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GENERALIZED MEAN OF ORDER t VIA BOX 
AND COX'S TRANSFORMATION 

VICENTE QUESADA AND INDER JEET TANEJA 

Abstract. Mean of order t and Box and Cox's transformation function are very 
famous in the literature of mathematics and statistics respectively. In this paper, 
we have derived some standard inequalities from the mean of order t and studied 
some interesting properties of Box and Cox's transformation function. A compos 
ite relation of these two measures, calling generalized mean of order t or unified 
( t, s )-mean is considered. The unified ( t, s )-mean leads us to very important gen 
eralized information theoretic measures. These measures include generalizations 
of Shannon's entropy, Kullback-leibler's relative information, Kerridge's inaccu 
racy, J-divergence, Jensen difference dive~gence measure, etc. Properties of unified 
( t, s )-mean are also studied. · 

1. Mean of Order t 

Let 6.n = {V = (v1,v2, · · · ,vn) I Vi~ 0, I::7=1 Vi= l},n ~ 2 be a set of all complete 
finite discrete probability distribution. Let r n = {W = ( W1' ... 'Wn) I Wi ~ 0, i = 
1, 2, · · ·, n} C Rn. For (V, W) E 6.n x r n, the mean of order tis given by 

Mt(VIIW) = 
t/0 

n 

IT w"!; 
i ' i=l 

(1) 
t=O 

where Vi, Wi > 0 fort< 0, Vi. 
In particular, the mean of order -1, 1 and 2 are the harmonic mean, the arithmetic 

mean and the root-mean-square respectively. The following result is well known in the 
literature (ref. Beckenbach and Bellman, 1971, pp.17). 
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Result 1. ·we have 
(i) Mt(VIIW) is an increasing function oft. 
(ii) tlogMt(VIIW) is convex function oft. 
(iii) Mt(VIIW) = { Wmin, t-+ -00 

Wmax, t-+ 00 . 

where Wmin = min{w1, · · ·, Wn} and Wmax = max{w1, · · ·, Wn}. 
(iv) Mt(VIIW) ~ E~=l ViWi ~ M1;t(VIIW), t ~ 1, t f. 0. 
(v) Mt(VIIW) ~ z:::1 ViWi ~ M1;t(VIIW), t ~ 1 

2. Classical inequalities 

In this section, we shall prove some classical inequalities frequentlty used in the 
literature on mathematics, statistics, information theory etc.. These inequalities are 
proved as a consequences of the result 1. 

Result 2.(Jensen's inequalities). We have 

n r [ f: v,w,]', O<t<l 2:::: t i=l (2) v,w, [ n r 
i=l t > 1 t<O > ~ ViWi , or 

i=l 

with equality iff Wi = c, \/ i = 1, 2, · · ·, n. 
Proof. From the parts (iv) and (v) of result 1, we have 

n ( ~ f: ViWi, t < 1, t f. 0 
[L t t]l/t i:::::l U·V· i i n 
i=l ~ E ViWi, t > 1 

i=l 

with equality iff Wi = c, \/ i = 1, 2, · · ·, n. 
Raising both side of the inequalities (3) by t, we get the required result. 
In the inequalities (2) take Wi = udvi, \/ i, we get 

n ( ~ t Ui, t < 1, t f. 0 
[L t 1-t]l/t i=l U·V· i i n 
i=l ~ E Ui, t > 1 

i=l 

(3) 

i.e., 

(4) 
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with equality iff Ui = cvi, 'vi, i.e., iff Vi = ud E~=l ui, 'vi. 
In the inequalities ( 4) take Ui = Pi, we get 

n { ::; 1, 0 < t < 1 
LP!vJ-t 
i= 1 ~ 1, t > 1 or t < 0 

with equality iff Pi = Vi, 'vi, where P = (P1,P2, · · · ,Pn) E 6.n. For t < O,pi > 0 and 
Vi > 0, 't/ i. 

Thus the inequaliti~s (4) and (5) are the consequences of the Jensen's inequalities. 
While the inequalities (3) can be considered equivalent version of the inequalities (2). 

(5) 

Result 3. (Holder's inequalities). We have 

p<l,p/0 
(6) 

p>l 

with equality iff for some c, af = cb!, 'vi, where ai, and bi are nonnegative real numbers 
and l + l = 1. For p < 0, ai > 0, bi > 0, 'vi. p q 

P f T k . _ bt/(t-1)/ '°"n bt/(t-1) d . _ ·bl/(1-t) '°"n bt/(t-1) t ...t. l . roo . a e v, - i L..,i=l i an w, - a, i L..,i=I i , ..,... 1n 
the inequalities (3), we get 

i.e., 

[ 

n ] f [ n ] 
1

-; 

1 l ::; t Oi bi, t < l, t ,t: 0 
~ a~ ~ bY<t-1> i=1 
L..,i L..,, n 
i=l i=l ~ E aibi, t > 1 

i=l 

·th al·t ·ff ·bl/(1-t) '°"n bt/(t-1) _ . .ff t _ 'bt/(t-I) w . w1 equ 1 y 1 ai i L..,i=I i - c, 1.e., 1 ai - c i v i. 
The above expression is same as (6) for t = p and q = t:_1 

The inequalities (6) can also be derived from (4) by taking ui = aibi and vi 
b~(t-1)/ '""~ b~/(t-1) t ...t. l 'v . . 
i L..,i=I i , r , i. 

The equivalent version of the inequalities ( 6) is given by 

! 
n 

n t n 
1 

1-t ~ L aibi, 0 < t < l, L t :Eb1-, i;l [,=1 a, ] [,act ' ] :S; ,t a,b,, t > 1 or t < 0 
(7) 
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with equality iff a: = cb}-t, \/ i, where ai, and bi are nonnegative real numbers. For 
t < 0, ai > 0, bi > 0, \/ i. 

The proof of the inequalities (7) follows from {6) by taking p = t· 
Result 4. ( Generalized Holder's inequalities). We have 

{8) 

with equality iff for some c, giaf = cgib?, \/ i, where ai, bi and gi are nonnegative real 
numbers and -1:. + l = 1. For p < 0, ai > 0, bi > 0, \/ i. p q 

(9) 

By taking Si = af, ki = b? and t = i in (9), we get (8). 
The equivalent version of the inequalities (8) is given by 

l 
n 

n t n 1-t ~ L aibigi, 0 < t < l, 
~ 1/t . ~ bl(l-t) . i=l 
~~ ~ ~ i ~ n [,=1 ] [,=1 ] :,; ,~ a;b;g;, t > 1 or t < 0 

(10) 

with equality iff for some c, gia!1t = cgib!/(l-t), \/ i, where ai, bi and gi are nonnegative 
real numbers. For t < 0, ai > 0, bi > 0, gi > 0 \/ i. 

the proof follows by taking Si = a!/t and ki = b!/{l-t) in (9). 
Result 5. (Minkowski's inequalities). We have 

[ r n [ n t r· ~ :,; it. [I:;=1 a;•)' , t < 1, t / 0 
(11) L L0

j. [ '] ,1, k-1 j-1 n n 
- - > ~ [ I: ajk] , t > 1 

J=l k=l 

with equality iff a;k are independent of j, i.e., a;k = Ck, V j, k, where a;k are nonnegative 
real numbe~~· Fort< 0, ajk > 0 \/ j, k. 



GENERALIZED MEAN OF ORDER t VIA BOX AND COX'S TRANSFORMATION 129 

Proof. In the inequalities (6) take aj = ajk, bj = [E~=l ajir-l and p = t, we get 
n [ n l t-1 ~ E a1k E a1i , 

j=l i=l 

n [ n l t-1 ~ L a1k L a1i , 
j=l i=l 

t < 1, t f. 0 

t>l 

Summing both sides of the above inequality over all k, and simplifying,we get 

t < 1, t f. 0 
(12) 

t > 1 

with equality iff a;k = C [E:=l ajkr, i.e., iff ajk = c' E:=l ajk, i.e., iff ajk are independent 
of k,.where 

Simplifying the expression (12), we get the required result. 
The equivalent version of the inequalities (11) is given by 

[n [" rr • [ n r r L I: a;, • o < t < i 2:::: 2:::: 1/t 1=1 k=l (13) aik 1/t t 

•=• i=• < [i~ [,ta;,] ] , t > l or t < 0 

with equality iff a1k are independent of j, i.e., a1k =ck,\/ j, k, where a1k are nonnegative 
real numbers. Fort< 0, a1k > 0 \/ j, k. 
The proof of the inequalities (13) follows from (7) by taking a1 = a1k and 
bj = [E:1 a1i]1-t. 

Result 6. (Generalized Minkowski's inequalities). We have 

n [" rr[f:[" r r ~ L g;a;, - i=• f,a;• g; . t < 1, t,. 0 

k-1 ,-1 [ 
- n n t 1/t 

(14) 

> E I: a·k . i=• L=. , l g,] . t > l 
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where ajk and 9i are nonnegative real numbers. For t < 0, a;1c > 0, g; > 0 'v j, k. 

Proof. Take a;1c = gfta;1c in the inequalities (11), we get {14). 
The equivalent version of the inequalities {14) is given by 

[ 
n [ n l 1/t ] t > ~ E a;k g; , 

J=l k=l 

[ 

n [ n l 1/t ] t < ~ L Ojk 9i , 
3=1 k=l 

O<t<l 
(15) 

t > l or t < 0 

The inequalities (15) follows from (13) by taking a;1c = a;1cg}. 
Remark 1. Gallager (1968, pp 522-524) and Jelinek (1968, pp. 510-518) gave very 

importance to the above inequalites and apply them to prove some important results 
on information theory. Jelinek considered these inequalities for convex numbers and 
extended some of these for integral forms. Gallager considered only for real numbers. The 
parameters considered by both of them are for positive values, while we have extended 
them for the negative values too. The equivalent version of the inequalities given are also 
sometimes useful in applications. Some of these inequalities can be seen in Backenbach 
and Bellman (1971). 

3. Box And Cox's Transformation Function 

Let us consider the following function 

{ 

(21-s _ 1)-l[xs-l _ 1), 
Bs(x) = 

- log2 x, 

s,61 
{16) 

s=l 

for alls E (-00,00) and x E (O,oo). 
The function Bs(x) is famous as Box and Cox's transformation (Box and Cox, 1964) 

and found its applictions in Statistics (Box and Tiao, 1973). For more details refer to 
Broemeling {1982). Some interesting properties are given in the following result. 

Result 7. We have 
(.) () ( ) { ~ 0, 0::; X ::; 1 
1 sX <O x>l 

- I - 

with equality iff x = 1. 
( .. ) 1· fJ ( ) { oo, s ::; 1 
11 lffix--->O+ s X = (l - 21-s)-1, s > 1 

{ 

1, 0 < X::; 1 
(iii) limx-oo Bs(X) = 0, X = l 

-oo, X > l 
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{ 

001 0 < X < ! 
(iv) lim5_.-oo 8s(x) - 1, X = t 

0, X > 2 
(v) 85(x) is a convex function in x for s < 2. 
{vi) 88(x) is a concave function in x for s > 2. 
(vii) 8 s ( x) is a monotonically decreasing function of x. 
{viii) 8s(xy) = 88(x) + 88(y) + {21-s - l)8s(x)8s(Y), for all x,y ER+. 
(ix) 88(x) is a monotonoically decreasing function of s for x ~ l. 
( ) 8 ( ) { $ k(s)81(x), s ~ l 
X 8 X ~ k( S )81 ( X), S $ l 

where 
81(x) = lims_.18s(x) = -log2 x 

and 
k(s) = { (21-s -1)-1(1- s)ln2, s =/= l (l7) 

I, s = I 
with 
k(s) { ~ 1, s ~ 1 

. $1, s:$1 
(xi) Os(x) = { ~ 81(x),(81(x) ~ l,s $1) or (0 $ 81{x) $1,s ~ 1) 

$ 81(x),{O $ 81(x) $ l,s $ 1) or (81(x) ~ l,s ~ 1) 
with equality iff x = l or s = l. 

( 
.. ) 

1 
{ $ }8s(x), (0 < x $ } or x ~ l, s $ 2) or (} $ x $ l, s ~ 2) 

Xll - X ~!8s(x),(!Sx$l,s$2) or (O<xS} or x~l,s~2) 
with equality iff x = ! or x = l or s = 2. 
Proof. parts (i) to (viii) are easy verifications. 

(ix) For s # I, we have 

Since 
alna ~ a - l, a ~ 0 ( 0 log O = 0), 

and 
xs-l - 1 { > 0 x > l 

S - 1 $ o'. 0 ~ X $ 1 

hold, then we conclude that 

This proves that the function () s ( x) is monotonically decreasing in s for x ~ l. 



132 VICENTE QUESADA AND INDER JEET TANEJA 

(x) We know that 
lna ~ a - 1, a > 0. 

Taking a = xs-1, x > 0 and a = 21-s, and rearranging the terms, we get the 
required result. 

(xi) For a> 0, we know that (ref. Hardy et al., 1934, pp.40, Th. 4.2) 

{

~')'(a - 1), ')' ~ 1 
a"Y -1 

~ 'Y(a - 1), 0 < ')' ~ 1 
Take a= 21-s and ')' = - log2 x, we get the result. 

(xii) Let us consider the function 
1 

11s(x) = 1 - X - 2Bs(x). 
Then 

and 

where sf. 1 

s=l 

and 

{ 

(21-s - l)-1(s - l)(s - 2)xs-3, 
8~(x) = 

1 1 
ln2~' 

Since ..,£:..-.:1 1 < 0 for any s, then 

sf. 1 

s=l 

{ 

> 0, s < 2 
8~(x) =0, s=2 

< 0, s > 2 

This implies that 
l { < 0, s < 2 

11~(x) = -20~(x) = 0, s = 2 
> 0, s > 2 

Thus we conclude that 11s ( x) is strictly concave for s < 2 and is strictly convex for 
s > 2. It will attain its maximum or minimum at 17~(x) = 0, i.e., when 

sf. 1,s f. 2 

s=l 
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i.e., at this point of x, the function 'TJs(x) attain its maximum or minimum. 
Also, the only zeros of 'TJs(x) are when x = ! or x = 1 ors= 2. 
Using part {ii), we conclude that 

{

-00, 

lim 11s(x) = 22-•-1 
x-o+ 2(21- .. _1)' 

s ::; 1 

s > 1 

Since 
22-s _ 1 { < 0, 1 < S < 2 

2(21-s _ 1) = 0, S = 2 
> 0, s > 2 

this gives 

lim 'TJ (x) l < ~oo, 
x-o+ s =0, 

> 0, 

s ::; 1 
l<s<2 
s=2 
s>2 

The above expression along with other consideration completes the result. 

4. Generalized Mean of Order t: Unified (t, s)-Mean 

Let us consider the following composite relation: 

for all {V, W) E 6.n x I' n· Then 

<M(VIIW) = (21-s - 1)-1 [[~::::;~1 ViWn .. -;t - 1] , t # 0, s # 1 

</>o(VIIW) = (21-s - 1)-1 [lTI~=l w~ir-l - 1] ' t = 0, s # 1 

t # 0,s = 1 
(18) 

t = 0, s = 1 

for all t, s E (-oo, oo), (V, W) E 6n x I' n· 
We shall call the measure <P:(VIIW), the unified (t, s)-mean or generalized mean of 
order t. It can be written as: 

<P:{VIIW) = CE{<f>:(VIIW)lt i O,s i l}, 

Where "CE" stands for continuous extension. The following results hold: 
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Result 8. We have 
{i) q>i(VIIW) is a monotonically decreasing function oft (s fixed). 
(ii) q>:(VIIW) is a monotonically decreasing function of s (t fixed) provided Mt(VIIW) ~ 

1. 
Proof of part (i) follows from Result l(i) and of part (ii) follows from Result 7(ix). 

Result 9. We have 
{i) q>S(VIIW) { ~ 0, 0 $ Mt(VIIW) $ 1 

t $ 0, Mt(VIIW) ~ 1 
{ii) q>~(VIIW) $ cI>:(VIIW) $ q>~OC)(VIIW), 

where 

and 

{iii) q>f°(VIIW) $ q>i(VIIW) $ q>;-=(VIIW), 
where 

{ 

1, 
q>f°(VIIW) = lims-= q>i(VIIW) = ~oo, 

and 

{ 

oo, 
q>;-=(VIIW) = lims-= q>i(VIIW) = 1, 

0, 
C ) q>S(VIIW) { 2 q>g(VIIW), t $ O 
lV t $ q>g(VIIW), t 2 0 
(v) q>s(VIIW) { ~ k(s)q>HVIIW), s $ l 

t $ k(s)q>HVIIW), s ~ l 
where k(s) is as given in (17). 

(vi) If Mt(VIIW) ~ 1 or q>}(VIIW) ~ 1, then 
q>S(VIIW) { ~ q>:(VIIW), s $ l 
t $ q>}(VIIW), s ~ l 

(vii) If O $ q>:{Vl!W) $ 1, then 
q>S(VIIW) { ~ q>}(VIIW), s ~ 1 
t $ q>:(VIIW), s $ l 

The proof follows as a consequence of the results 1 and 7. 

0 < Mt(VIIW) < 1 
Mt(VIIW) = 1 
Mt(VIIW) > 1 

0 < Mt(VIIW) < i 
Mt(VIIW) = i 
Mt(VIIW) > i 

Result 10. We have 
(i) 1 - Wmax $ !q>:(VIIW), 

for (0 < Wmax $ ! or Wmax ~ 1, S $ 2) or ( ! < Wmax $ 1, S ~ 2) 
(ii) 1 - Wmin ~ !q>i{VIIW), 

for ( 0 < Wmin ~ } or Wmin 2 1, s 2 2) or ! $ Wmin $ 1, s $ 2). 
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Proof. Replace x by Wmax in Result 7(:xii) and applying the left hand side of Result 
9(ii), we get the proof of part (i). Again replacing x by Wmin in Result 7(xii) and applying 
the right hand side of Result 9(ii), we get the proof of part (ii). 

Result 11. we have 
(i) If Mo(VillW1) ~ Mo(V2IIW2), then 

q,:{VillW1) ~ q,:{Vil1W2), 
for all t E (t1, t2), where ti and t2 are determined by the equations 

and 

Mt2(V2IIW2) = Mo(VillW1). 

(ii) If Mo(V2IIW2) ~ W1max and Mo(VillW1) ~ W2min, then 

for.all t,s E (-00,00). 

Proof. (i) We have 

(19) 

In view of (19) and the monotonicity of Mt with respect to t, there exists t1 < 0 such 
that (20) 

In a similar manner there exists t2 > 0 such that 
(21) 

From (20), we have 

From (21), we have 

From (22) and (23), we conclude that 

The rest part of the proof follows in view of monotonicity of 85(x) with respect to x and 
·the continuity of Mt with respect to t. 
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(b) Since limt-oo Mt(VillW1) = Wtmax, then for all t E (0, oo), we have 

i.e., 
(24) 

Again, we know that limt-+oo Mt(VillW2) = W2min, then for all t E (-oo,O), we have 

i.e., 
Mt(VillW2) ~ Mt(VillW1), -oo < t::; 0 

Combining (24) and (25), we have 

(25) 

Since Os(x) is monotonically decreasing in x, it gives 

i.e., 

for all t,s E (-00,00). 

5. Information Theoretic Examples of Unified (t, s)-Mean 

In this section we shall present some information theoretic examples of the unified 
(t, s)-mean given in section 2. These examples give unified (r, s)-information measures 
generalizing Shannon's entropy, Kerridge's inaccuracy, Kullback-Leibler's relative infor 
mation, J-divergence and Jensen difference divergence measure. Some properties are also 
deduced. It is understood that r, s E (-oo, oo) and P, Q E 6.~, where 

l>~ = { P = (p,, · · · , Pn) / t, Pi = 1 with Pi <". 0, for r > 0 and Pi > 0 for r $; 0} 
5.1. Unified (r,s)-Entropy 

Take Vi= Wi = Pi, 'vi= 1, 2, · · ·, n and t = r - 1 in (18), we get 
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where 

Hf (P) = (21-s - 1)-l [2{1-s)H(P) - 1], 

H;(P) = (1 - r)-1 log2 [L7=1 Pr1, 

r = 1, s # 1 

r#l,s=l 
(26) 

r = l,s = 1 

5.2. Unified (r, s)-Inaccuracies 
The three different kinds of unified (r, s)-inaccuracy measures are given by 

H:i(PIIQ) = (21-s _ 1)-l [2{1-s)H{PIIQ) _ 1], 

a H;(PIIQ) = (1 - r)-1 log2[° K~(PIIQ)], 

r=l,s#l 
(27) 

r # 1, s = l 

r = 1, s = l 

a= 1, 2 and 3, where 
n 

1 ) ~ r-1 Kr(PIIQ = ~PiQi ' 
i=l 

and "'n r 
3 K (PIIQ) = L..,i=l Pi 

r "'n r 1-r 
L.,i=l Pi qi 

The above measures are obtained from the unified (t, s )-mean (18) in the following way: 
(i) Take Vi = Pi, Wi = Qi, \/ i = l, 2, · · ·, n and t = r - 1 in {18), we get <I>:(VIIW) = 

1£:(PIIQ). 
(ii) Take Vi = Pi, Wi == Qi,\/ i = I, 2, · · ·, n and t = r~1, in (18), we get <1>:(VIIW) = 

2£:(PIIQ). 
(iii) Take Vi = PUL;=iP1c, Wi = Qi, \/ i = 1, 2, · · ·, n and t = l - r in {18), we get 

<I>HVIIW) = 3£:(PIIQ). 
It can easily be checked that 

0£:(PIIQ) = e:(P), (a= 1, 2 and 3) 
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for P = Q when a= 1 and 3, and Q = pr E 6~, for a= 2, where 

5.3. Unified (r,s)-Relative Information 

Take vi = Pi, Wi = Pi/Qi, \/ i = 1, 2, · · ·, n and t = r - 1, in {18), we get 

where 

Di{PIIQ) = {1 _ 21-s)-l [2(s-l)D(PIIQ) _ 1] , 

n:(PIIQ) = (r - 1)-1 log2 [E:1 prqJ-r], 

D(PIIQ) = E:1 PilOg2(t), 

r = 1, sf. 1 
r f. 1, s = 1 

(28) 

r = 1, s = 1 
We can write 

.r:(PIIU) = ns-1[£:(u) - £:(P)] 

where U = (.!. · · · .!.) E 6 and n' 'n n, 

(29) 

{ 

(21-s -1)-1 [nl-s - 1), Sf. 1 
£:(u) = 

log2 n, s = 1 
(30) 

we can generalize the measure (18) for two probability distributions in the following way: 

where 

,t,:(V,, V2IIW1, W,) = (21-• - 1)-1 { [it, [v"wf. + v,.wt]] ·~' - 1}, t # 0, s # l 
(32) 

for all Vi, Vi E b.n, and W1, W2 E f n· 
Similar to Section 4, some properties of the measure (31) can be extended easily. 
In view of {31) and (32), we have the following unified (r, s)-divergence measures as 

particular cases. 
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5.4. Unified (r, s)-J-Divergences 

Take w1i = ~' W2i = ~' Vi = P, Vi = Q and t = r - 1 in (32) and in view of (31), 
we have 

(33) 

where 
1.c:(PIIQ) = CE {11:(PIIQ)lr # 1, s # 1}, 

with 

and n p· 1 Jf (PIIQ) = J(PIIQ) = L(Pi - qi) log2( _: ). 
i=l qi 

We can also write 
J(PIIQ) = D(PIIQ) + D(QIIP) (34) 

In (34) replace D(PIIQ) by F;(PIIQ), we get an alternative way to generalize the J 
divergence measure: 

(35) 

In particular when r = s, we have 

where 

{ 

1:(PIIQ), s-:/ 1 
.C!(PIIQ) = 

J(PIIQ), s = 1 
(36) 

with 

5.5. Unified (r, s)-R-Divergences 

Take W1i = vi~~t
2
;, W2i = vi~~t

2
;, Vi = P, V2 = Q and t = r - 1 in (32) and in view 

of (31), we have 
(37) 

where 
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with 

and 

[ 

n ] n 1 p· + q· p· + q· 
1 R~(PIIQ) = R(PIIQ) = 2 ~(pdogpi + Qi log qi) - ~( in i) log( i n i) 

= H(p + Q) - H(P) + H(Q) (38) 
2 2 

We can also write 

(39) 

Replacing D(PIIQ) by .r:(PIIQ) in the expression (39), we get 

(40) 

In particular for r = s, we get 

where 

with 

K! = { R!(PIIQ), s # l 

R(PIIQ), s = l 

R:(PIIQ)=(l-2,_,)_1 [t,[p/;qi] [p,;q,r' -1].s#l 
Thus we see that the measures E:(P), 0£:(PIIQ) (a = 1, 2 and 3), .r:(PIIQ), 

1.c:(PIIQ) and 1K:(PIIQ) can be obtained as particular cases of <PHVIIW), and the 
measures 2.c:(PIIQ) and 2K:(PIIQ) are considered as alternative ways of generalizations 
A third way to generalize the R-divergence is followed by replacing H(P) by E:(P) in 
(38): 

(41) 

(42) 

Remark 2. In view of the Results 4-8, the above information theoretic measures 
lead us to very interesting properties. Some more properties of the measures £;(P), 
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0£:(PIIQ) (a= 1,2 and 3) and .r:(PIIQ) are recently studied by Taneja (1992). Some 
properties of the measures 0.c:(PIIQ) and °K;(PIIQ) (a = 1 and 2) are extensively 
studied in Taneja (1989) Taneja et al.(1989) for r E (0, oo) and s E (-oo, oo ), while 
for r E (-oo, 0), the measures O .c;(PIIQ) and °K;(PIIQ) (a = 1 and 2) and .r:(PIIQ) 
become negative. Some connections with Fisher's information measure can be seen in 
Salicru and Taneja (1992). Result 7 generalizes the one studied by Shiva et al. (1973), 
Taneja (1989) and Zografos et a~. {1989). Detailed studies of the Result 7 are given in 
Quesada and Taneja (1992). 
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