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ON (N, pn,q,) SUMMABILITY OF FOURIER SERIES AND ITS
CONJUGATE SERIES

NARENDRA KUMAR SHARMA AND RAJIV SINHA

Abstract. The aim of the present paper is to generalize the result of the theorems
given by Pandey [4].

1. Let Y or o an be a given infinite series with the sequence of partial sums {S,}.

Let p denote the sequence {p.}, p—1 = 0, given two sequences p and g the convolution
(p * ¢) is defined by
(p *Q)n = an—ka
k=0

for any sequence {S,} we write

1 n
= o) > Pr_kakSi (1.1)
L -

If (p*q), #0 for all n. If t2? — § as n — oo, we write

> an=S(N,pn,¢n) or S — S(N,pn,qn)

n=0

The necessary and sufficient condition for S(N, p,,¢,) method to be regular are
> k=0 [Pn—xak] = O(|(p * @)n|) and pa—k = O(|p * @)n|) as n — oo, for fixed k > 0 for
each g # 0.

2. Let f(t) be a 2w-periodic function and Lebesgue integrable over an interval
(—m, 7). Let its Fourier series be

1

590 + Z(an cos nt + by, sin nt) = Z An(t) (2.1)

n=1 n=1

Received August 15, 1991
1991 Mathematics Subject Classification. 42A24, 42A50.
Key words and phrases. Norlund summability, Fourier series, conjugate series.

93



94 NARENDRA KUMAR SHARMA AND RAJIV SINHA

And then conjugate series of (2.1) is

Z(b" cos nt — a, sin nt) = Z B.,.(t) (2.2)
n=1 n=1

we shall use the following notation:

¢(t) = ¢(z,t) = f(z + 1) + f(z — t) — 2f(2)

and
U(t)=¥(z,t) = f(z+t)— f(z - 1)

P()=Rn o(3)=an ®(3)="w

where 7 = [1] denotes the integral part of 1
Rn=(p*q)n

3(t) = /o I$(u)ldu, T(t) = f o (w)|dus

L = sin(n — k + 1)t
Nn(t) =m Z;)pvqn.—v Y %t

- 1 sin(n — k + 1)t
N'n(t) =27ar vaq'n—'u s, 1
=0 2

v=

3. Pandey [4] proved the following two theorems.

Theorem 1. If &(t) = [ |¢(u)|du = O[tX (t)] (3.1)
as t — +0, where X (t) is a positive, non-decreasing function of ¢, such that

X(%) = O(1) as n— o0 (3.2)

and
J dt
X))@= =0(Q), as n-oo (3.3)
1
Then the Fourier series of f(t) at t = z is summable (N, g,) to f(z), where {g.} is
a real, non-negative and non-increasing sequence such that Q, — co as n — co.

Theorem 2. If the sequence {¢.} and {X(t)} be same as in Theorem 1.
Then if

U(t) = /0 t |[9(t)|du = O[tX (t)] (3.4)
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as t — +0. Then the conjugate series (2.2) is summable (N,q,) to

I t
%‘/0 1/)(t)COt Edt

at every point where its integral exists.

4. The object of this pa.pér is to obtain, more general theorems for (V,pn,qn)
Norlund summability of the Fourier series and its conjugate series.
We shall prove the following theorems.

Theorem A. If &(t) = [ |¢(u)|du = Ot X (t)] (4.1)
as t — +0, where X(t) is a positive non-decreasing function of t, such that

X(%) =Bf) @& W-ie (4.2)
and
dt
t

L "xOR%-0®) as now (4.3)

Then the Fourier series at t = z is summable (N,pn,q,). Where {p.} and {g.}
are real, non-negative and non-increasing sequence such that R, — oo, as n — co.

Theorem B. If the sequences {p.}, {g.} and {X(t)} be same as in Theorem
[A]. then if

%) = [ [owldu = 0(eX (1) (44)

as t — +0. Then the conjugate series (2.2) is summable (N,pn,gn) to

1 (7 t
g/o ’lp(t)COt "2‘dt

at every point where its integral exists.

5. We shall use the following lemmas in the proof of our theorems.

Lemma 1.[3]. If {p.} and {g.} are non-negative non-increasing sequences,
then for0<a<b<oo,0<t<m.
We have

b
i(rn— 1
|Zpk4n—ke'(" B R(-t-) for any a.

k=a

Lemma 2.[5,6] For the sequences {p,} and {g.} satisfying the conditions of
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theorem, 0 <t <m

n

1 sin(n — k + 1)t R(Y)
Na(t) = R, kEﬂpk‘ln—k 2. =0 [——5—]

sin £ tR,
and
1 cos(n —k+ 1)t R(3)
Nn( ) - 21ar kz-—_opkq-n k o 3 0 tRn
and for 0 <t < 1 N,(t) = Na(t) = O(n)
Proof of the Theorem 1.
Let
< 1
Sulz) = ;Av(x) o= an
Then we write- ‘
sin(n + t
5a(0) = flo) = o [ SO E sin(n + 3)t g,
sin 2
using (1.1) we get
1 n
p’q il —_—— p—
tn f(z) R. 1;Iluqn—v['s'n-—v f(w)]
B sin(n — + 1yt
=R_ ZPin—u ¢( ) ( 2) dt

™ =0

[T 1 = sin(n — v+ 3)t
= / "GN ()dt,  say.
0

In order to prove the theorem, we have to show that

/” ¢(t)Na(t)dt = O(1), as n— o0
- J0

wewritefor0<d <7

/o ) d(t)Nn(t)dt = [/0 - 4 L : + /5 w] &(t)Nn(t)dt

=N + I, + I3, say
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Now

1
= /O B(8) N ()t

=0 [’n /0 " |¢(t)|dt] = 0(1)

)
B / 8(t)Nn(t)dt

é
—0[R;! L |¢<t)|%dt1

—olr;* 2% 4 ofr;! / <I>(t) ™ ]

+O[R: /l @(t)%d}?,,]

_O[R‘l{tX(t)——-} |+ O[R:! /l 6tX(t)%dt]

1
+olrs? [ exbiand
Now by the hypothesis (4.1) and (4.3) of the theorem

é
=0(1) + O(1) + O[R;} /l X (¢) dryr]
=0(1) + 0(1) + O[R;} [L 6 X(t)dR)

=0(1) + O(1) + O[R;! zn: R,]
v=0

=0(1) + O(1) + 0(1)
=0(1) as n— oo.

Lastly, by virtue of Riemann Lebesgue theorem and regularity of the method of summa- .
tion, we have

Is =/ HONO#=0() 8 n—ro0
6
This completes the proof of Theorem 1.

Proof of Theorem 2. Let S,(r) denote the nth partial sum of the series
> Ba(z). Then we have

7f - 1
3.(z) = %/0 sl Fos(n+ 2)tdt

t
sin 3
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For ) B, (x), making use of the formula (1.1)
2 _ i / () cot fdt

—R‘lz;p,,qn_vsn-v(x = —/ ¥(t) cot dt

»=0

= 1 cos £ —cos(n — v+ 1)t
=R-1§:M_——/‘I’t : 2=dt
" ‘v=0p ! v27r 0 () Sin%

-—ifw Y(t) cot ldt
/TP(){ Zpu nwcos(n v+2)t}dt

sin 3

=~ / PY(t)Na(t)dt. (say, = H).
0
In order to prove the theorem, we have to show that, under our assumptions
™
/ Y(E)Na(t)dt =0(1) as n— oo
0

for 0 < § < 7, we have

/0 " SON ()t = [ /0 " 4 /l " / w] DN () dt

=H, + Hy + H;,  say,

since the conjugate function exists, Therefore

-—l—/%w(t)cttdt—Ol
= Ot St = (1)

and

t 1
Zp'in—v cos 3 —cos(n — v + 3)t

2 in £
Rn — sin £

27ar va‘]n— ZZSIH kt

k=0
n—uy

=O[R: Ivaqn van kt[]

v=0

=O[R;* zpvqrz—v(n =]
v=0

=0(n), for0<t<nr
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Thereiore, "
H; = / " (t)Nn(t) dt
0
= (t) }E:pvqn_u cos(n — v + 3)t -

o 21rR,l sin £
t 1
cos £ —cos(n—v+ 3)t
—_— ¢(t § : Poln—v 2 ‘( - 2) dt
0 27rR,, sin 3

/ (2) cot —dt

~0(n /0 ()lde) + O(1)

=0[¥ ()] +0()
=0(1) + O(1) = 0(1) as m — 00
Now for L <t <6

6 s——
Hy =0] / k()] [N a(®)ldt]

Rt
H2 =O(1) as in Iz
also Hz = O(1)
By virtue of the Riemann Lebesgue theorem and the regularity of the method of
summation, on calculating H,, Hs, H3 we get

H=0(1)
which completes the proof of the Theorem 2.
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