TAMKANG JOURNAL OF MATHEMATICS
Volume 25, Number 1, Spring 1994

A METHOD FOR SOLVING LEAST-SQUARES
PROBLEMS ARISING FROM ANGULAR LINEAR PROGRAMS!

EUGENE K. YANG AND CHIA-HSIANG CHOU

Abstract. The most costly part of interior point methods for solving linear pro-
gramming problems is in solving least squares subproblems. If the normal equation
matrix of a least-squares problem is not nearly singular, it is well known that LDL?
decomposition is a stable method. However, for the nearly singular case, it can
cause numerical difficulties. In this paper, we consider the linear proogram whose
constraint matrix B is large, sparse, and with angular structure. We assume that
the normal equation matrices arising from such a linear program may be nearly
singular. We present a numerically stable block method utilizing LDL! decom-
position with diagonal pivoting for solving such normal equations. Although the
method of the diagonal pivoting is old, this paper presents new results when the
method is applied to the positive definite but nearly singular case.

1. Introduction

In this paper, we consider the interior (point) methods for solving large angular

linear programs, i.e.,
t

max c'y
subject to (1)
By =1
and { ” ; 0,
where the mp X np constraint matrix B is of the special from:
-Bl .
B,
B =
BP
I B - Fp Fpy

Received January 23, 1991
1This research was supported by National Science Council of the R.O.C. under the grant NSC79-
0208M007-76.

Keywords: least squares, angular linear program, nearly singularity, rank revealing.

2 EUGENE K. YANG AND CHIA-HSIANG CHOU

B is said to be a (block-)angular matrix. B; is m; X n;, ¢ = 1,---,p and F; is mr X n;,
i =1,---,p+ 1. We shall assume that all blocks B; and F; are dense (or small) and
m; and mp are much smaller than mp and np; the effect of this assumption on the
efficiency of our algorithm will be discussed at the end of Section 2. Applications of such
large scale programs include multi-period manufacturing, allocation problems, two-stage
stochastic programming, and various problems in planning and control (see Rosen and
Maier [9] for more references). Tomlin [10] notes that the angular linear program (1) is
more efficiently solved by interior methods than by the simplex method. Hence, we only
consider interior methods for solving (1).

It is well known that, in most of the interior methods for solving large sparse linear
program, the time required to perform an interior point iteration is dominated by the
solution of a sparse linear system, which is embedded in the solution of a least-squares
problem; see Gill et al. [5]. They observe that the efficiency of the interior methods
depends critically on fast, stable techniques for solving large-scale least-squares subprob-
lems. In most interior methods the least-squares problem is solved by finding the solution
of its normal equation. Interior point methods for solving (1) are iterative methods. Let
y = (v1,---,Yn) be the current interior point iterate in solving (1). The normal equation
of the least-squares problem in the barrier method of Gill et al. has the following form:

BY?B'z = BY?c, (2)

where Y =diag(y1,...,yn) is a diagonal matrix and z is the solution to this normal
equation; see Gill et al. [5] for further detail. All other interior methods have similar
forms. Let M = BY?B! and f = BY2c. Then the normal equation matrix

i ot -
A Ct
M= : :
4 &

|G C; -+ Cp Cpyrl

has a bordered angular structure. We assume that M and possibly some A; are either
singular or nearly singular (by “nearly singular” we mean that there is at least one nearly
zero eigenvalue regardless whether there are other exactly zero eigenvalues). It is well
known that the singularity of M and A; comes from the degeneracy of the linear program
(1) (see Gill et al. [5] or Hooker [7]) and that almost all large, real-world linear programs
are degenerate (see Tomlin [10]). In the interior method, if M is (nearly) singular,
equation (2) is known to be consistent and there exist solutions to (2); see Hooker [7].
However, it requires a numerically stable method for solving (2).

Since each diagonal block A; of M is either symmetric positive definite (SPD) or
symmetric positive semi-definite (SPSD), it is possible to improve the efficiency by using
LDL! factorization (i.e., symmetric Gaussian elimination or symmetric triangular factor-
ization) instead of LU factorization for each A;; see Golub and Van Loan [6, pp. 82-90].

A METHOD FOR SOLVING LEAST-SQUARES PROBLEMS 3

In order to preserve the block structure of M, in this paper we propose a block method
which uses LDL! factorization with diagonal pivoting for each block A; such that the zero
or “nearly zero” pivots are produced at the end of the diagonal factor D of each singular
A;. Here; “nearly zero” means less than ||A;|| * eps, where eps is the machine epsilon
(machine precision). The nearly zero pivots are critical in solving (2) stably; see Chan
[4] for more detail. We will use capital letters to denote matrices and the corresponding
small letters for their elements.

The remaining of this paper is organized as follows. In Section 2, a numerical-rank
revealing algorithm utilizing LDL? factorization with diagonal pivoting for nearly singular
A; is presented. In Section 3, we extend the LDL’ algorithm in Section 2 to factor the
block-structured matrix M. We conclude in Section 4.

2. A diagonal pivoting algorithm

a Vv 1
Theorem 1; Suppose that an order n matriz A = [u B] n—1 s SPSD
1 n-1

with rank r < n and a > 0. Let the following factors of A be obtained after one
step of symmetric Gaussian transformation:

S EPR I | ©

e o

Then the submatriz B — '—’;—' s also SPSD and has the same nullity as A does.
1

v
o In—l

a

[8, p.10] on the congruence transformation,

~la7-t _ | @ 0 y
1tz =[5]

Proof. Let L = l] , which is nonsingular. By Sylvester’s Inertia Theorem

has the same inertia as A has and thus is also SPSD. Since a > 0, the results follow.

In the following we present an algorithm for solving a consistent system
Az =g, (4)

where A is n x n, SPSD, and (nearly) singular.

Algorithm DP (Diagonal Pivoting) for factoring a dense matrix A. Set the
tolerance tol for stopping criterion. (Usually we set tol ~ ||A|| * eps.) Suppose that
A € R**™ is SPSD, and for some k < n, we have determined the Gaussian transforma-
tions M, ..., Mr_, € R™*" (the repetitions of the decomposition (3)) and permutation

4 EUGENE K. YANG AND CHIA-HSIANG CHOU
matrices P, ..., Pr—1 € R®*™ such that

A(k""l) :Mk___lpk_,l . e MIPIAPfo X Plz—lM’:—l
_[4? o
1 & AgD

(A is defined to be A), where Ag';_l) is a (k — 1) x (k — 1) diagonal matrix and

k—1 k—1
e
k—1
Agz) = : “ :
af-1) .. gl)

Herein, |F| < tol is used to denote f;; < tol for every i, j. Next, A¥) is determined as
follows:

(i) Determine p =1

(k=1) = g{E=1) — , the maximum of the diagonal elements

of Aé’;_l), which are all nonnegative since Ag’;"l) is SPSD; see the proof of Theorem

2. If p*=1) < tol, (which implies |ASs™")| < tol by Theorem 2,) then set At~ = O,

assign D = A*~1) and stop (with the numerical rank of A equal to k — 1; see the

definition described before Theorem 2).

(ii) Permute the kth and pth rows and the kth and pth columns of Ag’;_l) to obtain the
permuted matrix P, A1) Pt

(iii) Use the new maximal afjc_l) as the pivot to obtain A*) = My (P, A~V Pt) M} by
one step of symmetric Gaussian transformation (a repetition of the decomposition

(3)). Increase k by 1 and return to (i).

It can be shown that after repeating the above step k decomposition for at most
n — 1 times, the LDL! decomposition for PAP? will be completed, where L is n x n and
unit lower-triangular, P is a permutation matrix, and diagonal matrix D will be shown
to reveal the rank of A later. Once this decomposition is produced by Algorithm DP, we
have done the dominant work for solving (4); the remaining forward and backward solves
take only additional O(n?) flops. Hence, in the rest of this paper we will only discuss
the dominant phase of decomposing A (after permutation) into triangular and diagonal
factors.

Bunch and Kaufman [2] present several algorithms for solving symmetric indefinite
systems. One of their algorithms, Algorithm C, when applied to an SPD matrix, is
exactly the same as Algorithm DP presented above. (For the convenience of making
a comparison, we use the name Algorithm DP whenever we refer to the context of
this paper, i.e., for solving SPSD case.) However, we note that Algorithm DP and the
algorithms of Bunch and Kaufman [2] have different purposes. Their algorithms and
those proposed in other related papers (e.g., Bunch and Parlett [3]) are designed for
solving a linear system with an indefinite but nonsingular (by this we mean not nearly
singular) matrix. Bunch and Kaufman [2] do not discuss the concept of the numerical

A METHOD FOR SOLVING LEAST-SQUARES PROBLEMS 5

rank of a matrix, which is defined to be its number of singular values (or eigenvalues
for the SPSD case) that have absolute values larger than the tolerance tol. In other
words, the numerical rank is the number of singular values that are not nearly zero. On
the other hand, Algorithm DP is designed for solving a system with SPSD and nearly
singular matrix. The next theorem shows in the SPSD case that the diagonal pivoting
is equivalent to the complete pivoting.

Theorem 2. Let A be nxn and SPSD. Then the diagonal pivoting strategy
used in Algorithm DP is equivalent to the complete pivoting.

Proof. Let k be the step count of Algorithm DP (k is from 1 to n) and let a,(pl;,_l)

denote krgag: ag;,_l). Since A is SPSD, aiiaj; — afj > 0, for every 1 <1, j < n. Then, it
g<n

is easy to see that following formula is true for k = 1.

2 2 2
k-1 _ k—1 (k—1) (k—1) (k-1)

" for every i and j such that k <14, j < mn,
or,
alk=1) > |a$’—1)| for every i and j such that k <, j < n. (6)

By repeatedly applying Theorem 1, Ag’;_l) at the step k > 1 (see formula (5)) is also

SPSD. Thus inequality (6) is also true for every k such that 1 < k < n and the conclusion
follows.

The Bunch-Kaufman algorithm requires n%/6 flops, O(n?) comparisons for partial
pivoting, and n?/2 storage (compared with that the Gaussian elimination requires n3/3
flops, O(n?) comparisons for pivoting, and n? storage.)Since Algorithm DP is the Bunch-
Kaufman algorithm used to suit nearly singular case, it is easy to show (see also Golub
and Van Loan [6, pp. 84-85]) that it also requires only n*/6 flops, n? /2 comparisons for
diagonal pivoting, and n?/2 storage for solving (4). Since the Bunch-Kaufman alforithm
is designed for indefinite matrices, the bound on element growth can only be shown
to be (2.57)"!, a result similar to LU with partial pivoting; see Bunch and Kaufman
[2]. (A completepivoting variant by Bunch [1] is more stable but unfortunately at a
cost of O(n®) comparisons.) For the SPSD case, the diagonal pivoting takes only O(n?)
comparisons but is equivalent to the complete pivoting; thus, we can apply the bound on
element growth established by Wilkinson [11, pp. 213-214] to Algorithm DP. The bound
is n'/2 f(n), where

" 1/2
f(n) = (II klf("“l)) < 1.8n01/4) 108",

k=2
In fact, the element growth factor can be shown in following to be one (i.e., there is
no growth) for the SPSD case. The next theorem establishes that the elements of D
produced by Algorithm DP are in decreasing order.

6 EUGENE K. YANG AND CHIA-HSIANG CHOU

Theorem 3. If A € R™*" is SPSD with rank (A) = r < n, then Algorithm
DP will produce a diagonal matriz D = diag(d,...,d») whose elements are in
decreasing order. Moreover, if A is ezactly singular with r < n, the zero diagonal
elements are forced to the end of D (i-e., dry1 =dry2=...=dn =0).

Proof. The part that dyy; = dry2 = ... = d, = 0 is easy to show. Since, by
Theorem 2, Algorithm DP uses a complete pivoting strategy for Gaussian elimination,
it is well known that A) = O and a{; " #0for k <.

For k < r and at the substep (iii) of Algorithm DP, Ag’;“” is SPD (with rank > 0)
and thus the maximal pivot ag;_” > 0. Hence, 0 < agf) = aﬁf‘” - ag:—”]z/ag;_” &
agf_l) < agz_l), for k = 1,---,7 and k+ 1 < i < n, where the last inequality is
implied by the diagonal pivoting at the step (i) of Algorthm DP. By dy = agz—l) and
by applying the above inequality recursively (i.e., ag(i) = a§12), 0(212) > a(323), etc.), we have

d Zd22---2dr>dr+1 =dr+2=...=dn=0.

By Theorem 3, d; (which is a(lti) after pivoting) is the maximal element of both D
and A. Then by |L| < 1, the growth factor is one. In the remaining of this section,
we comment on the numerical-rank revealing feature (i.e., the ability to find nearly
zero pivots) of Algorithm DP, which is critical in stably solving (4) and (2). For a
discussion of rank-revealing LU factorization, see Chan [4]. We can only analyze the
case when the numerical rank of A (i.e., the number of eigenvalues greater than tol) is
n — 1. For complete pivoting, both L and L~! have norms of order unity (see [11, pp.
364-365]). Let A, denote the smallest eigenvalue of A. From A~! = L=!D-1L"! we
have A7t = |[A7Y|2 < IL7H|2- ||1D7Y||2 ~ d;*. Similarly, it can be shown that d;1<A;!
and thus O(d,) ~ O(\,), or, the smallest pivot of D has the same order of magnitude
as the smallest eigenvalue of A. This shows that, when the numerical rank of A isn —1,
~ Algorithm DP reveals the numerical rank of A by the result that the last element of D
is nearly zero. Furthermore, the numerical tests given below confirm this rank-revealing
property even if the numerical rank of A is less than n — 1.

In the following, we first present the numerical results of Algorithm DP on factoring
Hilbert matrix A, (i.e., a;; = 1/(i+j — 1) for 1 < 4, 7 < n,) which is a well-known ill-
conditioned SPD matrix. All of numerical tests were performed on an IBM-compatible
386 PC. Algorithm DP was compiled on a Microsoft Fortran 4.1 compiler with double
precision calculation. The standard software package MATLAB was used for computing
eigenvalues. We tested on two Hilbert matrices of the order n = 15 and n = 20, respec-
tively. When the Cholesky method without pivoting was utilized to factor these Hilbert
matrices, the method failed because a negative pivot was produced at the 14* step for
both matrices. Algorithm DP successfully runs to the completion for these two Hilbert
matrices as well as all the other nearly singular matrices that we have tested. Table 1
given below shows the eigenvalues Als of the Hilbert matrices and the diagonal elements
d;s of D produced by Algorithm DP with the tolerance tolset to 1.0E-13. (The machine
epsilon of 386 PC is approximately 1.0E-15.) We observe that the numerical ranks of A

A METHOD FOR SOLVING LEAST-SQUARES PROBLEMS

7

and D are exactly the same for both matrices. In other words, the numerical rank of A
is revealed in the LDL! factors and thus (4) can be solved stably; see Chan [4] for other
applications of the rank-revealing factorization.

n=15 n =20

1 A; d; 1 Ai d;
1 1.84E+00 1.00E+4-00 1 1.90E+00 1.00E+400
o 4.26E—-01 8.89E—-02 2 4.87E-01 8.89E-02
3 5.72E—-02 1.51E-02 3 7.55E-02 1.51E-02
4 5.63E-03 3.22E—-03 4 8.96E—03 3.22E-03
) 4.36E—04 4.38E—04 5 8.67TE—04 4.86E—04
6 2.71E-05 1.13E-05 6 7.03E-05 1.37E—-04
7 1.36E—06 9.69E-07 7 4.83E-06 2.70E—-06
8 5.52E—-08 2.79E-07 8 2.82E-07 3.02E—-07
9 1.80E—09 1.32E-09 9 1.41E-08 1.45E—-08
10 465E-11 | 7.02E—11 10 6.03E-10 6.06E—10
11 9.32E-13 1.28E—-12 11 2.19E-11 1.22E-11
12 1.39E-14 0.00E+00 12 6.74E—13 4.55E—-13
13 1.44E-16 0.00E+00 13 1.73E—-14 0.00E+00
14 1.02E-17 0.00E+00 14 3.7TE-16 0.00E+00
15 5.61E—18 0.00E+00 15 1.42E-17 0.00E+00
16 1.02E-17 0.00E+00
17 6.83E—18 0.00E+00
18 4.86E—18 0.00E+400
19 4.86E—18 0.00E+00
20 2.36E—18 0.00E+00

Table 1. Hilbert matrices

Next, we present the numerical results of two more examples. Algorithm DP again
reveals the numerical ranks. Chan [4] gives a well-known nearly singular (but not SPD)
matrix with only one nearly zero singular value. Let H denote such a matrix with the
order n = 20 and let T = HH!. Obviously, T is SPD with only one nearly zero eigenvalue.

The resulting T is as follows:
" 20
1
16

17 16
19 16
16 18
2 2
1 1
0 O
-1 -1

[\]

1 0 —ll
0 =1
1 0 -1
1 | . |
3 0 —l
0 g i
-1 -1 1

8 EUGENE K. YANG AND CHIA-HSIANG CHOU

After applying Algorithm DP to factor T', we obtain the following diagonal elements d;
of matrix D:

i d; i d;
1 | .200000000E+02 11 .311683457E+-01
2 | .700000000E+01 12 .310242423E+01
3 | .491428571E+01 13 .306097830E+-01
4 | .486046512E+01 14 .301479326E+-01
5 | .385645933E+01 15 .300366986E+01
6 | .385607940E+01 16 .300004864E+01
7 | .367310167E+01 17 .300000000E+01
8 | .362158374E+01 18 .26666666 7TE+01
9 | .328115325E+401 19 .200000000E+-01
10 | .328115233E+01 20 .109139364E—-10

The last pivot d, is indeed close to A,, which is 8.18E—12. Chan [4] also describes
another matrix with one nearly zero singular value, which is first given by Wilkinson
[11]. Let W denote such a matrix with the order n = 21 and again let S = WW?®. Then,
the resulting S is as follows:

(101 19 1 i
19 83 17 1
1 17 66 15 1
1 15 581 13 1
1 13 38 11 1
1 11 27 9 1

5= 1 9 18 7 1
1 7 11 5 1
1 5 6 3 1
1 3 3 1 1
I 14 & =1 1@
1 -19 101]

After using Algorithm DP to factor S, we obtain the following diagonal elements of D:

A METHOD FOR SOLVING LEAST-SQUARES PROBLEMS 9

') d; 1 d;
1 | .101000000E+03 12 | .236461619E+02
2 | .101000000E+03 13 | .147778892E+02
3 | .794257426E4-02 14 | .147778892E+-02
4 | .794257426E4-02 15 | .798094132E+-01
5 | .624315632E+02 16 | .798094132E+01
6 | .624315632E+02 17 | .333698653E+01
7 | .474844577TE+02 18 | .333698653E+01
8 | .474844577E+02 19 | .140065685E4-01
9 | .345534406E+02 20 | .105277241E+01
10 | .345534406E+-02 21 | .444089210E—-15
11 | .236461619E402

d,, is again close to A,, which is 6.06E—16.

In summary, Algorithm DP (for the SPSD case) provides a better bound on the
element growth and reveals the numerical rank. Although there exist unsymmetric ma-
trices that LU factorization with even complete pivoting fails to reveal numerical ranks,
we have not found any SPSD matrix that Algorithm DP fails to reveal the rank. Since
the rank-revealing LU factorization of Chan [4] costs at least twice as many the flop
count as Algorithm DP does for the SPSD case, Chan’s method should not be used in
this case. Furthermore, there is no efficient extension of Chan’s method to the general
case that the numerical rank is less than n — 1. Finally, we comment on a limitation
of Algorithm DP. If each diagonal blck A; of M is large and sparse, then the diagonal
pivoting is in conflict with the pivoting techniques aimed at reducing fill-ins, such as the
minimum defree ordering (see Gill et al. [5] for the role of such techniques in solving the
normal equations arising from a generally sparse linear program). This conflict between
efficiency (i.e., sparsity retaining) and stability seems unavoidable for generally sparse
matrices.

3. A block method

In this section we will utilize the algorithm in Section 2 to decompose the sparse,
block-structured M which is defined in Section 1:

iy ct -
4% c
M= : :
4, Ct
L C1 C Cp Chp1l

Recall that M is SPSD and nearly singular. Let r; =rank(A;), where from now on

; P
rank(X) denotes the numerical rank of matrix X for convenience. Let n denote > (mi—

=1

10 EUGENE K. YANG AND CHIA-HSIANG CHOU

r;) and k = mp +7n. We will factor A;, for each 7 at a time, by Algorithm DP. If r; < m;,
we obtain a zero matrix of order m; — r;, denoted by A;,, at the end of the factor D for
the block A;. As explained in Section 2, we really have |A4;,| < tol mathematically. In
the following we shall describe an efficient method for factoring M that exploits block
structure of M. Henceforth, this method is called the block method. Let

Applying Algorithm DP to A} with some restrictions implied by the structures of
the following matrices, we have

Dlr {r
MPr AP M = Aw | Cf,
Cir Cio | Cpa1

131 my -
where the 7y X r; matrix D,, =diag(d,,...,d.,), P = [I Ji] mp »and Py is the

my mpg
permutation matrix corresponding to the diagonal plvotmg applied to A;. By the block

structure, M; has the same sparse structure as M}~

Llr
=| Lo 11 B N ()

O i 0 i }mp

L
-1 11
M =

wheire Ly, is an ry x 7, unit lower triangular matrix, Ly, is (m; —r1) xr; and [C},|C1s] =
Ci1P{(Lf;)~". Pepeating the above process to factor A} (similarly defined as Aj}) for
qg=2,---,p, we obtain

MyP,---(MaPy(M PLMP{M{)Ps M3}) - - - P;M;,

r Dy, Cis 1
A, Ci,
L p' = : ’
By Ct,
P o
LCie Lrp e Ui Car Cpga

where Mi_1 = diag({,---,I,Ls,I,---, 1) and P, = diag(I,---,1,131-,1,---,[). Since D'
is SPSD and A;, = O, we have C;, = O too. Let

PIZPP...PI

and

A METHOD FOR SOLVING LEAST-SQUARES PROBLEMS

L’ - P,(MPPP i Mlpl)_l.

11

By following Golub and Van Loan [6, p.66] and by the special block-diagonal structures
of M;, P;, and (7), L' can be shown to have the form:

Ll

IV Llr

-

and the decomposition so far is simplified to

Next, we permute zero blocks A;,, ...

PMP" =L'D'L".

, Aps (together with zero blocks Cj,’s) to the last

position of D'. Let D = PD'Pt denote the resulting permuted matrix. Then, we have
the following identities:

P'MP" = L'PY(PD'P")PL" = L'P'DPL"

F-Dlr

Clr

L

Ci,

[. C',t,r

Cpr Cp-l-l Cld
C{o Alﬂ'
Chpe

s | PE -

Apo |

Next, by using D;, to eliminate C;, and C!, for i = 1.---.p, (8) becomes

where

™

-

P'MP" = L'PY(LDLY)PL",

I

Ci-D

=y

1r

0

Lt T

(9)

12 EUGENE K. YANG AND CHIA-HSIANG CHOU

B D].T‘ T P
> Ti
=1

Dy,
D= 5p+1 Clo' souae Cpo’)
Cla Ala
¢ k=mprp+n
. Cfm Apy

it P
and C,41 = Cpy1 — Y Cir D' Ct,. Now, (9) implies that
=1
P(P'MP")Pt* = PL' P*(LDL)PL"Pt.

~

Let P = PP’ and L = (PL'P*)L. Then the above equation becomes
PMP'=LDL',

where L can be shown to have the form:

i L, il
P
L2'r > Z 75
% =1
Lpr 7
Llo‘
L2a I > k
4 B i
J

Note that A;, and C;, are zeros, L has a similar sparse structure as that of the lower
triangular part of M (after some permutations), and D is diagoal except for the block
C~’p+1. Next, applying Algorithm DP to 5p+1 will complete the LDL* factorization and
we have a method for solving (2).

Since this block method creates no fill-ins (assuming each block is dense), it is the
most efficient sparse method one can design. Also, it can be easily implemented on
multiprocessor parallel machines. Moreover, by using Algorithm DP for each block A;,
the block method is also stable.

A METHOD FOR SOLVING LEAST-SQUARES PROBLEMS 13

4. Conclusion

It is important to find out a stable, efficient method for solving the normal equations
arising from the interior methods. Large, sparse, angular linear programs have so may
different applications that they merit special attentions. By exploiting the angular special
structure, we have found a stable, efficient block method for solving nearly singular
systems (2) arising from degenerate linear programs with large, sparse, and angular-
structured constraint matrices. In the heart of the block method, we adopt the efficient
and stable Algorithm DP which takes only ’g—a flop count for factoring a nearly singular
SPSD matrix. Algorithm DP uses an equivalent complete pivoting strategy and, in
theory, can reveal the numerical rank of each diagonal block for the case when the
numerical rank-deficiency is one. Moreover, it also reveals the numerical rank in all of
our numerical tests even if the rank-deficiency is more than one.

Acknowledgements

The authors are grateful to the anonymous referee for his many helpful suggestions
on improving the presentation of this paper.

References

[1] J. R. Bunch, “Analysis of the diagonal pivoting method”, SIAM J. Numer. Anal. 8 (197 1), 656-680.

[2] J. R. Bunch and L. Kaufman, “Some stable methods for calculating inertia and solving symmetric
linear systems”, Mathematics of Computation 31, No. 137 (1977), 163-179.

[3] J. R. Bunch and B. N. Parlett, “Direct methods for solving symmetric indefinite systems of linear
equations”, SIAM J. Numer. Anal. 8, No. 4 (1971), 639-655.

[4] T. F. Chan, “On the existence and computation of LU-factorizations with small pivots”, Mathe-
matiics of Computation 42 (1984), 535-547.

[5] P. E. Gill, W. Murray, M. A. Saunders, J. A. Tomlin and M. H. Wright, “On projective Newton
barrier methods for linear programming and an equivalence to Karmarkar’s projective method”,
Meathematical Programming, 36 (1986), 183-209.

[6] G. H. Golub and C. F. Van Loan, Matriz Computations, Johns Hopkins University Press, Baltimore,
MD (1983).

[7] J. N. Hooker, “Karmarkar’s linear programming algorithm”, Interfaces 16 (1986), 75-90.

[8] B. N. Parlett, The Symmetric Eigenvalue Problem, Prentice-Hall Press (1980).

[9] J. B. Rosen and Robert S. Maier, “Parallel solution of large-scale, block angular linear program”,
Annals of Operations Research 22 (1990), 23-41.

[10] J. A. Tomlin, “A note on comparing simplex and interior methods for linear programming”, in
Progress in Mathematical Programming (N. Megiddo ed.), Spbing-Verlag, New York (1989), 91-
103.

[11] J. H. Wilkinson, Algebraic Eigenvalue Problem, Clarendon Press, Oxford (1965).

Institute of Applied Mathematics, National Tsing Hua University, Hsinchu, 30043, Taiwan.

