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A MEr.r'H0D FOR SOLVING LEAST-SQUARES 
PROBLEMS ARISING FROM ANGULAR LINEAR PROGRAMS1 

E}JGENE K. YANG AND CHIA-HSIANG CHOU 

Abstract. The most costly part of interior point methods for solving linear pro 
gramming prbblems is in solving least squares subproblems. If the normal equation 
matrix of a le1ast-squares problem is not nearly singular, it is well known that LDU 
decomposition is a stable method. However, for the nearly singular case, it can 
cause numerical difficulties. In this paper, we consider the linear proogram whose 
constraint mltrix B is large, sparse, and with angular structure. We assume that 
the normal equation matrices arising from such a linear program may be nearly 
singular. We present a numerically stable block method utilizing LDU decom 
position wit5 diagonal pivoting for solving such normal equations. Although the 
method of the diagonal pivoting is old, this paper presents new results when the 
method is ap~lied to the positive definite but nearly singular case. 

1. Introduction 

In this paper' re consider the interior (point) methods for solving large angular 
linear programs, i.e., 

max cty 

subject to 

d {
By= b, 

an > 0 y - ' 
where the mB x nB constraint matrix B is of the special from: 

(1) 

B1 
Bi 

I 
B= 

I 
BP 

F1 F2 Fp Fp+l 
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B is said to be a (blpck-)angular matrix. Bi is mi x ni, i = 1, · · ·, p and Fi is mF x ni, 
i = 1, · · · ,p + 1. \Ve shall assume that all blocks Bi and Fi are dense (or small) and 
mi and mF are much smaller than m8 and nB; the effect of this assumption on the 
efficiency of our algo~ithm will be discussed at the end of Section 2. Applications of such 
large scale programs include multi-period manufacturing, allocation problems, two-stage 
stochastic programming, and various problems in planning and control (see Rosen and 
Maier [9] for more references). Tomlin (10] notes that the angular linear program (1) is 
more efficiently solv~d by interior methods than by the simplex method. Hence, we only 
consider interior me~hods for solving ( 1 ). 

It is well knownl that, in most of the interior methods for solving large sparse linear 
program, the time required to perform an interior point iteration is dominated by the 
solution of a sparse linear system, which is embedded in the solution of a least-squares 
problem; see Gill et al. [5]. They observe that the efficiency of the interior methods 
depends critically on fast, stable techniques for solving large-scale least-squares subprob 
lems. In most interil methods the least-squares problem is solved by finding the solution 
of its normal equation. Interior point methods for solving (1) are iterative methods. Let 
y = (Y1, ... , Yn) be the current interior point iterate in solving (1). The normal equation 
of the least-squares froblem in the barrier method of Gill et al. has the following form: 

BY2 Btx = BY2c, (2) 

where Y =diag(y1, ... , Yn) is a diagonal matrix and x is the solution to this normal 
equation; see Gill e~ al. [5] for further detail. All other interior methods have similar 
forms. Let M = BY2 Bt and f = BY2c. Then the normal equation matrix 

A1 Cf 
A2 c~ 

I 
M= 

I 
Ap ct 

p 
C1 C2 Gp Cp+I 

has a bordered angular structure. We assume that M and possibly some Ai are either 
singular or nearly singular (by "nearly singular" we mean that there is at least one nearly 
zero eigenvalue regardless whether there are other exactly zero eigenvalues). It is well 
known that the singJlarity of M and Ai comes from the degeneracy of the linear program 
(1) (see Gill et al. [5j or Hooker [7]) and that almost all large, real-world linear programs 
are degenerate (see I Tomlin [10]). In the interior method, if M is (nearly) singular, 
equation (2) is knoj'n to be consistent and there exist solutions to (2); see Hooker (7]. 
However, it requires a numerically stable method for solving (2). 

Since each diagonal block Ai of M is either symmetric positive definite (SPD) or 
symmetric positive s~mi-definite (SPSD), it is possible to improve the efficiency by using 
LOU factorization (i.e., symmetric Gaussian elimination or symmetric triangular factor 
ization) instead of LfJ factorization for each Ai; see Golub and Van Loan (6, pp. 82-90]. 
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In order to preserv1 the block structure of M, in this paper we propose a block method 
which uses LDU factorization with diagonal pivoting for each block Ai such that the zero 
or "nearly zero" pivbts are produced at the end of the diagonal factor D of each singular 
Ai. Here; "nearly ~ero" means less than IIAill * eps, where eps is the machine epsilon 
(machine precision)l The nearly zero pivots are critical in solving (2) stably; see Chan 
[4] for more detail. re will use capital letters to denote matrices and the corresponding 
small letters for the~r elements. 

The remaining lof this paper is organized as follows. In Section 2, a numerical-rank 
revealing algorithm lctilizing LDU factorization with diagonal pivoting for nearly singular 
Ai is presented. In Section 3, we extend the LDU algorithm in Section 2 to factor the 
block-structured matrix M. We conclude in Section 4. 

2. A diagonal pivoting algorithm 

I · [Q Vt l 1 
Theorem 1; Suppost that an order n matrix A= v B n - 1 is SPSD 

I 1 n-1 
with rank r :S n ar,d a > 0. Let the following factors of A be obtained after one 
step of symmetrid Ga1Lssian transformation: 

I.~J (3) 

Then the submatrix B - v~' is also SPSD and has the same nullity as A does. 

Proof. Let L = [; In~l l, which is nonsingular. By Sylvester's Inertia Theorem 

[8, p.10] on the congruence transformation, 
I 

L-1AL-t = [a O t l 
0 B-~ 

0 

has the same inertia as A has and thus is also SPSD. Since a > 0. the results follow. 

In the followini we present an algorithm for solving a consist~nt system 

Az = g, (4) 

where A is n x n, 1PSD, and (nearly) singular. 

Algorithm DP (Diagonal Pivoting} for factoring a dense matrix A. Set the 
tolerance tol for stppping criterion. (Usually we set tol ~ IIAII * eps.) Suppose that 
A E Rnxn is SPSD, and for some k < n, we have determined the Gaussian transforma 
tions Af1, ... , Mk-l E Rnxn (the repetitions of the decomposition (3)) and permutation 
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matrices P1, ... , Pk-i E Rnxn such that 

(5) 

(A(o) is defined to be) A), where Ai~-l) is a (k - 1) x {k - 1) diagonal matrix and 

[

a(k-1) 

A~~-1) = kk: 

a(k-1) 
kn 

(k-1}] akn 

. . 
(k-1} 

ann 

Herein, IFI < tol is used to denote fij < tol for every i, j. Next, A(k} is determined as 
follows: 
(i) Determine µCk-I) = ap(kP-I) = max a~k-l), the maximum of the diagonal elements 

k~i~n ii 

of A~~-l), which are all nonnegative since A~;-1> is SPSD; see the proof of Theorem 
2. If µCk-I) < tol, (which implies IA~;-1)1 < tol by Theorem 2,) then set A~;-l) = 0, 
assign D = A(k-I), and stop (with the numerical rank of A equal to k - l; see the 
definition described before Theorem 2). 

{ii) Permute the kthl and pth rows and the kth and pth columns of A~;-1> to obtain the 
permuted matri:Jt PkA(k-I) Pf 

(iii) Use the new maximal a1:-l) as the pivot to obtain A(k} = Mk(PkA(k-l) Pi) Mk by 
one step of symtetric Gaussian transformation (a repetition of the decomposition 
(3)). Increase k y 1 and return to (i). 
It can be show~! that after repeating the above step k decomposition for at most 

n - 1 times, the LD~f decomposition for PAPt will be completed, where Lis n x n and 
unit lower-triangular1 Pis a permutation matrix, and diagonal matrix D will be shown 
to reveal the rank of 14 later. Once this decomposition is produced by Algorithm DP, we 
have done the dominant work for solving ( 4); the remaining forward and backward solves 
take only additional ~(n2

) flops. Hence, in the rest of this paper we will only discuss 
the dominant phase 9f decomposing A (after permutation) into triangular and diagonal 
factors. 

Bunch and Kaufman [2] present several algorithms for solving symmetric indefinite 
systems. One of thJir algorithms, Algorithm C, when applied to an SPD matrix, is 
exactly the same as ~lgorithm DP presented above. (For the convenience of making 
a comparison, we us

1

e the name Algorithm DP whenever we refer to the context of 
this paper, i.e., for solving SPSD case.) However, we note that Algorithm DP and the 
algorithms of Bunch and Kaufman [2] have different purposes. Their algorithms and 
those proposed in ot~er related papers ( e.g., Bunch and Parlett [3]) are designed for 
solving a linear syster with an indefinite but nonsingular (by this we mean not nearly 
singular) matrix. Bu111ch and Kaufman [2] do not discuss the concept of the numerical 
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rank of a matrix, wliich is defined to be its number of singular values ( or eigenvalues 
for the SPSD case) tJhat have absolute values larger than the tolerance tol. In other 
words, the numerical 1rank is the number of singular values that are not nearly zero. On 
the other hand, Algorithm DP is designed _for solving a system with SPSD and nearly 
singular matrix. The next theorem shows in the SPSD case that the diagonal pivoting 
is equivalent to the complete pivoting. 

I Theorem 2. Let A be n x n and SPSD. Then the diagonal pivoting strategy 
I 

used in Algorithm DP is equivalent to the complete pivoting. 

Proof. Let k b~ the step count of Algorithm DP (k is from 1 ton) and let a~;-1> 
denote k~:tn a~;-1> .

1 
Since A is SPSD, aiiaii - a;i ~ 0, for every 1 ~ i, j ~ n. Then, it 

is easy to see that following formula is true for k = 1. 

[a(kJ)] 2 = [ max a(k-1)] 2 > a~~-1) a<_~-1) > (a~~-1)] 2 
pp k< <n qq - n JJ - tJ _q_ 

· for every i and j such that k ~ i, j ~ n, 

or, . a~;-1>
1 

~ lai;-1>1 for every i and j such that k ~ i, j ~ n. (6) 

By repeatedly applying Theorem 1, A~;-1> at the step k ~ 1 (see formula (5)) is also 
SPSD. Thus inequality (6) is also true for every k such that 1 ~ k ~ n and the conclusion 
follows. 

The Bunch-KaJman algorithm requires n3 /6 flops, O(n2) comparisons for partial 
pivoting, and n2 /2 storage (compared with that the Gaussian elimination requires n3 /3 
flops, O(n2) comparisons for pivoting, and n2 storage.)Since Algorithm DP is the Bunch 
Kaufman algorithm used to suit nearly singular case, it is easy to show (see also Golub 
and Van Loan (6, ppl 84-85]) that it also requires only n3 /6 flops, n2 /2 comparisons for 
diagonal pivoting, add n2 /2 storage for solving (4). Since the Bunch-Kaufman alforithm 
is designed for inde1i.nite matrices, the bound on element growth can only be shown 
to be (2.57)n-l, a result similar to LU with partial pivoting; see Bunch and Kaufman 
(2}. (A completepivfting variant by Bunch (1] is more stable but unfortunately at a 
cost of O(n3) comparisons.) For the SPSD case, the diagonal pivoting takes only O(n2) 
comparisons but is efuivalent to the complete pivoting; thus, we can apply the bound on 
element growth established by Wilkinson [11, pp. 213-214] to Algorithm DP. The bound 
is n112 f(n), where 

( 

n ) 1/2 
J(n) = g kl/(k-1) < l.8n(l/4) log(n). 

In fact, the elementl growth factor can be shown in following to be one (i.e., there is 
no growth) for the SPSD case. The next theorem establishes that the elements of D 
produced by Algorit~m DP are in decreasing order. 
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Theorem 3. llf A E Rnxn is SPSD with rank (A) = r :Sn, then Algorithm 
DP will produce q diagonal matrix D = di~g(d1, ... , ~n) whose elements. are in 
decreasing order. Moreover, if A is exactly singular with r < n, the zero diagonal 
elements are force~ to the end of D (i.e., dr+l = dr+2 = ... = dn = 0). 

Proof. The ~art that dr+l = dr+2 = ... = dn = 0 is easy to show. Since, by 
Theorem 2, Algoritlim DP uses a complete pivoting strategy for Gaussian elimination, 
it is well known that A~;> = 0 and a~:-1> f= 0 for k :S r. 

For k :S r and it the substep (iii) of Algorithm DP, A~;-1> is SPD (with rank > 0) 
• I • (k-1) (k} (k-1) [ (k-1)]2/ (k-1) < and thus the maximal pivot akk > 0. Hence, 0 :S aii = aii - aki akk _ 

ai;-1) :S a~:-1>, fdr k = 1, ... , r and k + 1 :S i :S n, where the last inequality is 
implied by the diagbnal pivoting at the step (i) of Algorthm DP. By dk = a~:-I) and 
b l . h b . l" . l (' (O) > (l) (I) > (2) t ) h y app ymg t e a qve mequa 1ty recursive y 1.e., a11 _ a22 , a22 _ a33 , e c. , we ave 
di :2'.: d2 :2'.: ... :2'.: dr > dr+l = dr+2 = ... = dn = 0. 

By Theorem 3~[ d1 (which is ai~) after pivoting} is the maximal element of both D 
and A. Then by Iii :S 1, the growth factor is one. In the remaining of this section, 
we comment on th1 numerical-rank revealing feature (i.e., the ability to find nearly 
zero pivots) of Algorithm DP, which is critical in stably solving ( 4) and (2). For a 
discussion of rank-rfvealing LU factorization, see Chan [4]. We can only analyze the 
case when the num~rical rank of A (i.e., the number of eigenvalues greater than tol) is 
n - 1. For complete pivoting, both L and L-1 have norms of order unity (see (11, pp. 

I 
364-365]). Let An denote the smallest eigenvalue of A. From A-1 = L-t D-1 L-1, we 
have ).~1 = IIA-1112 :S IIL-111~ · IID-1112 ~ d~1• Similarly, it can be shown that d~15-X~1 

and thus O(dn) ~ Q(-Xn), or, the smallest pivot of D has the same order of magnitude 
. as the smallest eigerlvalue of A. This shows that, when the numerical rank of .4. is n - 1, 
Algorithm DP reveils the numerical rank of A by the result that the last element of D 
is nearly zero. Furt~ermore, the numerical tests given below confirm this rank-revealing 
property even if the numerical rank of A is less than n - l. 

In the followin , we first present the numerical results of Algorithm DP on factoring 
Hilbert matrix A, (fe., aij = 1/(i + j - 1) for 1 :S i, j :S n,) which is a well-known ill 
conditioned SPD matrix. All of numerical tests were performed on an IBM-~ompatible 
386 PC. Algorithm DP was compiled on a Microsoft Fortran 4.1 compiler with double 
precision calculatiod. The standard software package MATLAB was used for computing 
e~genvalues. We tes~ed on two Hilbert matrices of the order n = 15 and n = 20, respec 
tively. When the Cliolesky method without pivoting was utilized to factor these Hilbert 
matrices, the method failed because a negative pivot was produced at the 14th step for 
both matrices. Algdrithm DP successfully runs to the completion for these two Hilbert 
matrices as well as all the other nearly singular matrices that we have tested. Table 1 
given below shows the eigenvalues ).~s of the Hilbert matrices and the diagonal elements 
d~s of D produced by Algorithm DP with the tolerance tol set to 1.0E-13. (The machine 
epsilon of 386 PC is approximately 1.0E-15.) We observe that the numerical ranks of A 
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and D are exactly ,he same for both matrices. In other words, the numerical rank of A 
is revealed in the LOU factors and thus (4) can be solved stably; see Chan (4] for other 
applications of the ~ank-revealing factorization. 

n = 15 n = 20 
1, Ai di 1, Ai di 

1 1.184E+oo l.OOE+OO 1 l.90E+oo l.OOE+OO 
2 4.26E-Ol 8.89E-02 2 4.87E-Ol 8.89E-02 
3 5.72E-02 l.51E-02 3 7.55E-02 l.51E-02 
4 5.163E-03 3.22E-03 4 8.96E-03 3.22E-03 
5 4136E-04 4.38E-04 5 8.67E-04 4.86E-04 

6 2.71E-05 l.13E-05 6 7.03E-05 l.37E-04 
7 l.36E-06 9.69E-07 7 4.83E-06 2.70E-06 
8 5 52E-08 2.79E-07 8 2.82E-07 3.02E-07 
9 1 80E-09 l.32E-09 9 l.41E-08 l.45E-08 

10 4.65E-11 7.02E-11 10 6.03E-10 6.06E-10 

11 9[32E-13 l.28E-12 11 2.19E-11 l.22E-11 
12 l.39E-14 O.OOE+OO 12 6.74E-13 4.55E-13 
13 1l44E-16 O.OOE+OO 13 l.73E-14 O.OOE+OO 
14 1 02E-l 7 O.OOE+OO 14 3.77E-16 O.OOE+oo 
15 5.61E-18 O.OOE+oo 15 l.42E-17 O.OOE+oo 

16 l.02E-17 O.OOE+oo 
17 6.83E-18 0.00E+OO 
18 4.86E-18 0.00E+OO 
19 4.86E-18 O.OOE+OO 
20 2.36E-18 O.OOE+oo 

Table 1. Hilbert matrices 

Next, we present the numeri~al results of two more examples. Algorithm DP again 
reveals the numerifal ranks. Chan (4] gives a well-known nearly singular (but not SPD) 
matrix with only @ne nearly zero singular value. Let H denote such a matrix with the 
order n = 20 and 11t T = H Ht. Obviously, Tis SPD with only one nearly zero eigenvalue. 
The resulting T is as follows: 

20 17 16 2 1 0 -1 
17 19 16 2 1 0 -1 
16 16 18 2 1 0 -1 

T=I 2 2 2 4 1 0 -1 
1 1 1 1 3 0 -1 
0 0 0 0 0 2 -1 
-1 -1 -1 -1 -1 -1 1 
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After applying Algorithm DP to factor T, we obtain the following diagonal elements di 
I 

of matrix D: 

1, di 1, di 
1 .20000~000E+02 11 .311683457E+Ol 
2 . 70000 OOOE+Ol 12 .310242423E+01 
3 .49142~571E+01 13 .306097830E+01 
4 .48604~512E+Ol 14 .301479326E+01 
5 .38564 933E+01 15 .300366986E+Ol 
6 .38560f 940E+01 16 .300004864E+Ol 
7 .36731p167E+Ol 17 .300000000E+Ol 
8 .36215~374E+Ol 18 .266666667E+Ol 
9 .32811~325E+Ol 19 .200000000E+Ol 

10 .32811 233E+01 20 .109139364E-10 

The last pivot dn is indeed close to An, which is 8.18E-12. Chan [4] also describes 
another matrix with one nearly zero singular value, which is first given by Wilkinson 
[11]. Let W denote subh a matrix with the order n = 21 and again let S = wwt. Then, 
the resulting S is as f<!>llows: 

101 19 1 
19 83 17 1 
1 17 66 15 1 

1 15 51 13 1 
1 13 38 11 1 

1 11 27 9 1 
S=I I 1 9 18 7 1 

1 7 11 5 1 
1 5 6 3 1 

1 3 3 1 1 
1 1 2 -1 1 

1 -19 101 

After using Algorithm DP to factor S, we obtain the following diagonal elements of D: 
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1, di 1, di 
1 .101 OOOOOOE+03 12 .236461619E+02 
2 .101 OOOOOOE+03 13 .14 7778892E+02 
3 . 79425 7 426E+02 14 .14 7778892E+02 
4 . 79425 7 426E+02 15 .798094132E+Ol 
5 .624315632E+02 16 . 798094132E+Ol 
6 .624315632E+02 17 .333698653E+Ol 
7 .4 7 48445 77E+02 18 .333698653E+Ol 
8 .4 7 48445 77E+02 19 . l 40065685E+01 
9 .345534406E+02 20 .105277241E+Ol 

10 .345534406E+02 21 .444089210E-15 
11 I .236461619E+02 

I 
dn is again close to An, which is 6.06E-16. 

In summary, Algorithm DP (for the SPSD case) provides a better bound on the 
element growth and I reveals the numerical rank. Although there exist unsymmetric ma 
trices that LU factorization with even complete pivoting fails to reveal numerical ranks, 
we have not found dny SPSD matrix that Algorithm DP fails to reveal the rank. Since 
the rank-revealing ILU factorization of Chan (4) costs at least twice as many the flop 
count as Algorithm 1DP does for the SPSD case, Chan's method should not be used in 
this case. Furthermfre, there is no efficient extension of Chan's method to the general 
case that the numerical rank is less than n - 1. Finally, we comment on a limitation 
of Algorithm DP. I£ each diagonal blck Ai of M is large and sparse, then the diagonal 
pivoting is in confl.i~t with the pivoting techniques aimed at reducing fill-ins, such as the 
minimum defree ordering (see Gill et al. (5] for the role of such techniques in solving the 
normal equations a~ising from a generally sparse linear program). This conflict between 
efficiency (i.e., sparsity retaining) and stability seems unavoidable for generally sparse 
matrices. 

3. A block method 

In this section we will utilize the algorithm in Section 2 to decompose the sparse, 
block-structured M which is defined in Section 1: 

A1 Cf 
A2 c~ 

I 
M= 

I 
Ap ct 

p 

C1 C2 Gp Cp+i 

Recall that M is SPSD and nearly singular. Let Ti =rank(Ai), where from now on 
p 

rank(X) denotes the numerical rank of matrix X for convenience. Let 1J denote I:(mi- 
1 i=l 
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Ti) and k = mF + ·11. [We will factor Ai, for each i at a time, by Algorithm DP. If Ti < mi, 
we obtain a zero matrix of order m,i - Ti, denoted by Aia, at the end of the factor D for 
the block Ai. As explained in Sect.ion 2, we really have IAia I < tol mathematically. In 
the following we shaJ~l describe an efficient method for factoring M that exploits block 
structure of M. Henceforth, this met.hod is called the block method. Let 

Applying Algor,thm DP to Aj with some restrictions implied by the structures of 
the following matricrs· we have 

[ 

Dir Cf r ] 
.¥;PtAiPi*

1

A1( = A1cr Cfcr 

I Cir C1a - Cp+l 

[ A I] m1 
where the T1 x T1 maltrix Dir =diag(d1, ... , dr1 ), Pt = ~ mF , and Pi is the 

m1 111F 
permutation matrix corresponding to the diagonal pivoting applied to A1. By the block 

-1 
structure, 1'1i has the same sparse structure as Mi : 

(7) 

where L1r is an T1 x r1 unit lower triangular matrix, L1rr is (m1 -r1) x T1 and [C1rlC1a] = 
C1.Pf(Lf1)-1. Pepe1;1.ting the above process to factor A; (similarly defined as Ai) for 
q = 2, · · · , p, we obtalin 

JvfpPp · · · (M2P2(M1P1 M Pf 1'1f )PJMJ) · · · P;il\1; 

I 
I Dir err 

Aia Cf a 

LD'- I - I Dpt ct pr 
Apa C!a 

Cir C1a Cpr Cpa Cp+1 

~here Mi-I= dia!({,···,/,Lii,/,··~,J) ~nd P1 = diag(/,···,I,A,I,···,/). Since D' 
IS SPSD and Airr - @, we have ci<T - 0 too. Let 

and 
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L' = P'(MpPp · · · M1P1 )-
1
. 

11 

By following Golub and Van Loan [6, p.66) and by the special block-diagonal structures 
of Mi, Pi, and (7), 11' can be shown to have the form: 

L'= 

I 

and the decompositibn so far is simplified to 

P' M P11 = L' D' L't. 

Next, we permute zero blocks A1u, ... , Apu (together with zero blocks Ciu 's) to the last 
position of D'. Let 1.5 = PD' pt denote the resulting permuted matrix. Then, we have 
the following identit~es: 

Cfr 

Dpr c;r 
Cpr Cp+1 Ciu 

CL,. Aiu 

Cpu 

PL't. (8) 

Next, by using Dir to eliminate Cir and Cfr for i = 1. · · ·. p, (8) becomes 

(9) 

where 

I 

I 

L= I 

I 
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1 ·· Dpr 

I Cp+l C1u ... Cpu D=I I 
C1u A1u 

- k = mF + T/ 
I I 

c:u Apu 

- p 
and Cp+l = Cp+l - L CirD;;.1cfr• Now, (9) implies that 

·=1 
P(P'MP't)f>t = pi)rf,t(Ln'f})PL'tf>t. 

Let P = PP' and L = (PL' f>t )'L. Then the above equation becomes 

l PM Pt= LDLt, 

where L can be sho n to have the form: 

L1f 
L2r 

Lpr 
L=I C D_J172 C D-1/2 C D~112 lr Ir 2r 2r pr pr 

Liu 
L2u I 

Lpu 

k 

Note that Aiu and <:Diu are zeros, L has a similar sparse structure as that of the lower 
~iangular part of :1'i (after some permu~tions), and D is diagoal except for the block 
Cp+l· Next, applyinf Algorithm DP to Cp+t will complete the LDLt factorization and 
we have a method fqr solving (2). 

Since this block method creates no fill-ins (assuming each block is dense), it is the 
most efficient sparse method one can design. Also, it can be easily implemented on 
multiprocessor paralJel machines. Moreover, by using Algorithm DP for each block Ai, 
the block method is rlso stable. 
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4. Conclusion I 

It is important to find out a stable, efficient method for solving the normal equations 
arising from the in~erior methods. Large, sparse, angular linear programs have so may 
different applications that they merit special attentions. By exploiting the angular special 
structure, we have found a stable, efficient block method for solving nearly singular 
systems (2) arising from degenerate linear programs with large, sparse, and angular 
structured constraif t matrices. In the heart ~f the block method, we adopt the efficient 
and stable Algorithm DP which takes only ~ flop count for factoring a nearly singular 
SPSD matrix. Algorithm DP uses an equivalent complete P,ivoting strategy and, in 
theory, can reveal f he numerical rank of each diagonal block for the case when the 
numerical rank-defifiency is one. Moreover, it also reveals the numerical rank in all of 
our numerical tests even if the rank-deficiency is more than one. 
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