = 1232 -2>.1 + ..\2 2>.1 - ..\2 - >.3 
5. 0'5 = 123212 -2..\1 - ..\2 + 2..\3 >.1 - ..\3 
6. (J5 = 212 ->.1 - ..\2 + 4..\3 -..\3 
7. 0'7 = 3212 ->.1 + 3>.2 - 4..\3 -..\2 + ..\3 
8. (Jg = 12312 -..\1 - ..\2 + 2)..3 ..\1 + ..\2 - 3>.3 
9. (19 = 12 ->.1 + 2..\2 ..\1 - >.2 - ..\3 

10. u10 = 12321 ->.1 3..\1 - ..\2 - )..3 
11. rJ11 = 132312 ->.1 + >.2 - 2)..3 >.1 - 2>.2 + 3)..3 
12. u12 = 21323212 ->.1 - >.2 >.2 - >.3 
13. £113 = 312 -..\1 + 2>.2 - 2)..3 ..\1 - 2..\2 + >.3 
14. rJ14 = 1323212 -2>.1 + >.2 - 2..\3 >.1 - ..\2 + )..3 

The graph r(B3) has 48 points and 100 edges. We list below in Table 2, the 14 
elements of W(B3) which gives subgraph homeomorphic to the bigraph K3,3. For ..\ = 
x>.1 +y>.2 +z>.3 EE, the Weyl's dimension polynomial D(..\) is w(x, y, z)/'11(1, 1, 1) where 

IJ!(x, y, z) = xyz(x + y)(y + z)(2y + z)(x + y + z)(x + 2y + z)(2x + 2y + z). 
The edges are (u1,u2), (£T1,u3), (£T1,u4), (£13,£15), (u5,£T6), (£14,0-1); (us,£12), (o-s,o-6), 
(us, 0-9), (0-9, rJ7 ); (0-10, 0-11), (0-11, 0-12), (0-12, £12), (0-10, u13), (0-13, o-6), (u10, 0-14), and 
(0-14, 0-1 ). The subgraph is shown in Fig.4. This shows that r(B3) is nonplanar, since it 
has a subgraph homeomorphic to the bigraph K3,3. 

Fig. 4. A subgraph of r(B3) 

Table 3. Ea and Eaao for some elements of W(C3). 
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s:No. a 
1. 0-1 =~"321 
2. a2 = 323121 
3. (73 = 2323 
4. 0"4 = 3121 
5. (75 = 31213 
6. 0"6 = 323123121 
7. (77 = 3123121 
8. O"g = 23212323 
9. 0"9 = 312132 

10. a10 = 3231213 
11. 0"11 = 3213 
12. a12 = 321323 
13. a13 = 323 
14. (714 = 3 
15. 0"15 = 1323 
16. (716 = 3212323 

-:X2 - :X3 
2A1 - A2 - A3 
4A1 - A2 - A3 
-Ai+ 3A2 - 2A3 
-2A1 + 3A2 - 2A3 
-A1 - A2 - A3 
-2A1 + A2 - A3 
-A2 - A3 

-Ai+ .X2 - A3 
A1 - A2 - A3 

2A1 + A2 - 2A3 
-A3 

2A1 - A3 
2A2 - A3 

-2A1 + 2.X2 - A3 
-Ai+ A2 - 2A3 

-Xi - 3:X2 + 2,\3 
-2A1 + A3 
-Ai 

-2A2 + A3 
A1 - 2A2 + A3 

0 
2A1 - 2A2 + A3 
-A1 + A2 

2A1 - 3A2 + 2A3 
-.Xi + A3 

-,\1 - A2 + A3 
-A1 - A2 + 2A3 
-2A1 - A2 + A3 
-Ai - A2 

2A1 - 3A2 + A3 
-A2 + A3 

The graph I'(C3) has 48 points and 96 edges. Consider the subgraph given by the 16 
points listed below in the Table 3. For A= XA1 + YA2 + ZA3 EE, the Weyl's dimension 
polynomial D(A) is w(x, y, z)/\Jl(l, 1, 1) where 

w(x, y, z) = xyz(x + y)(y + z)(y + 2z}(x + y + z)(x + y + 2z}(x + 2y + 2z). 

The edges are (u1,a2), (a1,u3), (a4,a3), (a1,a5), (a5,a6); (0-1,0-s); (a2,as), (a1,a4), 
(a1, a6 ); (a9, 0"6), (a9, a4), (a9, a10), (0-10, 0-11 ), (0-12, au), (a12, 0-13), (0-13, 0-14), (0-15, a14), 
(a15, o-16), and (a2, i716)- The subgraph, which is homeomorphic to K3,3, is shown in 
Fig.5. By generalized Kuratowski's theorem, r( C3) is non planar. 

Fig. 5. A subgraph of r(C3) 



368 S. A. YOUSSEF AND S. G. HULSURKAR 

The graph r(D4) has 192 vertices and 624 edges. We list below in Table 4 the 
elements of I'(D4) and consider its subgraph. For ,\ = x>.1 + y>.2 + z,\3 + t.,\4 E E, the 
Weyl's dimension polynomial D(,\) is given by w(x, y, z, t)/w(l, 1, 1, 1) where 

W(x, Y, z, t) = xyzt(x + y)(y + z)(y + t)(x + y + z)(x + y + t)(z + y + t) 
X ( X + y + Z + t )( X + 2y + Z + t). 

The edges in the subgraph are (£T1, er7 ), (0"1, er8), (er1, erg); (£T2, 0"4), (er 4, 0"7 ), (a2, ers), 
(O"s, ers), (0"2, 0"6), (0"6, ag); (er3, 0"7 ), (0"3, er8), and (er3, er9). The subgraph, shown in Fig.6, 
is homeomorphic to K3,3. Therefore r(D4) is nonplanar. 

Fig. 6. A subgraph of r(D4) 

Table 4. Eu and Euuo for some elements of W(D4). 

S.No. CT €u Euuo 
1. 0"1 = 2 .-\1 - >.2 + A3 + A4 ->.1 - >.2 - >.4 
2. 0"2 = 21342 >.1 - 2>.2 + ,\3 + A4 -2.-\1 + 3-\2 - 2>.3 - 2).4 
3. £13 = 213421342 ->.2 ->.1 + 3>.2 - .-\3 - A4 
4. 0"4 = 121342134 ->.1 - 2>.2 + >.3 + -\4 >.1 + >.2 - .,\3 - .,\4 
5. er5 = 321342134 >.1 - 2>.2 - ,\3 + ,\4 -.-\1 + >.2 + ,\3 - .,\4 
6. er6 = 421342134 >.1 - 2>.2 + ,\3 - >.4 -.-\1 + >.2 - ,\3 + ,\4 
7. 0"7 = 12134 -2>.1 - >.2 + 2,\3 + 2).4 >.1 - >.3 - ,\4 
8. erg = 32134 2>.1 - >.2 - 2.-\3 + 2,\4 ->.1 + .-\3 - A4 
9. £19 = 42134 2>.1 - >.2 + 2>.3 - 2>.4 ->.1 - >.3 + >.4 

The proposition leads to the following 
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Theorem. The graph r( q>) is nonplanar when it is any one of the graphs 
in (*). In other words, for irreducible root system q>, r(q>) is nonplanar except 
for I'(A1), r(A2), r(B2) and r(G2). 

Proof. The proof follows from the corollary of the lemma and the proposition. We 
indicate the choice of J in each case with reference to Fig.l. 

The graph r(A4) occurs as a subgraph in I'(An) for n 2: 4, as can be seen by choosing 
J = { 1, 2, 3, 4} or any four indices of consecutive nodes in the Dynkin diagram of An for 
n 2: 4. By the corollary of the lemma and the proposition it follows that r(An) for n 2: 4 
is non planar. 

The graph r(B3) occurs as a subgraph in r(Bn) for n 2: 3 with J = {n-2, n-1, n} 
and in f(F4) with J = {1, 2, 3}. This implies that f(Bn) for n 2: 3 and r(F4) are 
non planar. 

The graph r(Cn) for n 2: 3 is nonplanar since f(C3) occurs as a subgraph with 
l= {n-2,n-1,n}. 

Finally, r(D4) occurs as a subgraph in f(Dn) for n 2: 4, f(E6), r(E1) and r(E8). 

This can be seen by choosing J = {n-3, n-2, n-1, n} for the first case and J = {2, 3, 4, 5} 
for the remaining cases. Therefore, all of these graphs are nonplanar. 

Remark. The graph f(A4) is nonplanar also implies that r(Bn), f(Cn) and 
r(Dn), all for n 2: 5, r(E6), f(E7) and r(E8) are nonplanar. The choice of J = {1, 2, 3, 4} 
does it for the first two cases whereas for the remaining cases J is any set of indices of 4 
nodes which gives the Dynkin diagram of A4. f.(C3) occurs as a subgraph of f(F4) with 
J = {2,3,4} and this also shows that r(F4) is nonplanar. 
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