A FURTHER IMPROVEMENT OF JENSEN'S INEQUALITY

SEVER SILVESTRU DRAGOMIR

1. Introduction

In the Theory of Inequalities, the famous Jensen's discrete inequality:

$$
\begin{equation*}
f\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}\right) \leq \frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} f\left(x_{i}\right) \tag{1}
\end{equation*}
$$

valid for every convex function $f: C \subseteq X \rightarrow \mathbb{R}(C$ is a convex subset of linear space $X)$ and for every $x_{i} \in C$ and $p_{i} \geq 0(i=1, \cdots, n)$ with $P_{n}:=\sum_{i=1}^{n} p_{i}>0$ plays such an important role that many mathematicians have tried not only to establish (1) in a variety of ways but also to find different extensions, refinements and counterparts; see [3] and [7] where further references are given.

In the recent paper [10], J. E. Pec̆arić and the author have obtained the following refinement of (1):

Theorem A. Let f, x_{i}, p_{i} be as above and $1 \leq k \leq n$. Then one has the inequalities:

$$
\begin{align*}
& f\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}\right) \leq \frac{1}{P_{n}^{k}} \sum_{i_{1}, \ldots, i_{k}=1}^{n} p_{i_{1}} \ldots p_{i_{k}} f\left(\frac{x_{i_{1}}+\cdots+x_{i_{k}}}{k}\right) \\
& \leq \cdots \leq \frac{1}{P_{n}^{2}} \sum_{i_{1}, i_{2}=1}^{n} p_{i_{1}} p_{i_{2}} f\left(\frac{x_{i_{1}}+x_{i_{2}}}{2}\right) \leq \frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} f\left(x_{i}\right) . \tag{2}
\end{align*}
$$

Another result of this type for weighted means was established by the author in [6]:
Theorem B. Let f, x_{i}, p_{i}, k be as above and $q_{j} \geq 0(j=1, \cdots, k)$ with $Q_{k}:=$ $\sum_{j=1}^{k} q_{j}>0$. Then one has the inequality:

$$
f\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}\right) \leq \frac{1}{P_{n}^{k}} \sum_{i_{1}, \ldots, i_{k}=1}^{n} p_{i_{1}} \ldots p_{i_{k}} f\left(\frac{1}{Q_{k}} \sum_{j=1}^{k} q_{j} x_{i_{j}}\right)
$$

Received July 27, 1992; revised May 18, 1993.

$$
\begin{equation*}
\leq \frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} f\left(x_{i}\right) \tag{3}
\end{equation*}
$$

For some applications of these results in Theory of Inequalities we refer to [4], [6] and [10].

The main purpose of this paper is to give an mprovement of refinement (3) as follows. Some natural applications are also pointed out.

2. The main reults

The following theorem holds.
Theorem. Let $f: C \subseteq X \rightarrow \mathbb{R}$ be a convex mapping on convex subset C of linear space $X, x_{i} \in C, p_{i} \geq 0(i=1, \cdots, n)$ with $P_{n}>0$ and $q_{j} \geq 0(j=1, \cdots, k$; $1 \leq k \leq n$) with $Q_{k}>0$. Then one has the inequalities

$$
\begin{align*}
& \quad f\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}\right) \leq \frac{1}{P_{n}^{k}} \sum_{i_{1}, \ldots, i_{k}=1}^{n} p_{i_{1}} \ldots p_{i_{k}} f\left(\frac{x_{i_{1}}+\ldots+x_{i_{k}}}{k}\right) \tag{4}\\
& \leq \frac{1}{P_{n}^{k}} \sum_{i_{1}, \ldots, i_{k}=1}^{n} p_{i_{1}} \ldots p_{i_{k}} f\left(\frac{q_{1} x_{i_{1}}+\ldots+q_{k} x_{i_{k}}}{Q_{k}}\right) \leq \frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} f\left(x_{i}\right) .
\end{align*}
$$

Proof. We must prove only the second inequality.
Let consider the vectors

$$
\begin{aligned}
& y_{1}:=\frac{1}{Q_{k}}\left(q_{1} x_{i_{1}}+q_{2} x_{i_{2}}+\ldots+q_{k-1} x_{i_{k-1}}+q_{k} x_{i_{k}}\right) \\
& y_{2}:=\frac{1}{Q_{k}}\left(q_{k} x_{i_{1}}+q_{1} x_{i_{2}}+\ldots+q_{k-2} x_{i_{k-1}}+q_{k-1} x_{i_{k}}\right) \\
& y_{k-1}:=\frac{1}{Q_{k}}\left(q_{3} x_{i_{1}}+q_{4} x_{i_{2}}+\ldots+q_{1} x_{i_{k-1}}+q_{2} x_{i_{k}}\right) \\
& y_{k}:=\frac{1}{Q_{k}}\left(q_{2} x_{i_{1}}+q_{3} x_{i_{2}}+\ldots+q_{k} x_{i_{k-1}}+q_{1} x_{i_{k}}\right)
\end{aligned}
$$

where $x_{i_{j}} \in\left\{x_{1}, \ldots, x_{n}\right\}$ and $q_{j} \geq 0(j=1, \cdots, k)$ are as above.
A simple computation shows that:

$$
\frac{y_{1}+y_{2}+\ldots+y_{k-1}+y_{k}}{k}=\frac{x_{i_{1}}+x_{i_{2}}+\ldots+x_{i_{k-1}}+x_{i_{k}}}{k}
$$

and the Jensen's inequality

$$
\frac{1}{k}\left(f\left(y_{1}\right)+f\left(y_{2}\right)+\ldots+f\left(y_{k}\right)\right) \geq f\left(\frac{y_{1}+\ldots+y_{k}}{k}\right)
$$

yields that

$$
\begin{aligned}
& \frac{1}{k}\left\{f\left[\frac{1}{Q_{k}}\left(q_{1} x_{i_{1}}+q_{2} x_{i_{2}}+\ldots+q_{k-1} x_{i_{k-1}}+q_{k} x_{i_{k}}\right)\right]+\ldots\right. \\
& \left.+f\left[\frac{1}{Q_{k}}\left(q_{2} x_{i_{1}}+q_{3} x_{i_{2}}+\ldots+q_{k} x_{i_{k-1}}+q_{1} x_{i_{k}}\right)\right]\right\} \\
& \geq f\left(\frac{x_{i_{1}}+\ldots+x_{i_{k}}}{k}\right)
\end{aligned}
$$

for all $i_{1}, \ldots, i_{k}=1, \cdots, n$.
Now, if we multiply this inequality with $p_{i_{1}} \ldots p_{i_{k}} \geq 0$ and if we sum after i_{1}, \ldots, i_{k} to 1 at n, we derive:

$$
\begin{aligned}
& \frac{1}{k}\left\{\sum_{i_{1}, \ldots, i_{k}=1}^{n} p_{i_{1}} \ldots p_{i_{k}} f\left[\frac{1}{Q_{k}}\left(q_{1} x_{i_{1}}+\ldots+q_{k} x_{i_{k}}\right)\right]+\ldots\right. \\
& \left.+\sum_{i_{1}, \ldots, i_{k}=1}^{n} p_{i_{1}} \ldots p_{i_{k}} f\left[\frac{1}{Q_{k}}\left(q_{2} x_{i_{1}}+\ldots+q_{1} x_{i_{k}}\right)\right]\right\} \\
& \geq \sum_{i_{1}, \ldots, i_{k}=1}^{n} p_{i_{1}} \ldots p_{i_{k}} f\left(\frac{x_{i_{1}}+\ldots+x_{i_{k}}}{k}\right)
\end{aligned}
$$

Since the left membership of the above inequality is equal to

$$
\sum_{i_{1}, \ldots, i_{k}=1}^{n} p_{i_{1}} \ldots p_{i_{k}} f\left[\frac{1}{Q_{k}}\left(q_{1} x_{i_{1}}+\ldots+q_{k} x_{i_{k}}\right)\right]
$$

the proof of the theorem is finished.
Corollary 1. Let $f: C \subseteq X \rightarrow \mathbb{R}_{+}$be a convex function such that f is also logarithmically concave on C, i.e., the mapping $\log f$ is concave on C. Then for all $x_{i}, p_{i}(i=1, \cdots, n), q_{j}(j=1, \cdots, k)(1 \leq k \leq n)$ as above, one has the following refinement of the arithmetic mean-geometric mean inequality:

$$
\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} f\left(x_{i}\right) \geq \frac{1}{P_{n}^{k}} \sum_{i_{1}, \ldots, i_{k}=1}^{n} p_{i_{1}} \ldots p_{i_{k}} f\left(\frac{q_{1} x_{i_{1}}+\ldots+q_{k} x_{i_{k}}}{Q_{k}}\right)
$$

$$
\begin{aligned}
& \geq \frac{1}{P_{n}^{k}} \sum_{i_{1}, \ldots, i_{k}=1}^{n} p_{i_{1}} \ldots p_{i_{k}} f\left(\frac{x_{i_{1}}+\ldots+x_{i_{k}}}{k}\right) \\
& \geq f\left(\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i}\right) \\
& \geq\left[\prod_{i_{1}, \ldots, i_{k}=1}^{n} f^{p_{i_{1}} \ldots p_{i_{k}}}\left(\frac{x_{i_{1}}+\ldots+x_{i_{k}}}{k}\right)\right]^{1 / P_{n}^{k}} \\
& \geq\left[\prod_{i_{1}, \ldots, i_{k}=1}^{n} f^{p_{i_{1}} \ldots p_{i_{k}}}\left(\frac{q_{1} x_{i_{1}}+\ldots+q_{k} x_{i_{k}}}{Q_{k}}\right)\right]^{1 / P_{n}^{k}} \\
& \geq\left[\prod_{i=1}^{n} f^{p_{i}}\left(x_{i}\right)\right]^{1 / P_{n}} .
\end{aligned}
$$

Proof. The second part of Corollary 1 follows by the above theorem for the convex mapping $-\log f$. We will omit the details.

Now, let X be a real linear space and K a clin in X, i.e., a subset of X satisfying the conditions:
(K1) $\quad x, y \in K$ imply $x+y \in K$;
(K2) $\quad x \in K, \alpha \geq 0$ imply $\alpha x \in K$.
Also, let suppose that $\varphi: K \rightarrow \mathbb{R}$ is a quasi-linear functional on K, i.e., a mapping which verifies the assumption:

$$
\varphi(\alpha x+\beta y) \leq(\geq) \alpha \varphi(x)+\beta \varphi(y)
$$

for all $\alpha, \beta \geq 0$ and $x, y \in K$. We observe that such a functional is a convex (concave) mapping on K but the converse implication is not true, generally. We also observe that the following inequality holds (by induction):

$$
\varphi\left(\sum_{i=1}^{n} p_{i} x_{i}\right) \leq(\geq) \sum_{i=1}^{n} p_{i} \varphi\left(x_{i}\right)
$$

for all $p_{i} \geq 0$ and $x_{i} \in K(i=1, \ldots, n)$.
By the use of the above theorem, we can improve this inequality as follows:
Corollary 2. Let φ be a quasi-linear functional on $K, x_{i} \in K$ and $p_{i} \geq 0$ $(i=1, \cdots, n)$ with $P_{n}>0$. Then for all $q_{j} \geq 0(j=1, \cdots, k)(1 \leq k \leq n)$ with
$Q_{k}>0$, we have the inequalities

$$
\begin{aligned}
\sum_{i=1}^{n} p_{i} \varphi\left(x_{i}\right) & \geq(\leq) \frac{1}{Q_{k} P_{n}^{k-1}} \sum_{i_{1}, \ldots, i_{k}=1}^{n} p_{i_{1}} \ldots p_{i_{k}} \varphi\left(q_{1} x_{i_{1}}+\ldots+q_{k} x_{i_{k}}\right) \\
& \geq(\leq) \frac{1}{k P_{n}^{k-1}} \sum_{i_{1}, \ldots, i_{k}=1}^{n} p_{i_{1}} \ldots p_{i_{k}} \varphi\left(x_{i_{1}}+\ldots+x_{i_{k}}\right) \\
& \geq(\leq) \varphi\left(\sum_{i=1}^{n} p_{i} x_{i}\right)
\end{aligned}
$$

Proof. The argument is obvious from the above theorem applied for the mapping φ.

3. Applications

1. Let $(X,\|\cdot\|)$ be a real normed linear space, $x_{i} \in X$ and p_{i}, q_{j} are as above. Then for all $p \geq 1$ we have the following refinement of the generalized triangle inequality:

$$
\begin{aligned}
P_{n}^{p-1} \sum_{i=1}^{n} p_{i}\left\|x_{i}\right\|^{p} & \geq \frac{P_{n}^{p-k}}{Q_{k}^{p}} \sum_{i_{1}, \ldots, i_{k}=1}^{n} p_{i_{1}} \ldots p_{i_{k}}\left\|q_{1} x_{i_{1}}+\ldots+q_{k} x_{i_{k}}\right\|^{p} \\
& \geq \frac{P_{n}^{p-k}}{k^{p}} \sum_{i_{1}, \ldots, i_{k}=1}^{n} p_{i_{1}} \ldots p_{i_{k}}\left\|x_{i_{1}}+\ldots+x_{i_{k}}\right\|^{p} \\
& \geq\left\|\sum_{i=1}^{n} p_{i} x_{i}\right\|^{p} .
\end{aligned}
$$

The proof follows by the above theorem for the convex mapping $f: X \rightarrow \mathbb{R}$, $f(x):=\|x\|^{p}(p \geq 1)$.
2. Let $x_{i}>0, p_{i} \geq 0(i=1, \ldots, n)$ and $q_{j} \geq 0(j=1, \cdots, k ; 1 \leq k \leq n)$. Then the following refinement of weighted arithmetic mean-geometric mean inequality holds:

$$
\begin{aligned}
\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i} x_{i} & \geq\left[\prod_{i_{1}, \ldots, i_{k}=1}^{n}\left(\frac{x_{i_{1}}+\ldots+x_{i_{k}}}{k}\right)^{p_{i_{1}} \ldots p_{i_{k}}}\right]^{1 / P_{n}^{k}} \\
& \geq\left[\prod_{i_{1}, \ldots, i_{k}=1}^{n}\left(\frac{q_{1} x_{i_{1}}+\ldots+q_{k} x_{i_{k}}}{Q_{k}}\right)^{p_{i_{1}} \ldots p_{i_{k}}}\right]^{1 / P_{n}^{k}} \\
& \geq\left(\prod_{i=1}^{n} x_{i}^{p_{i}}\right)^{1 / P_{n}}
\end{aligned}
$$

The proof follows by Corollary 1 for the mapping $f:(0, \infty) \rightarrow(0, \infty), f(x):=x$.
3. Now, let consider the mapping $f:(0,1 / 2] \rightarrow(0, \infty)$ given by $f(x):=[x /(1-x)]^{r}$, $r \geq 1$. It is easily to see that f is convex on $(0,1 / 2]$ and also logarithmically concave on this interval. By the use of Corollary 1, one has

$$
\begin{aligned}
\frac{1}{P_{n}} \sum_{i=1}^{n} p_{i}\left(\frac{x_{i}}{1-x_{i}}\right)^{r} & \geq \frac{1}{P_{n}^{k}} \sum_{i_{1}, \ldots, i_{k}=1}^{n} p_{i_{1}} \ldots p_{i_{k}}\left(\frac{q_{1} x_{i_{1}}+\ldots+q_{k} x_{i_{k}}}{q_{1}\left(1-x_{i_{1}}\right)+\ldots+q_{k}\left(1-x_{i_{k}}\right)}\right)^{r} \\
& \geq \frac{1}{P_{n}^{k}} \sum_{i_{1}, \ldots, i_{k}=1}^{n} p_{i_{1}} \ldots p_{i_{k}}\left(\frac{x_{i_{1}}+\ldots+x_{i_{k}}}{k-x_{i_{1}}-\ldots-x_{i_{k}}}\right)^{r} \\
& \geq\left[\frac{\sum_{i=1}^{n} p_{i} x_{i}}{\sum_{i=1}^{n} p_{i}\left(1-x_{i}\right)}\right]^{r} \\
& \geq\left[\prod_{i_{1}, \ldots, i_{k}=1}^{n}\left(\frac{x_{i_{1}}+\ldots+x_{i_{k}}}{k-x_{i_{1}}-\ldots-x_{i_{k}}}\right)^{r p_{i_{1}} \ldots p_{i_{k}}}\right]^{1 / P_{n}^{k}} \\
& \geq\left[\prod_{i_{1}, \ldots, i_{k}=1}^{n}\left(\frac{q_{1} x_{i_{1}}+\ldots+q_{k} x_{i_{k}}}{q_{1}\left(1-x_{i_{1}}\right)+\ldots+q_{k}\left(1-x_{i_{k}}\right)}\right)^{r p_{i_{1}} \ldots p_{i_{k}}}\right]^{1 / P_{n}^{k}} \\
& \geq\left[\prod_{i=1}^{n}\left(\frac{x_{i}}{1-x_{i}}\right)^{r p_{i}}\right]^{1 / P_{n}} .
\end{aligned}
$$

Remark. The above inequalities contain refinements of C.-L. Wang's inequality [11] and also (if $p_{i}=1, i=1, \cdots, n$) of the well-known result of Ky Fan (see e.g. [3]):

$$
\frac{\sum_{i=1}^{n} x_{i}}{\sum_{i=1}^{n}\left(1-x_{i}\right)} \geq \prod_{i=1}^{n}\left[x_{i} /\left(1-x_{i}\right)\right]^{1 / n}
$$

4. As in [12], we shall use the following notations:
$\mathcal{M}=\{M \mid M$ is a positive definite matrix of order $n\}$;
$|M|=$ the determinant of the matrix M;
$|M|_{k}=\prod_{i=1}^{k} \lambda_{j}, k=1, \cdots, n$; where $\lambda_{1}, \ldots, \lambda_{n}$ are the eigenvalues of M with $\lambda_{1} \leq \ldots \leq \lambda_{n}$, $|M|_{n}=|M|$;
$M(j)=$ the submatrix of M obtained by deleting the $j^{\text {th }}$ row and column of M;
$M[k]=$ the principal submatrix of M formed by taking the first k rows and columns of M, $M[n]=M, M[n-1]=M(n), M[0]=$ the identity matrix;
$\mathrm{BBF}=$ the class of Bellman-Bergström-Fan quasi-linear functionals σ_{i}, δ_{j} and v_{k} defined on \mathcal{M} by

$$
\begin{aligned}
\sigma_{i}(M) & :=\left|M_{i}\right|^{1 / i}, i=1, \ldots, n \\
\delta_{j}(M) & :=|M| /|M(j)|, j=1, \cdots, n
\end{aligned}
$$

and

$$
v_{k}(M):=(|M| /|M[k]|)^{1 /(n-k)}, \quad k=1, \cdots, n
$$

respectively.
It is evident that \mathcal{M} is closed under addition and multiplication by a positive number, i.e., \mathcal{M} is a clin. Now, quasi-linearity of BBF-functionals follows from results in [12]:

$$
\varphi\left(p M_{1}+q M_{2}\right) \geq p \varphi\left(M_{1}\right)+q \varphi\left(M_{2}\right)
$$

for all $M_{1}, M_{2} \in \mathcal{M}, p, q \geq 0$ and $\varphi \in \operatorname{BBF}$ (see also [3] and [8]).
In [12], C. - L. Wang has obtained the following inequality:

$$
\begin{equation*}
\varphi\left(\sum_{i=1}^{m} p_{i} M_{i}\right) \geq \sum_{i=1}^{m} p_{i} \varphi\left(M_{i}\right) \geq P_{m}\left[\prod_{i=1}^{m} \varphi\left(M_{i}\right)\right]^{p_{i} / P_{m}} \tag{5}
\end{equation*}
$$

where $p_{i} \geq 0(i=1, \ldots, m)$, which is an interpolating inequality for

$$
\varphi\left(\frac{1}{P_{m}} \sum_{i=1}^{m} p_{i} M_{i}\right) \geq \prod_{i=1}^{m}\left[\varphi\left(M_{i}\right)\right]^{p_{i} / P_{m}}
$$

Note that (5) is also a generalization of a result from [9].
By the use of Corollary 2, we can improve the inequality (5) as follows:

$$
\begin{aligned}
& \quad \sum_{i=1}^{m} p_{i} \varphi\left(M_{i}\right) \leq \frac{1}{Q_{k} P_{m}^{k-1}} \sum_{i_{1}, \ldots, i_{k}=1}^{m} p_{i_{1}} \ldots p_{i_{k}} \varphi\left(q_{1} M_{i_{1}}+\ldots+q_{k} M_{i_{k}}\right) \\
& \leq \frac{1}{k P_{m}^{k-1}} \sum_{i_{1}, \ldots, i_{k}=1}^{m} p_{i_{1}} \ldots p_{i_{k}} \varphi\left(M_{i_{1}}+\ldots+M_{i_{k}}\right) \\
& \leq \varphi\left(\sum_{i=1}^{m} p_{i} M_{i}\right)
\end{aligned}
$$

where $1 \leq k \leq m, M_{i} \in \mathcal{M}, \varphi \in \mathrm{BBF}, p_{i} \geq 0(i=1, \ldots, m)$ with $P_{m}>0$ and $q_{j} \geq 0$ $(j=1, \cdots, k ; 1 \leq k \leq m)$ with $Q_{k}>0$.

References

[1] H. Alzer, "A. converse of Ky Fan's inequalities", C. R. Math. Rep. Acad. Sci. Canada, 9 (1989), 1-3.
[2] R. E. Barlow, A. W. Marschal and F. Proschan, "Some inequalities for starshaped and convex functions", Pacific J. Math., 19 (1969), 19-42.
[3] E. F. Beckenbach and R. Bellman, "Inequalities", 4-th ed., Springer Verlag, Berlin, 1983.
[4] S. S. Dragomir, "A refinement of Jensen inequality", G. M. Metod. (Bucharest), 10 (1989), 190-191.
[5] S. S. Dragomir and N. M. Ionescu, "On some inequalities for convexdominated functions", Anal. Num. Theor. Approx., 19 (1990), 21-28.
[6] S. S. Dragomir, "Some refinements of Ky Fan's inequality", J. Math. Anal. Appl. 163 (1992), 317-321.
[7] D. S. Mitrinović, "Analytic Inequalities", Springer Verlag, Berlin, 1970.
[8] D. S. Mitrinović and J. E. Pečarić, "Determinantal inequalities of Jensen'a type", Ann. Oster. Akad. Wiss. Math. Klasse, 125 (1988), 75-78.
[9] L. Mirsky, "An inequality for positive definite matrices", Amer. Math. Montly, 62 (1955), 428-430.
[10] J. E. Pečarić and S. S. Dragomir, "A refinement of Jensen inequality and applications", Studia Math. Univ. "Babeş-Bolyai", 34 (1) (1989), 15-19.
[11] C.-L. Wang, "An a Ky Fan inequality of the complementary A.-G. type and its variants", J. Math. Anal. Appl., 73 (1980), 501-505.
[12] C.-L. Wang, "Extensions of determinantal inequalities", Utilitas Math., 13 (1978), 201-210.

Department of Mathematics, University of Timişoara, B-dul V. Pârvan 4, R-1900 Timişoara, România.

