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EXISTENCE OF SOLUTIONS FOR ELLIPTIC
INTEGRO-DIFFERENTIAL SYSTEMS

LONG-YI TSAI AND S.T. WU

Abstract. In this paper the existence of the solution for elliptic integro-differential
systems are discussed. Those systems are motivated by certain physical processes
such as in epidemics, predator-prey dynamics and the others. We extend the
method of mixed monotony to second order elliptic partial integro-differential equa-
tions. By assuming the existence of a satellite f of the give function @, we prove
the existence of solutions by using fixed point theory. Moreover, we provide the
modified method of mixed monotony to construct two monotone sequences which
converge uniformly to the solution. We also give sufficient conditions for the ex-
istence of f and obtain the construction of upper and lower solutions in some
applications.

1. Introduction

The existence of the solutions for elliptic integro-differential systems is discussed.
Those systems are motivated by many physical processes in epidemics, predator-prey
dynamics and the others (see [4,6,9]). Recently, the method of mixed monotony [2,3]
or the condition of heterotony [5] are employed to construct monotone sequences that
converge to the solution of initial (boundary) value problem for first (second) order
ordinary differential equations when the function ® involved do not possess any monotone
properties. In this paper, we shall extend this method to second order elliptic partial
integro-differential equations. The content of this paper is organized as follows. In section
2, some notations and preliminary lemmas are given. In section 3, we first assume the
existence of the satellite f of @ and prove the existence of the solutions by using Schauder
fixed point theorem. And then we give the sufficient condition for the existence of f.
The construction of e-upper and e-lower solutions are obtained in some examples. In
the last section, by assuming the existence of f which is e-monotone nondecreasing in
v, monotone nondecreasing in p and monotone nonincreasing in w and g, we find two
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monotone sequences which converge to the solution uniformly. Sufficient condition for
the existence of f is also given. Analogous existence results are easily obtained when &
does not depend on integral terms. For parabolic integro-differential systems, parallel
results will be given in the forthcoming paper.

2. Definitions and Notation

Let RN denote a N-dimensional real Euclidean space and let 2 be a bounded domain
in RN whose boundary 9 is a (VN — 1)-dimensional manifold of class C2+*, X € (0,1).
Let C(Q) be the Banach space of continuous functions with domain  and range in R
endowed with the usual maximun norm. Let C*(?) be a Banach space, i.e., the set of
u € C(Q) such that u belongs to the class Cll with respect to = and the [¢]-th partial
derivatives of u with respect to the components of z are Hélder continuous with exponent
—- [€], here [£] is the greatest integer < £. For u = (u1,...,%m) : @ — R™, we define
L,-u,- by

N N
(Liu;)(z) = Z a}k(x)azuifaﬂfjaxk + Z bi(z)Ou;/ Oz
J,k=1 k=1

where %k = akj, b € CMQ), A€ (0,1),1<j, k< N,1<i<m. Assume that L;u;
is uniformly elliptic, i.e., there exist constants ¢; and ¢z, 0 < ¢; < ¢ such that for all
£ =(&,...,&n) and z € Q, we have

N

alél? < Y ai(@)éiée < e,  1<i<m.

G k=1

Let B; be the boundary operator defined by
Biu; = ai(z)0u;/0v + d;(x)u;, T € 91,

where a; > 0, d; > 0 with a; +d; > 0 on 99, and 0/0v is the outward normal derivative
on 8Q. For u = (uy,...,uy) € R™, p* = (Di1y.-.,Pim) € R™, 1 < i < m. We assume
that @; : 1 x R™ x R™ — R, (z,u,p') — ®;(z,u, p'), be uniformly Holder continuous in
z with the exponent X, 0 < A < 1 and locally Lipschitz continuous in « and p*. We shall
consider the boundary value problem

— Liu; = ®&;(z,u, K'u), z€N, 1<i<m, (2.1)
B;u; = h;, z€dN, 1<i<m, (2.2)
where Kiu = (K%,... K *m). Each K% is a certain integral operator. In particular, it

may be of the form [, a(z,z’, u(z'))dz’, where a is locally Lipschitz continuous functions
in 2 x Q2 x R™. By a solution of (2.1)-(2.2) we mean that a function u(z) is continuous
in {1, having continuous derivatives up to second order in 2 and satisfies (2.1)-(2.2).
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For reader’s convenience we give two lemmas concerning the maximum principle,
the existence-uniqueness and a priori estimates of the solution for the linear equation.
Consider the boundary value problem for single equation

— Lu + pu = F(x) z€N, u>0; Bu=h, z € 09, (2.3)
where
N N
Lu= Z a;k(z)0%u/8z;0z) + Z bi(z)Ou/0x.
k=1 k=1

Lemma 2.1.(]8]) If the function u satisfying (2.3) with F >0, h > 0, then
u(z) >0 in Q.

Lemma 2.2.([1]) If F € C*(R), and h € C*+*(8Q), then there exists a unique
solution v € C**t*(Q) of (2.3) such that

|u|02+x(§) S Const. (|FICA(Q) + |h|01+.\(39)) .

3. Existence

In this section we shall consider the existence of the solution of the problem (2.1)-
(2.2) by using Schauder fixed point theorem. Assume that

Al:
there exists a function f : @ x R™ x R™ x R™ x R™ — R™, (z,v,p,w,q) +
f(z,v,p,w,q), f = (fi,- .., fm) which satisfies the following conditions:

(3.1) f(z,v,p,w,q) is uniformly Holder continuous with the exponent A, 0 < A <1,
in the domain £ for v, p, w, ¢ fixed and locally Lipschitz continuous with respect to v, p,w
and gq.

(3.2 There exist two functions a(z), B(z) € C?*(Q) and a positive constant € such
that
(i) ci(z) < Bi(z), z€Q, 1<i<m,
(i) —Lios — fi(z,v, Kiv,w, K'w) < (v + wi — 204)/2¢, € Q, Bioi(z)
< h,.;(:v), z € 0fl.
(iii) —LiB; — fi(z,w, K'w,v, K'v) > (vi + wi — 26;)/2¢, =z € Q, B;fi(z)
> hi(x), z € IN.
forallv,w € C(Q) witha; <v; < G, s Sw; < B;in Q, 1 <1 <m.
(3.3) fi(z,v, K*v,v, K*v) = ®;(z,v,K*v), 1 <i < m.
(3.4)  If there exist functions v and w with v; < w; in §, 1 <4 < m, and satisfying
—Lv; — fi(z,v, K'v,w, K*'w) = (w; — v;)/2¢, z € 0
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—Lw; — fi(z,w, K*'w,v, K*v) = (v; — w;)/2¢, z € Q
B;vi(z) = Byw;i(z) = hi(x), 1 € 00,1 <i < m.
then v = w in 0.

Remark: Such a function f is called a satellite of ®.

A2:

Each operator K*(1 < i < m) defined in N(e, ) N C*(Q), taking values in C*((2),
is bounded and continuous and has a bounded Fréchet derivatives on this set, here
N(e,8)={ue C(Q)|a; <u; < B;inQ, 1<i<m}.

Let
V(ie,B) ={u € C*OQ)|H(v;) < Q, 0; <u; < B;in N, 1<i < m},

here H*(u;) denotes Holder constant of u; and Q is some constant to be determined
later. For v,w € V(a, B8), we define

Fi(v,w)(z) = fi(z,v(z), K’*v(z),w(z), K'w(z)), €0, 1<i<m.
By using (3.1) and A2, we have the following result.

Lemma 3.1. For v,w € V(a,f8), F; (1 <i < m) take values in C*(Q) and
satisfy Lipschitz condition, i.e., for v,w,v*,w* € V(a,8) and 1 <i < m, we have

|Fi(v, w) — Fi(v*,w")| sy < const. (|v — Ve +lw - “’*|c*(ﬁ)) .
For given a pair of functions n,7 € V(a, 8), we define an operator T by
Tn, 7] = [Tiln, 7], T2[n, 7]] = [v, w]
where v and w are the solutions of the problem

— Liv; +vife = Fi(n,7) + (s + 7:)/2¢ in Q, (3.5)
B;vi(z) = hi(z), £ €09, 1<i<m,
and :
— Lyw; + wi/e = Fi(7,n) + (4 + 7:)/2¢ in Q, (3.6)
B;w;(z) = h{(.’L‘), red, 1<i<m,

The existence and uniqueness of v and w in C?**(Q) are guaranted by lemma 2.1
and lemma 2.2. Note that T;[r,n] = Ta[n, 7].

Lemma 3.2. The operator T carries V(a, ) x V(a, B) into itself.
Proof. From (3.5) and (3.2)-(ii) with v = 5 and w = 7, we have

— Li(v; — a;) + (vi —a;)/e >0in Q,
B,‘(’Uf = C!,;)(:B) = 0, T E onN.
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By lemma 2.1, we have v; —a; > 0 in Q, 1 < i< m. Similarly, we get w; — B3; <0in Q,
1 € i € m. Next we claim that H*(u;) € Q,1<i<m. Let z be the solution of the

problem
—L;z; + z;/e=01n Q,

Beziix) = h{(.’lt), x € 9fl.
Define U; = v; — 2;, 1 < ¢ < m, then U; is a solution of the problem

— LU;+ U;Je = Fi(n,7) + (m: + 7:)/2¢ in ,
B;U;(z) =0, z €99, 1<i<m,

By lemma 2.2, we obtain
Uileagy < CrlFi(n, 7) + (s + 7:)/2¢€| gy < Q1
Thus we have
|vi|C’~(ﬁ) 5 szlC*\(ﬁ) + Q1 < Czlhilcux(ag) +0Q:=Q,

Thus H"(vi) < Q, 1< i< m. Similary, we also have H*(w;) < Q, 1 <i < m.

Lemma 3.3. The operator T is compact and continuous. Furthermore,
there exist v,w € C?***(Q) such that T[v,w] = [v, D).

Proof. For v,w,v*,w* € V(o,B), T[v,w] and T[V*,w*] are in C*t*(Q)). Let
z = T1[v,w] — Th[v*, w*], then by lemma 2.2 and lemma 3.1, there exists a constant Cj
such that

|Z{ICQ+,\(?§) S C3 (I'U — ’U*IC‘\(‘(—}-) -} Iw - w*ch(ﬁ)) .

We also obtained similar inequality as above for y = T3[v, w] — T3[v*, w*]. Thus we have
Tl ] = Tl 0'llean @y < Ca (10 = 0" loagmy + 0 = v"loagmy) -

Therefore, 7 is continuous from C*(Q) into C2+*(Q). But C2*+*(Q) is compact embeded
in C*(2). It follows that 7 is compact from C*(f2) into itself. By Schauder fixed point
theorem, there exist [7,w] € V(a,8) x V(a, ) such that T[v,w] = [v,w]. Furthermore,
7,w € C*A ().

Theorem 3.4. Assume that A1 and A2 are satisfied, then the problem
(2.1)-(2.2) has a solution u with o; <u; < B; in Q, 1 <i<m.

Proof. From lemma 3.3, there exist ,w € V(a, 3) N C?**(Q) such that 7[7,w] =
[7,w]. In other words, they satisfy (3.5) and (3.6) with 7, 7 replaced by o, W respectively.
By (3.4) we get 7 = W in 1, and by (3.3), we see that « = 7 = W is a solution of the
problem (2.1)-(2.2).
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In the following, we shall give the sufficient conditions for the existence of the func-
tion f in Al. Assume that

B1: ®(z,u,p) : AXR™xR™ — R™ is uniformly Hélder continous with the exponent
A, 0< A <1, in Q for u, p fixed and locally Lipschitz continuous with respect to u and

.

B2: There exist functions a, 8 € C?() and a positive constant e such that

(i) ai(z) < Bi(z), 7€Q, 1<i<m,
(i) — Lia; — ®;(z,v, K'v) < (v; — o) /e, z € Q,
B;ai(z) < hi(z), x € O9.
(iii) — L:B; — ®:(z,v, K*v) > (v; — B;)/e, z € Q,
B;Bi(z) > hi(z), = € 89.

fora,ll'vEC'(ﬁ)Witha,'S'u,-Sﬂ,-inﬁ,ISz'gm.

Remark. The functions o and 8 are called e-lower and e-upper solution of the
problem (2.1)-(2.2). Define

fi(z,v,p,w,q) = [®:(z,v,p) + Bi(z,w, g)]/2.

Obviously, we have f;(z,v, K'v,v, K*v) = &;(z,v, K*v) in . For a; < v;, w; < §; in 1,
1 <t < m. By B2, it is easy to see that (3.2) holds. It remains to show that (3.4) holds.
Suppose that there exist function v and w with v; < w; in , 1 < i < m and satisfying
those equalities in (3.4). Let 2 = w — v in §, then

—Lizi +2;/e=0in Q, B;z(z) =0, z € 9.

By lemma 2.1, 2; = 0in Q, ie.,, v, = w; in , 1 < i < m. Therefore, we have the
following theorem.

Theorem 3.5. Assume that B1, B2 and A2 hold. Then the problem (2.1)-
(2.2) has a solution u(z) with o; <u; < B; inQ, 1 <i<m.
The construction of e-lower and e-upper solutions can be easily obtained in the

following example.

Example 3.6. Consider the boundary value problem for the steady state equation
in [4, 6]:

-V (D1Vu) = —au — ClG(‘U)’M +q (x),
— V- (DyVv) = —bv 4+ c2G(v)u + qo(z), in Q, (3.9)
Bu(z) = hi(z), By(z) = ha(z), z € 89,
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where

Gv)(z) = /; k(z, o' )o(z')de',

Assume that a, b, ¢; and ¢y are positive constants, that g1 and g2 are nonnegative
functions in (2, that Dy and D, are positive functions in {2, that k is a positive continuous
function in Q x Q, and that h; and h, are nonnegative functions on 9. Let

k"(:l:)z./s;k(a:,x')da:',

Furthermore, we assume that b%> > 4g2k* in Q and 2g;ck* < ab in . Choose M such
that
max{ql/a., hl/dlr h2/d2} <M< b/(2C2k*).

Set B1 = B2 = M and a; = az = 0, then we see that a = (a1, a2) and 8 = (b1, 82) are
e-lower and e-upper solutions of (3.9). By theorem 3.5, there exists a solution (u,v) of
(3.9) such that 0 < w < M, 0 < v < M in Q. In particular, when ¢, =0, hy = hy =0,
M is chosen to satisfy 0 < M < b/(2¢c2k*).

Example 3.7. Consider the steady state equation for the system in predator-prey
dynamics from [9]:

-V - (DiVu) = u(e — bu — cR;1(v))
~ V- (D3Vv) = v(—d — ev + fRa(u)), inQ, (3.10)
Bu(z) = hy(z) > 0, Bu(z) = ho(z) >0, z € 99,

where

0
Re(®)(x) = / /Q Gulz, ¥)¥(s,y)dy Fils)ds, k=1,2.

and a, b, ¢, d, e, f are positive constants and Gy, F; are smooth nonnegative functions.
An e-upper solution 8 and an e-lower solution a are given by setting 5, = B2 = M and
a1 = ap = 0, where M is to be determined later. Let

C* = maxmax ([_OOO Fi(s)ds -/;Gk(a:,y)dy) > 0.

k zeh

(i) if fC* < e, then we may choose M large enough.

(ii) if fC* > e and E = max{b/a, hi/d1, ha/d2} < d/(fC* —e), then we choose M such
that E < M < d/(fC* —e).

By theorem 3.5, problem (3.10) has a solution (u,v) suchthat 0 <« < M,0<v < M
in £

Remark. Another different type of systems involving nonlinear integral operators
is also given in [10].
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4. Modified method of mixed monotony

In this section we shall give a constructive proof for the existence of solutions of
(2.1)-(2.2) by finding two monotone sequences which converge uniformly in Q to the
solution. Assume that

C1: there exists a function f : Q@ x R™ x R™ x R™ x R™ — R™, (z,v,p,w,q)
— f(z,v,p,w,q), f = (f1,-.., fm) which satisfies the following conditions:

(4.1) f(z,v,p,w,q) is uniformly Holder continuous with the exponent A, 0 < A < 1,
in the domain § for v, p, w, ¢ fixed and locally Lipschitz continuous with respect to v, p, w
and q. Furthermore, for some ¢ > 0, we have

fi(z,v,p,w,q) - fi(z,v,p,w",¢") 2 0, (%)
filz,v,p,w,q) — filz,v*,p*,w,q) + (v; —v})/e 2 0,
if v; 207, pi 2p}, wi<w!, ¢ <qf,1<i<m.
(4.2)  There exist two functions a(z), B(z) € C%(Q) such that
(i) ai(z) < Bi(z), t€Q, 1<i <m,
(i) — L;a; — fi(z,a, K'a, B, K'B) <0, z € Q,
B;ai(z) < hi(z), €00, 1 <i<m.
(ii)) — L:B; — fi(z, 8, K*B,a, K'a) > 0, z € N,
BiBi(z) > hi(z), €N, 1 <i<m.
(4.3) fi(z,v, K*v,v, K'v) = ®,;(z,v, K*v), 1 < i < m.
(4.4) If there exist functions v and w with v; < w; in Q, 1 <4 < m, and satisfying
— L;v; — fi(a:,v,Kiv,w,Kiw) =0,
— Lyw; — fi(z, w, K*w,v, K*v) =0 in Q, (%)
Bivi(z) = B;w;(z) = hi(z), 2 €90, 1 <i<m.

then v = w in Q.

C2: Each operator K*(1 < ¢ < m) defined in N(a,8) n C*(Q), taking values in
C*(f), is bounded and continuous and has a bounded Fréchet derivatives on this set,
here N(a,8) = {v € C(Q)|a; <u; < Biin N, 1<i < m}. Furthermore, we assume that
K* is nondecreasing in u.

We then have the following theorem:

Theorem 4.1. Assume that C1 and C2 hold. Then there exist two mono-
tone sequences {un(z)} and {u™(z)} which converge to a solution u(z) of the
problem (2.1)-(2.2) and

afuyyLuL...<u=u=u<...<u*<ul <p in €.
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Proof. The sequence {un(z)} and {u™(z)}, n > 0, are defined as follows:

—Liu™ +u™ife= Fi(u™ Y un_1) + w1 /ein Q, (4.5)
B;u™;i(z) = hi(z), z €0, 1 <1< m,
and
— Ly, + Un; Je= Fi(tn_1,u™ 1) + un_y;/€ein Q, (4.6)
Biun.(z) = hi(z), €990, 1 <1 <m,
and

u(z) =B(z), wo(z) = a(i), z € Q. (4.7)

First we show that {u"} is a monotone nonincreasing sequence and {u.} is a monotone
nondecreasing sequence. In fact, by (4.5) and (4.2)(iii), putting z; = B; — ul;, 1 <i<m,
we have )

—L;z; + z;/e 2 0in Q, B;zi(z) > 0, = € 051.

By lemma 2.1, z; > 0, i.e.,, B > u!; in Q, 1 < < m. Similarly, we get a; < u; in Q,
1 < ¢ < m, Then by induction proof on n. Let z = u™ — u™t! by (4.1)(x), we have

—L;z; + zife = Fi(u™ Y up_1) — Fi(u™, un) + (u“_l,- —u™;)/e 2 0in Q,
Bizi(z) =0, = € 99.

By lemma, 2.1, we have z; > 0 in Q,1 < i< m. Hence u™ > w™*! in Q. Similarly, we
have un < tnt1 and v, < u™ in Q for n > 0. Thus we obtain

a<u <up<...<Un1 <up<...<um<u™ <. <u?<u' < Bin A

Let .
u(z) =nlim un(z), €N

#(z) = lim uv*(z), r€Q,
then w < @ in ! and u, — u, u™ — @ in the norm of L?(Q), p > 1. It follows that u™
and u, converge in W1 P(Q), 1 < p < co. By Sobolev embedding theorem, u™ and un

converge in C*(Q) for A =1— -’E—. By lemma 2.2, u™ and u,, converge in C2+*(Q). Thus
we have (4.4)(x) with v =u and w = 7. By (4.4), 7 =u in .

A sufficient condition for the existence of the function f in C1 is guaranteed by
imposing the following assumptions;

Di: ®(z,u,p) : © x R™ x R™ — R™ is uniformly Holder continuous with the
exponent A, 0 < A < 1, in § for u, p fixed and locally Lipschitz continuous with respect
to » and p. Furthermore, there exists a positive constant ¢ such that

®;(z, w, K'w) — ®;(z,v, K*v) > 2(v; — w;)/e (4.8)
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foro; <v; <w; <6;,1<i<m. And

D2:  There exist functions a, 8 € C%(Q) such that
(i) ci(x) < Bi(z), z€Q, 1<i<m,
(i) — Lioy — ®i(z, 0, K*a) < (B — as) /e, z € R,
B;oi(x) < hi(z), = € 09.
(iil) — LiBi — ®i(z, 3, K'B) > (o — Bi) /e, z € Q,
B;Bi(z) > hi(z), €00, 1 <i<m.
Define

fz'(x1 v, P, wsq) = [‘I’i(%’v,p) + Qi(il?,’bU,Q)]/z + 2(1.0,‘ — 'U,‘)/E, 1 S ) S m. (49)

Then (4.3) holds. By (4.8) and D2, we see that (4.2) is satisfied. It is easy to see that
(4.1)(*) is satisfied by using (4.9) and that (4.4) holds. Therefore, we have the following
theorem:

Theorem 4.2. Assume that D1, D2 and C2 are satisfied, then there ezist
two monotone sequences {u,(z)} and {u™(z)} which converge to a solution u(z)
of the problem (2.1)-(2.2) and

afuy Lup<...<u<...<d?<u!'<P8 il
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