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A TOPOLOGICAL CLASSIFICATION OF DIFFERENTIAL 
EQUATIONS WITH IMPULSE EFFECT 

D. D. BAINOV1, S. I. K0STADINOV1, NGUYEN VAN MINH2 AND P. P. ZABREIK02 

Abstract. The present paper is concerned with the problem of topological clas 
sification of differential equations with impulse effect. Under the assumption that 
the linear part of the right-hand side of the equation considered has an exponen 
tial dichotomy and the nonlinear perturbation is small enough it i~ proved that for 
the underlying equations there exist N + 1 types topologicall'y,, different from one 
another. 

1. Introduction 

Differential equations with impulse effect have been qualitatively investisgated by 
many authors, see [1], [6], [7] and the references there. A special attention is focussed on 
the existence of integral manifolds, the dichotomy of solutions (see [1], [7], (10]). 

The present paper is concerned with the problem of topological classification of im 
pulsive differential equations. To do this we shall make use of the method developed in 
[2) for nonautonomous differential equations. It should be noted that the main difficulty 
we are faced with is due to the discontinuity of the trajectories of impulsive differential 
equations. To overcome this we shall modify the techniques of constructing a home 
omorphism using the Morse lemma (see Lemma 4 and Theorem 1 below). As in [2], 
introducing the notion of topological equivalence between "proper" integral manifolds 
we shall prove that the equations 

!: = A(t)x + f(t, x) if t ;/= tn 

x(t!) = Qnx(tn) + h(x(tn)) 
(1) 

(2) 
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are topologically equivalent to the standard equations 

under the assumption that the linear part has an exponential dichotomy and the nonlinear 
perturbation is small enough .. 

2. Statement of the problem 

Suppose T = {tn : n E Z} is a sequence of moments in R satisfying the following 
conditions: 

i) tn < tn+l for every n E Z, lim tn = ±oo 
n-+±oo 

1. i(t, t + h) 
1m = p < CX) 

h-+oo h 

(3) 

(4) ii) 

uniformly in t E R, where i( a, b) denotes the number of moments contained in the interval 
(a, b). 

Consider the impulsive equation 

!: = A(t)x + J(t,x) if t ¥= tn 

x(t!) = Qnx(tn) + hn(x(tn)) 
(5) 

(6) 

where t E R, x E RN, A(·) is a matrix-valued function, Qn is a matrix, under the 
assumption that 

i) A(·) and f ( · , ·) are extendable to continuous ones on evrey set of the form [tn, tn+d 
and [tn, tn+1] x RN respectively. 

ii) Qn is invertible for every n E Z. 
iii) sup IIA(t)II < oo, sup IIQnll < oo, sup IIJ(t, 0)11 < oo, sup llhn(O)II < oo. 

t n t n 
iv) IIJ(t,x) - f(t,y)II ~ 8llx - YI!, llhn(x) - hn(Y)II ~ 6llx -yll. 

for all x, y E RN, t E R, n E Z. 

Definition 1. A solution of the impulsive equation (5), (6) we shall call a function 
satisfying equation (5) fort¥= tn and equation (6) for t = tn and being continuous from 
the left. 

Remark. Under the above assumption the impulsive equation {5),(6) satisfies 
all conditions of the Existance and Uniqueness Theorem. So we denote by U(t, s) the 
Cauchy matrix of the homogeneous equation corresponding to (5), (6) and by X(t, s, x) 
the solution of (5), (6) satisfying X(s,s,x) = x for every t ER and x E RN. 



TOPOLOGICAL CLASSIFICATION OF DIFFERENTIAL EQUATIONS 17 

3. Preparatory lemmas 

Before stating the preparatory lemmas we shall use to prove the main result, we 
shall need the following notions. 

Definition2. An intergral manifold of the impulsive equation (5), (6) is said to be 
proper if RN splits up into a direct sum of Rk and Rm so that this intergral manifold 
is represented by the equation 

(7) 

where c.p is extendable to a continuous mapping on every set of the from [tn, tn+1] x R k, 
furthermore llc.p(t, x) - c.p(t, y)II ~ 11llx - YII for all x, y E Rk, 17 is independent of t. 
c.p(t, 0) = 0 for every t E R. 

Definition 3. Let M, N be proper integral manifolds of two given impulsive equa 
tions. M is said to be topologically equivalence to N if there exists a homeomorphism 
H : M --+ N with the properties: 

i) H(t, x) = (B(t), ht(x)), where ht : M(t) --+ N(B(t)) is a homeomorphism, M = 
{(t,M(t)),t ER}, N = {(t,N(t))}, (): R--+ R is an orientation-preserving homeomor 
phism, fJ(tn) = Tn for every n E Z, {tn : n E Z}, {Tn : n E Z} are moments of impulse 
effect of the given equations. 

ii) If x(t) is any solution contained in M, then ht(x(t)) = y(B(t)) where y(T) is a 
solution contained in N. h--;1 has the same property. 

iii) There exists an increasing function L : [O, oo) --+ [O, oo ), L(O) = 0, continuous at 
0 and such that 

llht(X )II ~ L(llxll) 
llh--;1 (y) II ~ L( IIYII) 

for every ( t, x) E M 
for every (t,y) EN. 

Remark 1. i) The above defined topological equivalence is an equivalence relation. 
ii) If {tn : n E Z}, {Tn : n E Z} satisfy condition (3), (4) then the topological 

equivalence preserves the boundedness of solutions and the stability of the trivial solution. 
iii) From the condition iii) imposed on ht, h-;1 we deduce that 

lim llht(x)II = lim llh--;1(y)II = 00 
llxll-+oo IIYll--+oo 

(8) 

uniformly. 
From now on we shall deal only with impulsive equations with moments of impulse 

effect satisfying ( 3), ( 4), and integral manifolds satisfying the conditions in Definition 2 
except for the condition c.p( t, O) = 0 for all t E R. 

Definition 4. Let M, N be integral manifolds of two given impulsive equations. 
M is said to be topologically weakly equivalent to N if there exists a homeomorphism 
H : M --+ N satisfying conditions i), ii) in Definition 3 and equality (8). 



18 D. D. BAlf'.'lOV, S. I. KOSTADINOV, NGUYEN VAN MINH, P. P. ZABREIKO 

So if M, N are proper and topologically equivalent, then they are topologically 
weakly equivalent to each other. It may be noted that weak topological equivalence is 
an equivalence relation. This preserves the boundedness of solutions. 

Definition 5. The homogeneous equation corresponding to (1), (2) is said to 
have an exponential dichotomy if there exist positive constants M, a and a projector 
P: RN-+ RN such that 

IIX(t)PX-1(s)II $ M exp(-a(t - s)) fort~ s 
IIX(t)(I - P)x-1(s)II $ M exp(-a(s - t)) fort~ s 

where X(t) is a fundamential matrix of the homogeneous equation. 
Now consider two linear systems 

x = A(t)x if t ;/= tn (9) 
x(t!) = Qnx(tn) (10) 

and 

x = B(t)x if t ;/= tn (11) 
x(t!) = Rnx(tn) (12) 

Definition 6. Equation {11), (12) is said to be kinematically similar to equation 
(9), (10) if there exists a matrix-valued function S(·) having the following properties: 

i) S(-) is continuous for t # tn and bounded on R. 
ii) S(t) has discontinuities of the first kind at t = tn and is continuous from the left. 
iii) S ( t) is invertible for every t E R and s-1 (-) enjoys the properties i), ii). 
iv) If x(t) is any solution of (11), (12), then S(t)x(t) is a solution of (9), (10). 

Lemma 1. Assume that equation (9), (10) has an exponential dichotomy. 
Then it is kinematically similar to a reducible equation (11), (12), i.e B(t), Rn 
commute with the projector P, in. addition, IIB(t)II $ IIA(t)II, IIRnll < IIQnll for all 
t ER, n E Z. 

This lemma is proved by modifying the proof of the well-know result on reducibility 
( see [4], [5), [9], [10]). 

Lemma 2. Suppose that the homogeneous equation corresponding to (5), 
(6) has an exponential dichotomy with projector P and positive constants M, a, 
and enjoys the property f(t, 0) = 0, hn(O) = 0. Then for sufficiently small 6 there 
exist proper integral man if olds 

M- = {(s,x) ER x RN: IIX(t,s,x)II-+ 0 
M+ = {(s,x) ER x RN: IIX(t,s,x)II-+ 0 

as t-+ oo} 
as t-+ -oo}. 
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Furthermore, if f ( t, ·), h{ ·) are of class Ck, where k E N so are these intergral 
manifolds. 

For the proof see [6]. It may be noted that if J(t, ·),''hn(·) are of class Ck, we can 
show that these integral manifolds are of dass Ck, too. 

Lemma 3. Suppose all conditions in Lemma 2 are satisfied except for 
J(t, 0) = 0, hn(O) = 0. Then equation (1), (2) has at least one bounded solution. 

For the it proof see [6], too. 

4. Main results 

Lemma 4. Let the homogeneous equation corresponding to (5), {6) have 
an exponential dichotomy with projector P = 0 and positive constants M, o:, 
in addition, J(t,0) = 0, hn(O) = 0, f(t,·), hn(·) E C3• Then for 8 small enough 
equation (5), (6) is topologically equivalent to the standard equation 

x =x, 

Proof. The main difficulty in proving this lemma is due to the discontinuity of the 
trajectories of solutions of equation (5), (6). But the main idea of the proof is suggested 
by [3]. First we consider the function 

{13) 

This function is well-defined. In fact, we have the variation of parameters formula 

X(t,s,x) = U(t,s)x + 1t U(t,,)f(,,X(,,s,x))d, + L U(t,ti)Qi(X(ti,s,x)). (14) 
s s<t;~t 

Setting 'lj)(t) = IIX(t, s, xJII we have for t ~ s 

ll'l/J(t)II ~Mllxll exp(-o:(s - t)) + ls M exp(-o:(, - t))811¢{,)lld, 

+ L M exp(-o:(ti - t))811¢(ti)II 
t<ti~S 

Thus 
e-atll'¢(t)II ~Mllxll exp(-o:s) + ls 8M exp(-o:,)ll'l/J(,)lld, 

+ L 8M exp(-o:ti)ll'l/J(ti)II. 
t<ti~S 
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Putting u(t) = e-atll1/J(t)11 and applying Gronwall's inequality (see [6], [7]), we get 

u(t) ~ nt<t;<s{l + M6)Mllxll exp(-as) exp(M8(s - t)) 

So we have 
117/J(t)II ~ (1 + M 8)i(t,s) Mllxll exp(-(a ~ M 8)(s - t)) (15) 

From this it follows that for 8 small enough the integral (13) is absolutely convergent, 
uniformly with respect to x contained in an arbitrary bounded set of RN. 

From now on we assume that 8 is chosen so small that 

(1 + M6)i(t,s) Mllxll exp(-(a - M8)(s - t)) ~ Mllxll exp(-a(s - t)), (16) 

where a is a fixed positive constant. 
Note that V(·, x) is continuous at t f tn and has a discontinuity of the first kind at 

t = tn . To prove Lemma 4 we need the following 

Lemma 5. For 8, E small enough, s fixed, the set {x E RN: V(s,x) = c} 
is homeomorphic to {x E RN : llxll = 1}, in addition, if we denote by 9s that 
homeomorphism, then 9s(x), g_;1(x) depend on {s, x) continuously for sf tn and 
have a discontinuity of the first kind at s = tn. 

Proof. We shall make use of the Morse lemma. By calculating D~V(s, x)lx=O we 
have 

Dx V(s, x)lx=o(~) = [
8

00 

2(DxX(u, s, O)~, X(u, s, O)}du = 0 

D;V(s, x)lx=o(~, 17) =2 [
5

00 

(D;X(u, s, O)({, 17), X(u, s, O))du 

+ 2 [
8

00 

(DxX(u, s, O)~, DxX(u, s, 0)11)du 

=21-
8

00 

(DxX(u, s, O)<;, DxX(u, s, 0)17)du 

We are going to show that 

(17) 

for some positive C. In fact, from (14) we deduce that 

DxX(u,s,0) =U(u,s) + ls U(u,T)D2f(T,X(T,s,O))DxX(T,s,O)dT 

+ L U(u, ti)DQi(X(ti, s, O))DxX(u, s, 0). 
u<t,'.S;s 
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Without difficulty we may show that 

llDxX(u, s, 0)11 $ M exp(-a(s - u)) for u ~ s (18) 

Hence 1-5
00 

IIDxX(u, s, O){ll2du 

= [
5

00 

IIU(u,s){ll2du+ [
5

00

11([
5 

U(u,r)D2f(r,O}DxX(r,s,O)dr 

+ L U(u, ti)DQi(O)DxX(u, s, O})({)ll2du 

+2 [
5

00 

(U(u,s){,(is U(u,r)D2f(r,O)DxX(r,s,O)"dr 

+ L U(u, ti)DQi(O)DxX(u, s, O))({))du 
u.<t; :5s 

Taking into account (18}, we can show without difficulty that 

where M is a positive constant independent of{. 
Since the linear part of ( 1) has an exponential dichotomy with projector P = 0, then 

(see[4]) there exists a constant C1 > 0 such that 

Finally, if 6 is a chosen small enough, we get 

where c is a positive constant. 
Now, making use of the Morse lemma, we see that for€ small enough the set {x E 

RN : V ( s, x) = c:} is homeomorphic to the unit sphere ( see [8] for the details). In 
addition, from the proof of the Morse lemma we deduce that gs( x) depends on ( s, x) 
continuously for s # tn and has a discontinuity at s = tn . This completes the proof of 
Lemma 5. 

Now we continue with the proof of Lemma 4. Under the smallness assumption of 6 
we have (16) and then for t > r 

llxll = IIX(r, t, X(t, r, x))II ~ MIIX(t, r, x)II exp(-a(t - r)) 
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Thus 
M-1llxll exp(o:(t - ,)) :s; IIX(t,,,x)II fort> T (19) 

Let x(t) denote X(t,0,x). It is easily shown that V(t,x(t)) is continuous on the whole 
axis. Furthermore, at t # tn 

d d jt . 
dt V(t, x(t)) = dt -oo IIX(,, 0, x)ll2dx 

=IIX(t, 0, x)ll2 = llx(t)ll2 

At t =p tn we have 

D_ V(tn, x(tn)) = lim _kl [V(tn, x(tn)) - V(tn - k, x(tn - k))] 
k-+O 

=IIX(tn, 0, x)ll2 = llx(tn)ll2 

From (16) it follows that 

jt . M2 
V(t, x) :s; _

00 

M2llxll2 exp(-20:(t - ,))d, :s; 
20 

llxll2 

Set K = sup IIA(t)II + 8. For ,, t E (tn, tn+i) we have no difficulty in proving that 
t 

d 
dt lnllX(t, ,, x)II :s; K 

Thus 
IIX(t, T, x)II :s; llxll exp(K(t - ,)) 

Now for tk < T :s; tk+I < ... < tn < t :s; tn+I we have 
fort> T 

IIX(t, ,, x)II :s; Li(r,t)llxll exp(K(t - ,)) 

where L = sup IIQnll + 8. So we can find a positive number K1 such that n 

IIX(t, ,,x)II :s; llxll exp(K1(t - ,)) fort> T 

For the case when t < T we have 

IIX(,,t,X(t,,,x))II :s; IIX(t,,,x)llexp(K1(, -t)) 

Hence for t < T 
llxll exp(K1(t - ,)) :s; IIX(t, T, x)II 

(20) 

(21) 

(22) 

(23) 
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Taking into account (23), we have 

V(t, x) = l= IIX(s, t, x)ll2ds 2: l= llxll2 exp(2K1 (s - t))ds 

~ 
2
~

1 
llxll2 (24) 

Consider the function f(t, s, x) = V(t, X(t, s, x)). For t f tn 
aJ d 2 at (t, S, x) = dt V(t, X(t, s, x)) = IIX(t, s, x)II 

Combining (21) and '24}, we have 

M2 1 
2
a IIX(t,s,x)IJ2 ~ J(t,s,x) ~ 2K1 

IIX(t,s,x)ll2 

From (16), (19) it follows that for x I- 0 

lim IIX(t, s, x)II = 0, lim IIX(t, s, x)II = oo 
t-+-oo t--+oo 

Hence· 
lim f (t, s, x) = 0, lim f (t, s, x) = oo 

t-+-oo t-+oo 

It is easily shown that the equation c = f(t, s, x) has a unique solution t = t(s, x), where 
c is chosen as in Lemma 5, furthermore t depends on (s,x) continuously when x f 0. 

Now we are in a position to construct the homeomorphism which transforms the 
underlying equation into the standard one. In fact, we define the homeomorphism H : 
R x RN --+ R x RN as follows 

{ 
hs(x) = exp(s - t(s, x))9t(s,x)(X(t, s, x), s, x)) for X f O (25) 
hs(O) = 0 

where 9s is defined in Lemma 4. We are going to show that H satisfies all properties 
listed in Definition 3. In fact, for x f 0, h8(x) is continuous with respect to (s,x). For 
x=O 

llhs(x) - hs(O)II :S exp(s - t(s,x)) 

We shall estimate the right-hand side of (26). By definition we have 

V(s, x) - E =V(s, x) - V(t(s, x), X(t, s, x), s, x)) 

= [8 D_V(u,X(u,s,x))du 
Jt(s,x) 

(26) 

(27) 

Hence 
Is - t(s, x)I ~ IV(s, x) - cl/ inf

0 
af (u, s, x) 

uE[t{s,x),s),u:;etn U 
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If V(s, x) ~€,we have t(s, x) $ s. For u E [t(s, x), s] we obtain 

M2 
€ $ f(u, s, x) $ 

20 
IIX(u, s, x)ll2 (28) 

Thus 

!~(u,s,x) = IIX(u,s,x)ll2 ~ 2ca/M2, 

for u E [t(s, x), s], u # tn. So we get 

M2 (M2 ) M2 0 $ s - t(s, x) $ (V(s, x) - c:) · 2ca $ 20 llxll
2 - 1 2c:a (29) 

Taking into account (24), we see that we have {29) when 

llxll ~ ./c:/2K1 

For llxll ~ ../'57ii/M we have c ~ V(s,x). So from (22), (27) we get 

f t(s,x) 0 $ c: - V(s,x) $llxll2 s exp(2Ki(u - s))du 

~ ~~: (exp(2K1(t(s,x) - s))- 1) 

Thus 

0 $ c: - ~: llxll2 $ ~~: (exp(2K1(t(s,x) - s)) -1) 

1 M2 1 2 2K1 
2K1 ln[(c: - ( 2a + 2K1 )llxll ) llxll2] $ t(s, x) - s {30) 

From this it follows that hs(x) is continuous at x = 0. Furthermore we easily see that 
there exists an increasing function L : (0, oo) -+ (0, oo), L(O) = 0, continous at Osuch 
that 

llhs(x)II $ L(llxll) (31) 

It is easily checked that H-1 : Rx RN -+Rx RN is defined by the following formula 

H-1(s, x) = (s, h;1(x)), where 

h;1(x) = X(s, u, g;1(x/llxll), u = s - In llxll 
h;1(0) = 0 

for X # 0 

It is obvious that for x f 0, h-;1(x) is continuous with respect to (s, x). For llxll < 1 we 
have u > s. So from {16), {24) it follows that 

llh;1(x)II $Mllg;1(x/llxll)II exp(-a(u - s)) 
.,fi .,fi - 

$M 2K1 
exp(a In !!xii) = M 2K1 

llxll°' (32) 
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For llxll > 1 we have 
llh;1(x)II :s; llg:1(x/llxll)exp(K1(s - u)) :s; 2{ llxllK

1 (33) 

From (32), (33) it is seen that h;1 is continuous at 0, and there exists an increasing 
function L' : [O, oo) - [O, oo ), L'(O) = 0, continuous at Osuch that 

llh:;1(x)I! :s; L'(llxll) for every (s, x) ER x RN (34) 

This completes the proof of Lemma 4. 

Theorem 1. Let the homogeneous equation correspomding to (5), {6) have 
an exponential dichotomy with projector P and positiove constants M, a, f(t, 0) = 
hn(O) = 0 for all t, n, let f(t, · ), hn(-) be of class C3• Then for 8 small enough · 
equation ( 5), ( 6) is topologically equivalent to the standard equation 

{ 
X1 = -X1, X1 E R k 
X2 = X2, X2 E Rm 

where k = dim P(RN). 

Proof. We shall prove this theorem applying the idea of the proof of Theorem in 
[2]. Frist, Qn, A(t) can be assumed to commute with P. Under the assumtions of the 
theorem for every (s, x) ER x RN there exist 

E-(s,x) = {y E RN: IIX(t,s,y)- X(t,s,x)II - 0, as t - oo} 
E+(s, x) = {y E RN : IIX(t, s, y) - X(t, s, x)II - 0, as t - -oo} 

Suppose c.p; : Ek= P(RN} - Em= (I - P)(RN), c.p; : Em - Ek such that 
E-(s,O) = {x + c.p;(x), x E Ek} 
E+ ( S, 0} = { c.p; ( X) + X, X E Em} 

Here, for the sake of convenience, we assume that the scalar product is chosen so that P 
is an orthogonal projection. We denote 

E- = {(s,E-(s,O)),s ER}, E+ = {(s,E+(s,O)),s ER}. 
Then both E-, E+ are proper integral manifolds. We shall establish the topological 
equivalence between E-, E+ and Ek, Em. Suppose x(t) is any solution of (5), (6) 
contained in E-. Then Px ( t) satisfies the following equation 

d dx(t) 
dt Px(t) =P-;u = P2 A(t)x(t) +Pf (t, x(t)) 

=P2 A(t)x(t) + PJ(t,x(t)) 
=(PA(t))Px(t) + P J(t, x(t)) if t =p tn (34) 

Px(t!) =PQnx(tn) + Phn(x(tn)) 
=P2Qnx(tn) + Phn(x(tn)) 
=(PQn)Px(tn) + Phn(x(tn)) (35) 
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From Lemma 4 it follows that equation (34), (35), setting u = Px, is topologically equiv 
alent to ±1 = -x1, x1 E Ek. Meanwhile, we can easily see that Ix Pis a homeomorphism 
by which E- is topologically equivalent to equation (34), (35). Finally we have shown 
that E- is topologically equivalent to the standard equation ±1 = -xi, x1 E Ek. Simi 
larly, it is shown that E+ is topologically equivalent to ±2 = x2, x2 E Em. We denote by 
H-(t,x) = (t, h-;(x)), H+(t,x) = (t, ht(x)) the homeomorphism which transform the 
standard equations ±1 = -x1, ±2 = x2 into E-, E+ respecticely. Suppose that x E RN, 
x = u + v, u E Ek, v E Em. Setting a= h--;(u), b = ht(v), we define Has follows 

H(t, x) = (t, ht(x)) 
where 

ht(x) = E+(t,a) n E-(t,b) (36) 

It is shown that the definition of ht is correct (see (12]). It is easy to see that x = 
h-;1(y) = (h-; )-1(a) + (ht)-1(b), where a= E+(t, y) n E-(t, 0), b = E-(t, y) n E+(t, 0). 
From the results in (11], [12] it follows that ht, h-;1 are both continuous. Now suppose 
that x(t) is a solution of standard system u = -u, i; = v, u E Ek, v E En-k, x = u + v. 
Then ht(x(t)) is a solution of (5), (6). In fact, denoting by Y(t,s,y) the solution of the 
equation !! = A(t)y + f(t, y) if t f tn 

y(t!) = Qny(tn) + hn(y(tn)) 
y(s) = Y, 

we have Y(t, s, E-(s, y)) = E-(t, Y(t, s, y)), Y(t, s, E+(s, y)) = E+(t, Y(t, s, y)). Sup 
pose x(t) = u(t) + v(t). We put a(t) = hZ-(u(t)),b(t) = ht(v(t)). So (t,a(t)), (t,b(t)) 
belong to E-, E+, respectively. We get Y(t,0,a(O)) = a(t), Y(t,0,b(O)) = b(t), Y(t,0, 
E+(o, a(O))) = E+(t, a(t)), Y(t, o, E-(o, b(O))) = E-(t, b(t)). By definition y(t) = 
ht(x(t)) =E+ (t, a(t)) n E-(t, b(t)) = Y(t, o, E+(o, a(O)) n E-(o, b(O))) = Y(t, o, h0(x(O))), 
i.e. y(t) is a solution of (5), (6). It is easy to see that h--;1 has a similar property. 

Now we have to prove the existence of a function L with the desired properties. If 
we choose 8 small enough, we get (see (11], (121) 

1 1 
IIY2 - b2II ~ 2IIY1 - b1 II, IIY1 - adl ~ 2IIY2 - a2II 

where y = Y1 + Y2, a = h--; ( u) = a1 + a2, b = bt ( v) = b1 + b2; Y1, a1, b1 E Ek; 
Y2, a2, b2 E En-k. So we get 

IIY1II + IIY2II ~ 2(lla1II + lla2II + llbill + llb2II) 
Finally, this implies the existence of a funtion £1 : (0, oo) -+ [O, oo) with the desired 

properties such that llh-;1(x)II 5 L1(llxll). In the same way, there exist L2 : [O,oo)--+ 
[O, oo ). Finally we choose L(llxll) = max(L1 (llxll), L2(11xll) and then we get 

sup max(llht(x)II, llh--;1 (x)II) ~ L(llxll) 
tER 
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This completes the proof of Theorem 1. 

Corollary 1. Suppose all conditions of Theorem 1 satisfied except for the 
condition f(t, 0) = hn(O) = 0. Then equation (5), (6) is topologically weakly equiv 
alent to the standard equation. 

Proof. From Lemma 3 it follows that there exists a bounded solution x( t) of 
equation (5), (6). Consider ht(x) = x(t) + x. It is easily seen that H(t, x) = (t, ht(x)) 
is a homeomorphism which transforms equation (5), (6) into another one satisfying all 
conditions of Theorem 1. This completes the proof of Corollary 1. 

Remark 2. In the present paper the finite dimensionality of the phase space of 
X is needed only to apply the Morse lemma in Lemma 5. We do not know whether this 
may be omitted as in case of differential equations without impulse effect. 
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