COEFFICIENT ESTIMATES FOR BOUNDED STARLIKE FUNCTIONS

OF COMPLEX ORDER

M. K. AOUF

Abstract. Let $F(b, M, n)\left(b \neq 0\right.$, complex, $M>\frac{1}{2}$, and n is a positive integer $)$ denote the class of functions $f(z)=z+\sum_{k=n+1}^{\infty} a_{k} z^{k}$ analytic in $U=\{z:|z|<1\}$ which satisfy for fixed $M, f(z) / z \neq 0$ in U and

$$
\left|\frac{b-1+\frac{z f^{\prime}(z)}{f(z)}}{b}-M\right|<M, \quad z \in U
$$

Also let $F^{*}(b, M, n)(b \neq 0$, complex, $M \geq 1$, and n is a positive integer $)$ denote the class of functions $f(z)=\frac{1}{z}+\sum_{k=n}^{\infty} \bar{a}_{k} z^{k}$ analytic in the annulus $U^{*}=\{z$: $0<|z|<1\}$ which satisfy

$$
\left|\frac{b-1-\frac{z f^{\prime}(z)}{f(z)}}{b}-M\right|<M, \quad z \in U^{*}
$$

In this paper we obtain bounds for the coefficients of functions of the above classes.

1. Introduction

Let A denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=n+1}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

which are analytic in the unit disc $U=\{z:|z|<1\}$. Let Ω denote the class of bounded analytic functions $w(z)$ in U, of the form

$$
\begin{equation*}
w(z)=\sum_{k=n}^{\infty} b_{k} z^{k} \tag{1.2}
\end{equation*}
$$

Received October 15, 1992.
1991. Mathematics Subject Classification. 30C45.

Key words and phrases. Analytic, starlike, coefficients.
satisfying the conditions $w(0)=0$ and $|w(z)|<1$ for $z \in U$.
Let $P_{M}(n)$, where n is a positive integer, denote the class of functions of the form

$$
\begin{equation*}
P(z)=1+\sum_{k=n}^{\infty} c_{k} z^{k} \tag{1.3}
\end{equation*}
$$

which are analytic in U and satisfying

$$
\begin{equation*}
|P(z)-M|<M \tag{1.4}
\end{equation*}
$$

for a fixed real $M, M>\frac{1}{2}$.
It is easy to show that

$$
\begin{equation*}
P(z)=\frac{1+w(z)}{1-Q w(z)}, \quad Q=1-\frac{1}{M}, M>\frac{1}{2}, w \in \Omega \tag{1.5}
\end{equation*}
$$

is a function in $P_{M}(n)$.
For $f(z) \in A$, we say that $f(z)$ belongs to the class $F(b, M, n)(b \neq 0$, complex, $M>\frac{1}{2}$, and n is a positive integer), of bounded starlike functions of complex order, if and only if $f(z) / z \neq 0$ in U and fixed M,

$$
\begin{equation*}
1+\frac{1}{b}\left(\frac{z f^{\prime}(z)}{f(z)}-1\right)=P(z), \quad z \in U \tag{1.6}
\end{equation*}
$$

for some $P(z) \in P_{M}(n)$.
Or, equivalently

$$
\begin{equation*}
\left|\frac{b-1+\frac{z f^{\prime}(z)}{f(z)}}{b}-M\right|<M, z \in U \tag{1.7}
\end{equation*}
$$

From (1.5) and (1.6) it follows that $f(z) \in F(b, M, n)$ if and only if for $z \in U$

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)}=\frac{1+[b(1+Q)-Q] w(z)}{1-Q w(z)}, \quad w \in \Omega, \quad Q=1-\frac{1}{M} \tag{1.8}
\end{equation*}
$$

We note that by giving specific values to b, M and n, we obtain the following important subclasses studied by various authors in earlier papers:
(i) For $b=(1-a) e^{-i \beta} \cos \beta, 0 \leq a<1,|\beta|<\frac{\pi}{2}$ and $M=\frac{\sigma}{1-a}>\frac{1}{2}, F\left((1-a) e^{-i \beta} \cos \beta\right.$, $\left.\frac{\sigma}{1-a}, n\right)=S_{\beta}(a, \sigma, n)$ (Goplakrishna and Shetiya [8]);
(ii) For $n=1, b=1-\alpha, 0 \leq \alpha<1$, and M tending to $\infty, F(1-\alpha, \infty, 1)=S^{*}(\alpha)$ (Robertson [19]);
(iii) For $n=1, b=(1-\alpha) e^{-i \lambda} \cos \lambda, 0 \leq \alpha<1,|\lambda|<\frac{\pi}{2}$, and M tending to $\infty, F((1-$ $\left.\alpha) e^{-i \lambda} \cos \lambda, \infty, 1\right)=S^{\lambda}(\alpha)($ Libera [12] $) ;$
(iv) For $n=1$ and $b=e^{-i \lambda} \cos \lambda,|\lambda|<\frac{\pi}{2}, F\left(e^{-i \lambda} \cos \lambda, M, 1\right)=F_{\lambda, M}$ (Kulshretha [11]);
(v) For $n=1$ and M tending to $\infty, F(b, \infty, 1)=S(1-b)$ (Nasr and Aouf [15]);
(vi) For $n=1, F(b, M, 1)=F(b, M)$ (Nasr and Aouf [16]);
(vii) For $n=1$ and $b=(1-\alpha) e^{-i \lambda} \cos \lambda, 0 \leq \alpha<1,|\lambda|<\frac{\pi}{2}, F\left((1-\alpha) e^{-i \lambda} \cos \lambda, M, 1\right)=$ $F_{M}(\lambda, \alpha)$ (Aouf $\left.[1,3]\right)$.
Let $F^{*}(b, M, n)$ denote the class of functions of the form

$$
\begin{equation*}
f(z)=\frac{1}{z}+\sum_{k=n}^{\infty} a_{k} z^{k} \tag{1.9}
\end{equation*}
$$

which are analytic in the punctured disc $U^{*}=\{z: 0<|z|<1\}$, and satisfying

$$
\begin{equation*}
1-\frac{1}{b}\left(\frac{z f^{\prime}(z)}{f(z)}+1\right)=P(z), \quad z \in U^{*} \tag{1.10}
\end{equation*}
$$

for some $P(z) \in P_{M}(n+1)$.
Or, equivalently

$$
\begin{equation*}
\left|\frac{b-1-\frac{z f^{\prime}(z)}{f(z)}}{b}-M\right|<M, \quad M \geq 1, \quad z \in U^{*} \tag{1.11}
\end{equation*}
$$

Thus from (1.7), (1.11) and (1.8) it follows that $f(z) \in F^{*}(b, M, n)$ if and only if
(i) $\frac{1}{f(z)} \in F(b, M, n)$
(ii) $-\frac{z f^{\prime}(z)}{f(z)}=\frac{1+[b(1+Q)-Q] w(z)}{1-Q w(z)}, w \in \Omega, \quad Q=1-\frac{1}{M}$.

Also we note that by giving specific values to b, M and n, we obtain the following important subclasses studied by various authors in earlier papers:
(i) For $b=(1-a) e^{-i \beta} \cos \beta, 0 \leq a<1,|\beta|<\frac{\pi}{2}$ and $M=\frac{\sigma}{1-a} \geq 1, F^{*}\left((1-a)^{-i \beta} \cos \beta\right.$, $\left.\frac{\sigma}{1-a}, n\right)=U_{\beta}(a, \sigma, n)$ (Goplakrishna and Shetiya [8]);
(ii) For $n=b=1$ and M tending to $\infty, F^{*}(1, \infty, 1)=F^{*}(1)$ (Clunie [5]);
(iii) For $n=1, b=(1-a), 0 \leq a<1$ and M tending to $\infty, F^{*}(1-a, \infty, 1)=F^{*}(1-a)$ (Pommerenke [18] and Kaczmarski [10]);
(iv) For $n=1, b=(1-a) e^{-i \beta} \cos \beta, 0 \leq a<1,|\beta|<\frac{\pi}{2}$ and M tending to $\infty, F^{*}((1-\alpha)$ $\left.\cdot e^{-i \beta} \cos \beta, \infty, 1\right)=F^{*}(a, \beta)($ Kaczmarski [10]);
(v) For $n=1$ and $b=1-a, 0 \leq a<1 ; F^{*}(1-a, M, 1)=F_{M}^{*}(a)$ (Kaczmarski [10]);
(vi) For $n=1$ and $b=(1-a) e^{-i \beta} \cos \beta, 0 \leq a<1,|\beta|<\frac{\pi}{2}, F\left((1-a) e^{-i \beta} \cos \beta, M, 1\right)=$ $F_{M}^{*}(a, \beta)$ (Kaczmarski [10]);
(vii) For $n=1, F^{*}(b, M, 1)=F^{*}(b, M)$ (Aouf [2]);
(viii) For $n=1$ and M tending to $\infty, F^{*}(b, \infty, 1)=F^{*}(b)$ (Aouf [2]).

In this paper we obtain bounds for the coefficients of functions of the classes $F(b, M$, $n), M>\frac{1}{2}$ and $F^{*}(b, M, n), M \geq 1$.
2. Coefficient estimates for the classes $F(b, M, n)$ and $F^{*}(b, M, n)$.

We shall use the following lemma in our investigation:
Lemma 1. If $Q \neq 1$ and n and q are positive integers, then

$$
\begin{align*}
& \left(1-Q^{2}\right)\left\{\left(\frac{1+Q}{1-Q}\right)|b|^{2}+\sum_{m=1}^{q}\left[\left(\frac{1+Q}{1-Q}\right)|b|^{2}+\frac{2 Q}{1-Q} m n \operatorname{Re}\{b\}-m^{2} n^{2}\right]\right. \\
& \left.\cdot\left[\frac{1}{m!} \prod_{j=0}^{m-1} u_{j}\right]^{2}\right\}=\left\{\frac{n}{q!} \prod_{j=0}^{q} u_{j}\right\}^{2} \tag{2.1}
\end{align*}
$$

where

$$
\begin{equation*}
u_{j}=\left|\left(\frac{1+Q}{n}\right) b+j Q\right|, \quad j=0,1,2, \cdots \tag{2.2}
\end{equation*}
$$

The lemma can be proved by induction on q in the same way as the lemma in [7].
Theorem. 1. If the function $f(z)$ defined by (1.1) is in the class $F(b, M, n)$, $M>\frac{1}{2}$ and $Q \neq 1$, and if

$$
\begin{equation*}
n^{2}-\frac{2 Q}{1-Q} n \operatorname{Re}\{b\}-\left(\frac{1+Q}{1-Q}\right)|b|^{2} \geq 0 \tag{2.3}
\end{equation*}
$$

then

$$
\begin{equation*}
\sum_{k=m n+1}^{(m+1) n}(k-1)^{2}\left|a_{k}\right|^{2} \leq(1+Q)^{2}|b|^{2}, \quad m=1,2, \cdots . \tag{2.4}
\end{equation*}
$$

If, on the other hand,

$$
\begin{equation*}
n^{2}-\frac{2 Q}{1-Q} n \operatorname{Re}\{b\}-\left(\frac{1+Q}{1-Q}\right)|b|^{2}<0 \tag{2.5}
\end{equation*}
$$

then

$$
\begin{equation*}
\sum_{k=m n+1}^{(m+1) n}(k-1)^{2}\left|a_{k}\right|^{2} \leq\left\{\frac{n}{(m-1)!} \prod_{j=0}^{m-1} u_{j}\right\}^{2} \tag{2.6}
\end{equation*}
$$

for $m=1,2, \cdots, q_{0}+1$, and

$$
\begin{equation*}
\sum_{k=m n+1}^{(m+1) n}(k-1)^{2}\left|a_{k}\right|^{2} \leq\left\{\frac{n}{q_{0}!} \prod_{j=0}^{q_{0}} u_{j}\right\}^{2} \tag{2.7}
\end{equation*}
$$

for $m=q_{0}+2, q_{0}+3, \cdots$, where u_{j} is given by (2.2) and q_{0} is the natural number determined by $q_{0} \in[c-1, c)$, where

$$
\begin{equation*}
c=\frac{\left(\frac{Q}{1-Q}\right) \operatorname{Re}\{b\}+\sqrt{\left(\frac{Q}{1-Q} \operatorname{Re}\{b\}\right)^{2}+\left(\frac{1+Q}{1-Q}\right)|b|^{2}}}{n} \tag{2.8}
\end{equation*}
$$

Also

$$
\begin{equation*}
\sum_{k=n+1}^{\infty}\left[(k-1)^{2}-\left(\frac{1+Q}{1-Q}\right)|b|^{2}-\frac{2 Q}{1-Q}(k-1) \operatorname{Re}\{b\}\right]\left|a_{k}\right|^{2} \leq\left(\frac{1+Q}{1-Q}\right)|b|^{2} \tag{2.9}
\end{equation*}
$$

The estimates in (2.4) and (2.6) are sharp.
Proof. Since $f(z) \in F(b, M, n),(1.8)$ gives

$$
\left[z f^{\prime}(z)-f(z)\right]=\left\{[(1+Q) b-Q] f(z)+Q z f^{\prime}(z)\right\} w(z)
$$

Substituting the series expansions of $f(z)$ and $w(z)$, we obtain

$$
\begin{align*}
& \sum_{k=n+1}^{\infty}(k-1) a_{k} z^{k} \\
& =\left\{(1+Q) b z+\sum_{k=n+1}^{\infty}[(1+Q) b+Q(k-1)] a_{k} z^{k}\right\} \sum_{k=n}^{\infty} b_{k} z^{k} \tag{2.10}
\end{align*}
$$

We now proceed by a method introduced by Clunie [5].
Equating the coefficients of z^{k} on the two sides of (2.10) for $k=n+1, \cdots, 2 n$, we obtain

$$
(k-1) a_{k}=(1+Q) b b_{k-1} \quad \text { for } \quad k=n+1, \cdots, 2 n
$$

Therefore,

$$
\begin{align*}
\sum_{k=n+1}^{2 n}(k-1)^{2}\left|a_{k}\right|^{2} & \leq(1+Q)^{2}|b|^{2} \sum_{k=n+1}^{2 n}\left|b_{k-1}\right|^{2} \\
& \leq(1+Q)^{2}|b|^{2} \tag{2.11}
\end{align*}
$$

since, we have, for $0<r<1$,

$$
\sum_{k=n}^{\infty}\left|b_{k}\right|^{2} r^{2 k}=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|w\left(r e^{i \varphi}\right)\right|^{2} d \varphi \leq 1
$$

and letting r tends to 1 we obtain $\sum_{k=n}^{\infty}\left|b_{k}\right|^{2} \leq 1$.
Again, for $p \geq n+1$, (2.10) can be put in the form

$$
G(z)=H(z) w(z), \quad z \in U
$$

with

$$
G(z)=\sum_{k=n+1}^{n+p}(k-1) a_{k} z^{k}+\sum_{k=n+p+1}^{\infty} d_{k} z^{k}
$$

and

$$
H(z)=(1+Q) b z+\sum_{k=n+1}^{p}[(1+Q) b+Q(k-1)] a_{k} z^{k}
$$

where $\sum_{k=n+p+1}^{\infty} d_{k} z^{k}$ converges in U.
Since $|w(z)|<1$ for $z \in U$, we obtain, for $0<r<1$,

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|G\left(r e^{i \varphi}\right)\right|^{2} d \varphi \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|H\left(r e^{i \varphi}\right)\right|^{2} d \varphi
$$

so that

$$
\begin{aligned}
& \sum_{k=n+1}^{n+p}(k-1)^{2}\left|a_{k}\right|^{2} r^{2 k}+\sum_{k=n+p+1}^{\infty}\left|d_{k}\right|^{2} r^{2 k} \\
& \leq(1+Q)^{2}|b|^{2} r^{2}+\sum_{k=n+1}^{p}|(1+Q) b+Q(k-1)|^{2}\left|a_{k}\right|^{2} r^{2 k} .
\end{aligned}
$$

Letting r tends to 1 and rearranging, we obtain for $p \geq n+1$,

$$
\begin{align*}
& \sum_{k=p+1}^{p+n}(k-1)^{2}\left|a_{k}\right|^{2} \leq\left(1-Q^{2}\right)\left\{\left(\frac{1+Q}{1-Q}\right)|b|^{2}+\sum_{k=n+1}^{p}\left[\left(\frac{1+Q}{1-Q}\right)|b|^{2}+\right.\right. \\
& \left.\left.+\frac{2 Q}{1-Q}(k-1) \operatorname{Re}\{b\}-(k-1)^{2}\right]\left|a_{k}\right|^{2}\right\} \tag{2.12}
\end{align*}
$$

Let the inequality (2.3) hold true. Then, for $k \geq n+1$, if $Q \cdot \operatorname{Re}\{b\}>0$, we have

$$
\begin{aligned}
& \left(\frac{1+Q}{1-Q}\right)|b|^{2}+\frac{2 Q}{1-Q}(k-1) \operatorname{Re}\{b\}-(k-1)^{2} \\
= & (k-1)^{2}\left[\left(\frac{1+Q}{1-Q}\right) \frac{|b|^{2}}{(k-1)^{2}}+\frac{2 Q}{1-Q} \frac{\operatorname{Re}\{b\}}{(k-1)}-1\right] \\
\leq & (k-1)^{2}\left[\left(\frac{1+Q}{1-Q}\right) \frac{|b|^{2}}{n^{2}}+\frac{2 Q}{1-Q} \frac{R e\{b\}}{n}-1\right] \\
= & \frac{(k-1)^{2}}{n^{2}}\left[\left(\frac{1+Q}{1-Q}\right)|b|^{2}+\frac{2 Q}{1-Q} n \operatorname{Re}\{b\}-n^{2}\right] \\
& \leq 0 .
\end{aligned}
$$

If $Q \cdot \operatorname{Re}\{b\}<0$, we have

$$
\begin{aligned}
& \left(\frac{1+Q}{1-Q}\right)|b|^{2}+\frac{2 Q}{1-Q}(k-1) \operatorname{Re}\{b\}-(k-1)^{2} \\
\leq & \left(\frac{1+Q}{1-Q}\right)|b|^{2}+\frac{2 Q}{1-Q} \cdot n \cdot \operatorname{Re}\{b\}-n^{2} \\
\leq & 0
\end{aligned}
$$

Hence (2.12) yields

$$
\sum_{k=p+1}^{p+n}(k-1)^{2}\left|a_{k}\right|^{2} \leq(1+Q)^{2}|b|^{2} \quad \text { for } \quad p \geq n+1
$$

Putting $p=m n, m \geq 2$ and combining with (2.11) we obtain (2.4).
Suppose now the inequality (2.5) is true. Let q_{0} be as defined in the statement of the theorem. Then q_{0} is the largest of the natural numbers k for which

$$
k^{2} n^{2}-\frac{2 Q}{1-Q} k n \operatorname{Re}\{b\}-\left(\frac{1+Q}{1-Q}\right)|b|^{2}<0
$$

We now establish by an inductive argument inequalities (2.6) for $m=1,2, \cdots, q_{0}+1$ and the inequalities

$$
\begin{align*}
& \sum_{k=m n+1}^{(m+1) n}\left[\left(\frac{1+Q}{1-Q}\right)|b|^{2}+\frac{2 Q}{1-Q}(k-1) \operatorname{Re}\{b\}-(k-1)^{2}\right]\left|a_{k}\right|^{2} \\
& \leq\left[\left(\frac{1+Q}{1-Q}\right)|b|^{2}+\frac{2 Q}{1-Q} m n \operatorname{Re}\{b\}-m^{2} n^{2}\right]\left[\frac{1}{m!} \prod_{j=0}^{m-1} u_{j}\right]^{2} \tag{2.13}
\end{align*}
$$

for $m=1, \cdots, q_{0}$.
For $m=1,(2.6)$ reduces to (2.11) whereas the left member of (2.13)

$$
\begin{aligned}
& \leq\left[\frac{\left(\frac{1+Q}{1-Q}\right)|b|^{2}+\frac{2 Q}{1-Q} n \operatorname{Re}\{b\}-n^{2}}{n^{2}}\right] \sum_{k=n+1}^{2 n}(k-1)^{2}\left|a_{k}\right|^{2} \\
& \leq\left[\left(\frac{1+Q}{1-Q}\right)|b|^{2}+\frac{2 Q}{1-Q} n \operatorname{Re}\{b\}-n^{2}\right]\left(\frac{1+Q}{n}\right)^{2}|b|^{2}
\end{aligned}
$$

by (2.11), so that (2.13) holds for $m=1$.
Suppose that (2.6) and (2.13) hold for $m=1, \cdots, q-1$, where $2 \leq q \leq q_{0}$. For $p=q n,(2.12)$ yields

$$
\begin{aligned}
& \sum_{k=q n+1}^{(q+1) n}(k-1)^{2}\left|a_{k}\right|^{2} \leq(1-Q)^{2}\left\{\left(\frac{1+Q}{1-Q}\right)|b|^{2}\right. \\
& \left.\quad+\sum_{m=1}^{q-1} \sum_{k=m n+1}^{(m+1) n}\left[\left(\frac{1+Q}{1-Q}\right)|b|^{2}+\frac{2 Q}{1-Q}(k-1) \operatorname{Re}\{b\}-(k-1)^{2}\right]\left|a_{k}\right|^{2}\right\} \\
& \leq \\
& \left(1-Q^{2}\right)\left\{\left(\frac{1+Q}{1-Q}\right)|b|^{2}+\sum_{m=1}^{q-1}\left[\left(\frac{1+Q}{1-Q}\right)|b|^{2}+\frac{2 Q}{1-Q} m n R e\{b\}-m^{2} n^{2}\right] .\right. \\
& \\
& \left.\quad\left[\frac{1}{m!} \prod_{j=0}^{m-1} u_{j}\right]^{2}\right\}
\end{aligned}
$$

by (2.13) for $m=1, \cdots, q-1$.
Hence by Lemma 1,

$$
\sum_{k=q n+1}^{(q+1) n}(k-1)^{2}\left|a_{k}\right|^{2} \leq\left[\frac{n}{(q-1)!} \prod_{j=0}^{q-1} u_{j}\right]^{2}
$$

so that (2.6) holds for $m=q$. Now,

$$
\begin{aligned}
& \sum_{k=q n+1}^{(q+1) n}\left[\left(\frac{1+Q}{1-Q}\right)|b|^{2}+\frac{2 Q}{1-Q}(k-1) \operatorname{Re}\{b\}-(k-1)^{2}\right]\left|a_{k}\right|^{2} \\
\leq & {\left[\frac{\left(\frac{1+Q}{1-Q}\right)|b|^{2}+\frac{2 Q}{1-Q} n \operatorname{Re}\{b\}-q^{2} n^{2}}{q^{2} n^{2}}\right] \sum_{k=q n+1}^{(q+1) n}(k-1)^{2}\left|a_{k}\right|^{2} } \\
\leq & {\left[\frac{\left(\frac{1+Q}{1-Q}\right)|b|^{2}+\frac{2 Q}{1-Q} q n \operatorname{Re}\{b\}-q^{2} n^{2}}{q^{2} n^{2}}\right]\left[\frac{n}{(q-1)!} \prod_{j=0}^{q-1} u_{j}\right]^{2}, }
\end{aligned}
$$

using (2.6) with $m=q$ (since $\left(\frac{1+Q}{1-Q}\right)|b|^{2}+\frac{2 Q}{1-Q} q n \operatorname{Re}\{b\}-q^{2} n^{2}>0$ because $q \leq q_{0}$). Thus (2.13) holds for $m=q$.

Hence (2.6) and (2.13) hold for $m=1, \cdots, q_{0}$. It follows now, by the argument used above to show that (2.6) holds for $m=q$, that (2.6) holds for $m=q_{0}+1$.

By the definition of q_{0}, we have

$$
\left(\frac{1+Q}{1-Q}\right)|b|^{2}+\frac{2 Q}{1-Q} n\left(q_{0}+1\right) \operatorname{Re}\{b\}-\left(q_{0}+1\right)^{2} n^{2} \leq 0
$$

Hence $\left(\frac{1+Q}{1-Q}\right)|b|^{2}+\frac{2 Q}{1-Q}(k-1) \operatorname{Re}\{b\}-(k-1)^{2} \leq 0$ for $k>\left(q_{0}+1\right) n$. Thus, for $p \geq\left(q_{0}+1\right) n$, (2.12) yields

$$
\begin{aligned}
& \sum_{k=p+1}^{p+n}(k-1)^{2}\left|a_{k}\right|^{2} \\
& \leq\left(1-Q^{2}\right)\left\{\left(\frac{1+Q}{1-Q}\right)|b|^{2}+\sum_{m=1}^{q_{0}} \sum_{k=m n+1}^{(m+1) n}\left[\left(\frac{1+Q}{1-Q}\right)|b|^{2}+\frac{2 Q}{1-Q}(k-1) \operatorname{Re}\{b\}-(k-1)^{2}\right]\left|a_{k}\right|^{2}\right\} \\
& \leq \\
& \leq\left(1-Q^{2}\right)\left\{\left(\frac{1+Q}{1-Q}\right)|b|^{2}+\sum_{m=1}^{q_{0}}\left[\left(\frac{1+Q}{1-Q}\right)|b|^{2}+\frac{2 Q}{1-Q} m n \operatorname{Re}\{b\}-m^{2} n^{2}\right]\left[\frac{1}{m!} \prod_{j=0}^{m-1} u_{j}\right]^{2}\right\}
\end{aligned}
$$

by (2.13) for $m=1,2, \cdots, q_{0}$.

Hence, by Lemma 1,

$$
\sum_{k=p+1}^{p+n}(k-1)^{2}\left|a_{k}\right|^{2} \leq\left[\frac{n}{q_{0}!} \prod_{j=0}^{q_{0}} u_{j}\right] \text { for } p \geq\left(q_{0}+1\right) n
$$

Putting $p=m n, m=q_{0}+2, q_{0}+3, \cdots$, we obtain (2.7).
Finally, we obtain from (2.12),

$$
\sum_{k=n+1}^{p}\left[(k-1)^{2}-\left(\frac{1+Q}{1-Q}\right)|b|^{2}-\frac{2 Q}{1-Q}(k-1) \operatorname{Re}\{b\}\right]\left|a_{k}\right|^{2} \leq\left(\frac{1+Q}{1-Q}\right)|b|^{2}
$$

for $p \geq n+1$ and letting p tends to ∞, we obtain (2.9). This completes the proof of Theorem 1.

The estimates (2.4) and (2.6) are sharp with equality holding in (2.4) for a given m for the fucnction $f_{\varepsilon}(z)(|\varepsilon|=1)$ defined by

$$
f_{\varepsilon}(z)= \begin{cases}z\left[1-\varepsilon Q z^{m n}\right]^{-\left(\frac{1+Q}{Q}\right) \frac{b}{m n}}, & Q \neq 0 \\ z \exp \left[\frac{\varepsilon b z^{m n}}{m n}\right], & Q=0\end{cases}
$$

if $n^{2}-\frac{2 Q}{1-Q} n \operatorname{Re}\{b\}-\left(\frac{1+Q}{1-Q}\right)|b|^{2} \geq 0$.
Also the equality in (2.6) holds for the function $f_{\varepsilon}(z)(|\varepsilon|=1)$ defined by

$$
f_{\varepsilon}(z)= \begin{cases}{\left[1-\varepsilon Q z^{n}\right]^{-\left(\frac{1+Q}{Q}\right) \frac{b}{n}},} & Q \neq 0 \\ z \exp \left[\frac{\varepsilon b z^{n}}{n}\right], & Q=0\end{cases}
$$

if $n^{2}-\frac{2 Q}{1-Q} n \operatorname{Re}\{b\}-\left(\frac{1+Q}{1-Q}\right)|b|^{2}<0$.
Remark $\mathbb{1}$. Under the hypothesis of Theorem 1 , since Q tends to 1 as M tends to ∞, it follows that $n^{2}-\frac{2 Q}{1-Q} n \operatorname{Re}\{b\}-\left(\frac{1+Q}{1-Q}\right)|b|^{2}<0$ for all sufficiently large M and hence (2.6) and (2.7) hold for all sufficiently large M. Also since q_{0} tends to $\infty, 1+Q$ tends to 2 as M tends to ∞, we obtain the following corollaries:

Corollary 1. If $f(z)=z+\sum_{k=n+1}^{\infty} a_{k} z^{k} \in F\left((1-\alpha) e^{-i \lambda} \cos \lambda, M, n\right)=F_{M}(\lambda, \alpha, n)$, $|\lambda|<\frac{\pi}{2}$ and $0 \leq \alpha<1$, then

$$
\sum_{k=m n+1}^{(m+1) n}(k-1)^{2}\left|a_{k}\right|^{2} \leq\left\{\frac{n}{(m-1)!} \prod_{j=0}^{m-1}\left|\left(\frac{1+Q}{n}\right)(1-\alpha) e^{-i \lambda} \cos \lambda+j Q\right|\right\}^{2}
$$

for $m=1,2, \cdots$. The estimates are sharp for the function $f_{\varepsilon}(z)(|\varepsilon|=1)$ given by

$$
f_{\varepsilon}(z)= \begin{cases}z\left[1-\varepsilon Q z^{n}\right]^{-\left(\frac{1+Q}{Q}\right)} \frac{(1-\alpha) e^{-i \lambda} \cos \lambda}{n}, & Q \neq 0 \\ z \exp \left[\frac{\varepsilon(1-\alpha) e^{-i \lambda} z^{n} \cos \lambda}{n}\right], & Q=0\end{cases}
$$

Corollary 2. If $f(z)=z+\sum_{k=n+1}^{\infty} a_{k} z^{k} \in F(b, \infty, n)=S(1-b, n)$, then

$$
\sum_{k=m n+1}^{(m+1) n}(k-1)^{2}\left|a_{k}\right|^{2} \leq\left\{\frac{n}{(m-1)!} \prod_{j=0}^{m-1}\left|\frac{2 b}{n}+j\right|\right\}^{2}
$$

for $m=1,2, \cdots$. The estimates are sharp for the function $f_{\varepsilon}(z)(|\varepsilon|=1)$ given by

$$
f_{\varepsilon}(z)=\left(1-\varepsilon z^{n}\right)^{\frac{-2 b}{n}}
$$

Corollary 3 [14]. If $f(z)=z+\sum_{k=n+1}^{\infty} a_{k} z^{k} \in F\left(e^{-i \lambda} \cos \lambda, \frac{1}{\cos \lambda}, n\right)=\left(H^{*}\right)_{n}^{\lambda}$, then

$$
\left|a_{k}\right| \leq \frac{(2-\cos \lambda) \cos \lambda}{k-1}, \quad k \geq n+1
$$

The estimates are sharp for each $k \geq n+1$.
Corollary $4[7,8,14]$. If $f(z)=z+\sum_{k=n+1}^{\infty} a_{k} z^{k} \in F\left((1-\alpha) e^{-i \lambda} \cos \lambda, \infty, n\right)=$ $S^{\lambda}(\alpha, n), 0 \leq \alpha<1,|\lambda|<\frac{\pi}{2}$, then

$$
\sum_{k=m n+1}^{(m+1) n}(k-1)^{2}\left|a_{k}\right|^{2} \leq\left\{\frac{n}{(m-1)!} \prod_{j=0}^{m-1}\left|\frac{2(1-\alpha) e^{-i \lambda} \cos \lambda}{n}+j\right|\right\}^{2}
$$

for $m=1,2, \cdots$. The estimates are sharp.

Remark 2.

(1) Choosing (i) $\alpha=\lambda=0$, (ii) $\lambda=0$ in Corollary 4 we get, respectively, results of MacGregor [13] and Boyd [4].
(2) Choosing (i) $n=1$, (ii) $n=1, \alpha=0$ in Corollary 1 we get, respectively, results of Aouf [1] and Kulshrestha [11].
(3) Choosing $n=1$ in Corollary 2 we get results of Nasr and Aouf [15].
(4) Choosing $n=1$ in Corollary 3 we get a result of Goel [6].
(5) Choosing $n=1, b=(1-\alpha) e^{-i \lambda} \cos \lambda, 0 \leq \alpha<1,|\lambda|<\frac{\pi}{2}, M \geq 1$ in Theorem 1 we obtain a result of Plaskota [17].

Theorem 2. If the function $f(z)$ defined by (1.9) is in the class $F^{*}(b, M, n)$ and $M \geq 1$, then

$$
\begin{equation*}
\sum_{k=m n}^{(m+1) n-1}(k+1)^{2}\left|a_{k}\right|^{2} \leq(1+Q)^{2}|b|^{2}, \quad Q=1-\frac{1}{M}, \tag{2.14}
\end{equation*}
$$

for $m=1,2, \cdots$, and

$$
\begin{equation*}
\sum_{k=n}^{\infty}\left[(k+1)^{2}-\left(\frac{1+Q}{1-Q}\right)|b|^{2}+\frac{2 Q}{1-Q}(k+1) \operatorname{Re}\{b\}\right]\left|a_{k}\right|^{2} \leq\left(\frac{1+Q}{1-Q}\right)|b|^{2} \tag{2.15}
\end{equation*}
$$

Estimate (2.14) is sharp with equality holding for given m for the function

$$
f_{\varepsilon}(z)= \begin{cases}z^{-1}\left[1+\varepsilon Q z^{m n+1}\right]^{-\left(\frac{1+Q}{Q}\right) \frac{b}{m n+1}}, & Q \neq 0 \\ z^{-1} \exp \left[\frac{-\varepsilon z^{m n+1}}{m n+1}\right], & Q=0\end{cases}
$$

where $|\varepsilon|=1$.
The proof is analogous to that of Theorem 1 and is omitted.
Remark 3. Choosing $n=1, b=(1-a) e^{-i \beta} \cos \beta, 0 \leq a<1,|\beta|<\frac{\pi}{2}, M=m \geq 1$, the above theorems yields results of Jakubouski [9].

References

[1] M.K. Aouf, "Bounded p-valent Robertson functions of order α," Indian J. Pure Appl. Math. 16 (1985), no. 7, 775-790.
[2] M.K. Aouf, "Coefficient results for some classes of meromorphic functions," J. Nature. Sci. Math. 27 (1987), no. 2, 81-97.
[3] M.K. Aouf, "Bounded spiral-like functions with fixed second coefficient," Internat. J. Math. Sci. 12 (1989), no. 1. 113-118.
[4] A.V. Boyd, "Coefficient estimates for starlike functions of order α," Proc. Amer. Math. Soc. 17 (1966), 1016-1018.
[5] J. Clunie, "On meromorphic schlicht functions," J. London Math. Soc. 34 (1959), 215-216.
[6] R.M. Goel, "A subclass of α-spiral functions," Publ. Math. Debrecen 23 (1976), 79-84.
[7] H.S. Gopalakrishna and V.S. Shetiya, "Coefficient estimates for spirallike mappings," Karnatak Unive Sci. J. 18 (1973), 297-307.
[8] H.S. Gopalakrishna and V.S. Shetiya, "Coefficient estimates for spirallike functions," Ann. Polon. Math. 35 (1977), 1-9.
[9] Z.J. Jakubowski, "On the coefficients of starlike functions of some classes," Bull. Acad. Polan. Sci. Sér. Sci. Math. Astronom. Phys. 19 (1971), 811-815.
[10] J. Kaczmarski, "On the coefficients of some classes of starlike functions," Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 17 (1969), 495-501.
[11] P.K. Kulshrestha, "Bounded Robertson functions," Rend. Mat. (7) 9 (1976), 137-150.
[12] R.J. Libera, "Univalent α-spiral functions," Canad. J. Math. 19 (1967). 449-456.
[13] T.H. MacGregor, "Coefficient estimations for starlike mappings," Michigan Math. J. 10 (1963), 277-281.
[14] M.L. Mogra, "On coefficient estimates for λ-spirallike and Robertson functions," Rend. Mat. (7) 3 (1983) no. 1, 95-106.
[15] M.A. Nasr and M. K. Aouf, "Starlike function of complex order," J. Natur. Sci. Math. 25 (1985), 1-12.
[16] M.A. Nasr and M. K. Aouf, "Bounded starlike functions of complex order," Proc. Indian Acad. Sci. (Math. Sci.) 92 (1983), 97-102.
[17] W. Plaskota, "On the coefficients of some families of regular functions," Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 17 (1969), 715-718.
[18] Ch. Pommerenke, "On meromorphic starlike functions," Pacific J. Math. 13 (1963), 221-235.
[19] M.S. Robertson, "On the theory of univalent functions," Ann. of Math. 37 (1936), 374-408.

